NOTES ON SEDIMENTATION ACTIVITIES CALENDAR YEAR 1979 ## A Report of the Subcommittee on Sedimentation Interagency Advisory Committee on Water Data ## Prepared By U.S. Department of the Interior, Geological Survey U.S. Department of Agriculture, Soil Conservation Service Office of Water Data Coordination Reston, Virginia 22092 November 1980 #### PREFACE The need for disseminating current information on activities in the field of sedimentation was proposed by the chairman of the Federal Interagency River Basin Committee's Subcommittee on Sedimentation shortly after the subcommittee was formed in May 1946. At the fifth meeting of the subcommittee on September 17, 1946, the members approved this proposal and agreed to the issuance of a quarterly report as one means of effecting better coordination of the work of various Federal Agencies in the field of sedimentation. Quarterly reports were issued during the period of July 1, 1946, through June 30, 1947, when the reporting period was changed to a 6-month period, and semiannual reports were issued through 1953. Starting in 1954 and continuing through the present, these reports have been made annually and cover the activities of the Federal Agencies in the field of sedimentation on a calendar-year basis. This report is a digest of information furnished by Federal Agencies on sedimentation investigations, both ongoing and planned. Included in the report are a review of important findings, new methodologies, new publications, laboratory and other research activities, and other pertinent information. The material is organized on the basis of the 21 water resources regions delineated by the U.S. Water Resources Council (WRC) for use in the national assessment (see figure 1). A listing by WRC region of stations at which sediment data have been obtained is given in table 3 of the appendix. Within each region, the stations are arranged according to their 8-digit hydrologic unit code. Stations for which the hydrologic unit code was not available are given at the end of the listing under "Miscellaneous." Also given in the appendix is an explanation of the column headings in the station listings, the code number and abbreviations used for State, county, and other areas (table 1), and the code for each organization reporting activities in this volume (table 2). ## CONTENTS | | | | Page | |---|-----|---|----------| | Preface | | • | ii | | Agencies Represented on the Subcommittee on Sedimentation | | | vi | | Agency Representative, Subcommittee on Sedimentation | | | vii | | New England Region | | | | | Corps of Engineers | | | 1 | | Geological Survey | | | 3 | | Soil Conservation Service | | | 5 | | Mid Atlantic Region | | | | | Corps of Engineers | | | 6 | | Geological Survey | | | 9 | | South Atlantic-Gulf Region | | | | | Corps of Engineers | | | 13 | | Geological Survey | | | 16 | | Soil Conservation Service | | | 21 | | Great Lakes Region | • • | • | | | Corps of Engineers | | | 23 | | Geological Survey. | • • | • | 25 | | Soil Conservation Service | | | 28 | | | • • | • | 20 | | Ohio Region | | | 29 | | Corps of Engineers | • • | • | 33 | | Geological Survey | | | 33
43 | | Soil Conservation Service | • • | • | 43 | | Tennessee Region | | | | | Geological Survey. | • • | • | 44 | | Tennessee Valley Authority | • • | • | 47 | | Upper Mississippi Region | | | | | Corps of Engineers | • • | • | 48 | | Geological Survey | | • | 51 | | Soil Conservation Service | | • | 59 | | Lower Mississippi Region | | | | | Corps of Engineers | | • | 61 | | Geological Survey | | • | 65 | | Souris-Red-Rainy Region | | | | | Corps of Engineers | | • | 68 | | Geological Survey | | | 69 | | Soil Conservation Service | | | 71 | | Missouri River Region | | | | | Corps of Engineers | | | 72 | | Geological Survey | | | 77 | | Soil Conservation Service | | | 91 | | Water and Power Resources Service | | ٠ | 93 | | Arkansas-White-Red Region | • • | • | | | Corps of Engineers | | _ | 95 | | Geological Survey. | • | • | 96 | | Soil Conservation Service | | | 102 | | Water and Power Resources Service. | . • | • | 104 | | | | | | | | <u>Page</u> | |------------------------------------|-------------| | Texas-Gulf Region | | | Geological Survey | 105 | | Soil Conservation Service | 108 | | Water and Power Resources Service | 108 | | Rio Grande Region | | | Corps of Engineers | 109 | | Geological Survey | 110 | | Soil Conservation Service | 113 | | Water and Power Resources Service | 113 | | Upper Colorado Region | | | Geological Survey | 114 | | Soil Conservation Service | 120 | | Water and Power Resources Service | 120 | | Lower Colorado Region | | | Geological Survey | 121 | | Soil Conservation Service | 125 | | Water and Power Resources Service | 126 | | Great Basin Region | | | Geological Survey | 127 | | Pacific Northwest Region | | | Corps of Engineers | 130 | | Geological Survey | 132 | | Soil Conservation Service | 137 | | Water and Power Resources Service | 138 | | California Region | | | Corps of Engineers | 139 | | Geological Survey | 141 | | Soil Conservation Service | 144 | | Water and Power Resources Service | 145 | | Alaska Region | | | Corps of Engineers | 146 | | Geological Survey | 147 | | Hawaii Region | | | Geological Survey | 150 | | Caribbean Region | | | Geological Survey | 152 | | Soil Conservation Service | 152 | | Water and Power Resources Service | 152 | | Foreign Activities | | | Water and Power Resources Service. | 153 | | | Page | |---|--| | Laboratory and Other Research Activities Corps of Engineers | 155
178
184
207
210
238 | | ILLUSTRATIONS Figure 1Water Resources Regions of the United States | 245 | | TABLES | | | Table 1. Code numbers and abbreviations used by states (and other areas) and code numbers used for counties and independent cities | 246 | | Table 2. NAWDEX organizational codes | 253 | | Table 3. Sediment data sites as of January 1980 | 255 | • . ## AGENCIES REPRESENTED ON THE SUBCOMMITTEE ON SEDIMENTATION INTERAGENCY ADVISORY COMMITTEE ON WATER DATA DEPARTMENT OF AGRICULTURE * Forest Service * Science and Education Administration *Soil Conservation Service DEPARTMENT OF THE ARMY *Corps of Engineers DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration DEPARTMENT OF ENERGY Federal Energy Regulatory Commission DEPARTMENT OF THE INTERIOR Bureau of Mines *Bureau of Reclamation *Geological Survey DEPARTMENT OF TRANSPORTATION *Federal Highway Administration *TENNESSEE VALLEY AUTHORITY *Participating agencies in "Notes on Sedimentation Activities" #### ROSTER # SUBCOMMITTEE ON SEDIMENTATION Interagency Advisory Committee on Water Data April 2, 1980 ### DEPARTMENT OF AGRICULTURE John N. Holeman (Chairman) Soil Conservation Service Room 5247, South Agriculture Bldg. P.O. Box 2890 Washington, D.C. 20013 Com 447-2629 FTS 447-2629 William F. Mildner (Alternate) Soil Conservation Service 10,000 Aerospace Road Lanham, Maryland 20801 Com 436-7810 FTS 436-7810 Jimmy Williams (Acting Member) Science & Education Administration-AR National Program Staff Room 40, Bldg. 005-BARC-W Beltsville, Maryland 20705 Com 344-4034 FTS 344-4034 James E. Eggleston (Member) Hydrologist, Area Planning & Development Forest Service, USDA, Room 4207 P.O. Box 2417 Washington, D.C. 20013 Com 447-7403 FTS 447-7403 #### DEPARTMENT OF THE ARMY Shapur A. "Shap" Zanganeh (Member) Corps of Engineers DAEN-CWE-HY Washington, D.C. 20314 Com 272-0224 Yung H. Kuo (Alternate) Corps of Engineers DAEN-CWE-HY Washington, D.C. 20314 Com 272-0224 FTS 272-0224 ## DEPARTMENT OF THE INTERIOR James K. Culbertson (Member) U.S. Geological Survey National Center Mail Stop 412 12201 Sunrise Valley Drive Reston, Virginia 22092 Com 860-6834 David F. Gudgel (Member) Water & Power Resources Service Department of the Interior Room 7451 Washington, D.C. 20240 Com 343-5275 FTS 343-5275 Wilton Johnson (Member) Bureau of Mines Div. of Min'1. Land Assessment 2401 E. Street N.W. Washington, D.C. 20241 Com 634-1285 Jose' R. Del Rio (Member) Office of Surface Mining Room 118, So. Interior Bldg. 1951 Constitution Ave., N.W. Washington, D.C. 20245 Com 343-4022 FTS 343-4022 ## DEPARTMENT OF COMMERCE Richard B. Perry (Member) National Ocean Survey, NOAA 6001 Executive Blvd. Cx43 Rockville, Maryland 20852 Com 443-8154 FTS 443-8154 David B. Duane (Alternate) National Sea Grant Program NOAA, Room 606 6010 Executive Blvd. Rockville, Maryland 20852 Com 443-8894 FTS 443-8894 #### DEPARTMENT OF ENERGY Shou-Shan Fan (Member) Regulatory Analysis Room 3000 Fed'l Energy Regulator Comm. 825 N. Capitol Street N.W. Washington, D.C. 20426 Com 357-8292 John Mathur (Member) Regional Assessment Division Energy Research & Development Admin. Mailstop E-201 Washington, D.C. 20545 Com 353-5898 ## TENNESSEE VALLEY AUTHORITY Claude H. Smith (Member) Tennessee Valley Authority Data Services Branch 350 Evans Bldg. Knoxville, Tennessee 37902 Com 615-632-3295 FTS 856-3295 Carl D. (Don) Eklund (Alternate) Tennessee Valley Authority Data Services Branch 329 Evans Bldg. Knoxville, Tennessee 37902 Com 615-632-3287 FTS 856-3287 ## DEPARTMENT OF TRANSPORTATION Murray L. Corry (Member) FHWA Room 3113 Nassif Bldg. 400 7th Street, S.W. Washington, D.C. 20590 Com 472-7690 D.C. "Charlie" Woo (Alternate) FHWA (HRS-42) Room 6320 Nassif Bldg. 400 7th St., S.W. Washington, D.C. 20590 Com 426-4980 ## DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT Truman Goins (Member) Office of Environmental Quality 7270 Room HUD Bldg. 451 7th St., S.W. Washington, D.C. 20410 Com. 755-6296 ## ENVIRONMENTAL PROTECTION AGENCY Robert E. Thronson (Inactive) Office of Water Program Operations (WH-448) Room 2417-D, Waterside Mal1 EPA Washington, D.C. 20460 Com 755-4913 #### **NEW ENGLAND REGION** ## CORPS OF ENGINEERS #### New England Division Report on
sedimentation and erosion activities in the New England Division is as follows: - 1. Black Rock Lake, Connecticut. Reforestation efforts are now complete (11,000 seedlings) on a large borrow area which has been the major contributor to lake sedimentation. Since 1975, 7500 c.y. of sediment have been removed. This reforestation project is expected to greatly reduce the sediment problem, however, one additional silt removal action will be budgeted for in FY 84. - 2. Northfield Brook Lake, Connecticut. A fall 1980 (FY 81) drawdown is planned for the removal of 3600 c.y. of sediment from the 8-acre lake. Sources contributing to this sediment problem have declined to a negligible rate, and it is anticipated that this planned removal should be the last for at least ten years. - 3. Hop Brook Lake, Connecticut. A complete approach to sediment and water quality problems at Hop Brook's 21-acre lake has been implemented to reduce sediment, improve the water resource, fishery and recreational value: Under the provisions of a contract awarded in FY 79, covering the sale of 160,000 c.y. of sand and gravel, the buyer commenced work on a three year, overall deepening and lake bed restructuring project to our specifications. At the end of this, the second season, approximately 90,000 c.y. of sand and gravel have been removed. - 4. North Hartland Lake, Vermont. The feasibility of removing silt which has accumulated along lakeshore areas as a result of bank slumping is still being considered. The planting of vegetation to halt erosion and further slumping is scheduled for this spring. - 5. North Springfield Lake, Vermont. Sedimentation at the confluence of the Black River's North Branch and the recreation pool at Stoughton Pond will be removed after a plan for draining the pool is finalized. The ogee weir that serves as the pool's outlet must be modified. Routine maintenance may then be applied to the silt removal. - 6. Otter Brook Lake, New Hampshire. A continuing silt removal project of approximately 1500 c.y. will be performed this year, to maintain a desirable current pattern that will help to keep the bathing area clean. - 7. Townshend Lake, Vermont. Annual silt removal is budgeted for accumulations around the beach area. Debris removal from below the log boom is scheduled for FY 82. Accumulations around the boat ramp are being studied for possible removal through sale or contract. 8. <u>Littleville Lake, Massachusetts</u>. Sedimentation along the channel from the Dayville Boat Ramp to the lake has not yet been removed. An estimated 45,000 c.y. of sediment have filled the 300 to 400 foot long, 50 foot wide channel to a depth of 3 feet. Turbidity and boating problems have resulted. Budget request has been submitted for approval for FY 82 removal. ## NEW ENGLAND REGION ## GEOLOGICAL SURVEY ## St. John Subregion 1. Suspended-sediment data are being collected on a monthly basis at Aroostoo River at Caribou, Maine, and at St. John River near Van Buren, Maine, as a part of the National Stream Quality Accounting Network (NASQAN). ## Penobscot Subregion 1. Suspended-sediment data are being collected on a monthly basis at Penobscot River at Eddington, Maine, (relocated from West Enfield) as a part of NASQAN. ## Androscoggin Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Kennebec River near North Sidney, Maine, (relocated from Bingham) and at Androscoggin River at Brunswick, Maine, as a part of NASQAN. - 2. Suspended-sediment data are being collected on a monthly basis for the U.S. Corps of Engineers at Wild River at Gilead, Maine, as a part of the National Hydrologic Benchmark Network. ## Maine Coastal Subregion 1. Suspended-sediment data are being collected on a monthly basis at St. Croix River at Milltown, Maine, and at Narraguagus River at Cherryfield, Maine, as a part of NASQAN. ## Saco Subregion 1. Suspended-sediment data are being collected on a monthly basis at Saco River at Cornish, Maine, and at Presumpscot River near West Falmouth, Maine, as a part of NASQAN. ## Merrimack Subregion 1. Suspended-sediment data are being collected on a monthly basis at Merrimack River above Lowell, Mass., as a part of NASQAN. ## Connecticut Subregion 1. Suspended-sediment data are being collected on a monthly basis at Connecticut River at North Walpole, N.H., and at Connecticut River at Thompsonville, Conn., as a part of NASQAN. ## Massachusetts-Rhode Island Coastal Subregion 1. Suspended-sediment data are being collected on a monthly basis at Charles River at Dover, Mass., Blackstone River at Millville, Maine, and at Pawcatuck River at Westerly, R.I., as a part of NASQAN. ## Connecticut Coastal Subregion - 1. Suspended-sediment data are being collected on a monthly basis at B^{T} ack River at Coventry, Vt., Housatonic River at Stevenson, Conn., Shetucket River at South Windham, Conn., and at Quinebaug River at Jewett City, Conn. as a part of NASOAN. - 2. Suspended-sedient data are being collected on approximately a daily basis at Yantic River at Yantic, Conn., to determine daily sediment loads. ## Special Studies 1. Sediment data are being collected on approximately a daily basis at Housatonic River at Great Barrington, Mass., Housatonic River at Falls Village, Conn., and Housatonic River at Gaylordsville, Conn., as part of a study to determine the quantity, distribution, and method of transport of PCB in the Housatonic River. The study is being done in cooperation with the State of Connecticut Department of Environmental Protection. For additional information about Geological Survey activities within this region, contact the following offices: District Chief, WRD U.S. Geological Survey 135 High Street, Room 235 Hartford, CT 06103 District Chief, WRD U.S. Geological Survey 150 Causeway Street, Suite 1001 Boston, MA 02114 #### NEW ENGLAND REGION #### SOIL CONSERVATION SERVICE 1. Studies of sediment damages and determinations of sediment yields were made for work plans in the following watersheds: ## a. River Basin Investigations - (1) SCS-Maine, in cooperation with the Statewide USDA 208 committee, completed a "Study of Non-point Agricultural Pollution" (SNAP) to identify: the location, extent, and kind of agricultural practices causing soil erosion. One phase of this study included computation of soil erosion rates on all cropland fields over 10 acres in size in the state. A statewide summary report and individual reports for each of the state's 16 Soil and Water Conservation Districts were prepared. - (2) SCS-Maine completed Phase I of the SCS National Erosion Inventory, which was an inventory of land use and sheet and rill erosion rates. Results of this inventory were published in August 1979, in "A Profile of Maine's Soil and Water Resources from the National Resources Inventories, 1977, Phase I, Land and Use and Sheet and Rill Erosion." - (3) Field work was completed and data was submitted for Phase II of the above inventory, which covered gully, streambank, construction site, and road bank erosion. Results are expected to be published in 1980. #### 2. Reservoir Sediment Deposition Surveys - a. A sedimentation survey was conducted on a multi-purpose PL-566 reservoir, Violette Brook Site 2, Van Buren, Aroostook County, Maine in June 1979. The original survey was done in 1974. Sediment accumulations have not yet been computed. - b. Original capacity computations were made on the Presque Isle Stream Site 7, Hanson Lake, Aroostook County, Maine in October 1979. - c. A reservoir sedimentation survey was made on the Lake Kennedy-Forest City RAMP Project in Susquehanna County Pennsylvania. - d. A reservoir sedimentation survey was made on Furnace Brook-Site #2 in Warren County, New Jersey. ## MID ATLANTIC REGION ## CORPS OF ENGINEERS ## North Atlantic Division ## Baltimore District The following data are on accumulated sediment, collected during 1979. The data are records of the material removed during routine maintenance of flood control projects. | Project Location | Stream | Sediment
Removal | Sediment
Removed
During 1979
(CU YDS) | |-------------------|---------------------------------------|--|--| | Almond Dam, NY | Canacadea Cr. | Rt. 21 Br. | 1,500 | | Arkport Dam, NY | Canisteo River | Intake channel | 4,201 | | Binghampton, NY | Pierce Creek | Channel above paved channel | 1,950 | | | | Belden Street drop
structure and
channel below | 1,190 | | Canisteo, NY | Purdy Creek | Check Dam | 5,294 | | | | Confluence with
Bennett Creek | 2,485 | | Corning, NY | Cutler Creek | Above upper drop structure | 1,272 | | Hornell, NY | Chauncey Run | Check dams | 600 | | | Canisteo River | Downstream of paved channel and Cedar Street | 448 | | | Crosby Creek | Check dam & channel above | 4,164 | | | | At confluence with
Canisteo River | 296 | | Lisle, NY | Dudley Creek and
Tioughnioga River | Channel at confluence | 1,790 | | Whitney Point, NY | Tioughnioga River | Channel | 5,254 | New York District The District Conducted sediment tests at the following locations: | Project Name | Bioassay** | <u>Bioaccumulation</u> | Grain Size | |------------------------|------------|------------------------|------------| | Gowanus Creek Channel* | x | X | x | | Westchester Creek* | X | X | X | | Newtown Creek* | X | X | X | | Newark Bay* | X | X | X | | Mamaroneck Harbor# | X | X | X | | Passaic River | X | X | X | | Bronx River* | X | X | X | | Edgewater - Weehawken# | X | X | X | | Dutch Kills# | X | X | X | | Raritan River - N* | X | X | X | | Raritan River - S# | X | X | X | | Raritan Bay# | X | X | X | | Raritan River Cutoff* | X | X | X | | Kill Van Kull# | X | X | X | | Sandy Hook Bay* | X | X | X | | Sandy Hook Leonardo* | X | X | X | | N. Shooters Is.* | X | X | X | | Red Hook Anchorage* | X | X | X | ^{*}Navigation Project **The bioassay of appropriate sensitive marine organisms can be used as
an aid in evaluating the importance of dissolved chemical constituents released from the sediment during disposal operations. This procedure can also be used to evaluate the effect of suspended particulate matter that is present in the water column for certain periods of time during disposal of dredged material. A series of experimental treatments and controls are established using the liquid phase or suspended particulate phase of the dredged material and disposal site water. The test organisms are added to the test chambers and incubated under standard conditions for a prescribed period of time. The surviving organisms are examined at appropriate intervals to determine if the test material is producing an effect. #### Philadelphia District District sedimentation activities during 1979 were as follows: - 1. Continued financial support of the United States Geological Survey for the collection of sediment data at: - (a) Delaware River at Trenton, New Jersey. - (b) Schuylkill River at Berne, Pennsylvania. - (c) Schuylkill River at Philadelphia, Pennsylvania. - (d) Tulpehocken Creek at Blue Marsh Damsite Post-Impoundment Studies. - 2. Up-dated Sediment Surveys of District Reservoir projects: - (a) Prompton Lake. - (b) Beltzville Lake. - 3. Initial Sediment Survey Range lines at Blue Marsh Lake (setting of baseline conditions). ## MID ATLANTIC REGION ## GEOLOGICAL SURVEY ## Richelieu Subregion 1. Suspended-sediment data are being collected on a periodic basis at Richelieu River (Lake Champlain) at Rouses Point, N.Y., as a part of the National Stream Quality Accounting Network (NASQAN). ## Upper Hudson Subregion - 1. Suspended-sediment data are being collected on a daily basis at Hudson River at Stillwater, N.Y., and Hudson River at Waterford, N.Y., in cooperation with the New York State Department of Environmental Conservation. Sediment data collected on a daily basis at Mohawk River at Cohoes, N.Y., was discontinued September 30, 1979. Collection of sediment data at Hudson River at Rogers Island at Ft. Edward, N.Y., and Hudson River at Schuylerville, N.Y., was reduced from daily to periodic basis on September 30, 1979. - 2. Suspended-sediment data are being collected on a periodic basis at Hudson River at Glens Falls, N.Y., in cooperation with the New York State Department of Environmental Conservation (discontinued September 30, 1979). - 3. Suspended-sediment data are being collected on a periodic basis at Hudson River at Green Island, N.Y., as a part of NASQAN. - 4. Suspended-sediment are being collected on a periodic basis at Esopus Creek at Shandaken, N.Y., as a part of the National Hydrologic Benchmark Network. - 5. Suspended-sediment data are being collected on a periodic basis at Hudson River at Castleton-on-Hudson, N.Y., Hudson River at Catskill, N.Y., Hudson River at Staatsburg, N.Y., Hudson River at Clinton Point near New Hajburg, N.Y., and Hudson River at Highland Falls, N.Y., in cooperation with New York Department of Environmental Conservation. ## Lower Hudson-Long Island Subregion - 1. Suspended-sediment data are being collected at Passaic River at Little Falls, N.J., Raritan River near South Bound Brook, N.J., Peconic River at Riverhead, N.Y., Nissequoque River near Smithtown, N.Y., and at Carmans River at Yaphawk, N.Y., as a part of NASQAN. - 2. Suspended-sediment data are being collected twice monthly at Passaic River at Singac, N.J., and Passaic River at Elmwood Park, N.J., as part of the Environmental Protection Agency's National Water Quality Surveillance System program. ## Delaware Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Toms River near Toms River, N.J., Maurice River at Norman, N.J., and West Branch Wading River at Maxwell, N.J., and on a daily basis at Delaware River at Trenton, N.J., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a monthly basis at McDonalds Branch in Lebanon State Forest, N.J., as a part of the National Hydrologic Benchmark Network. - 3. Suspended-sediment data are being collected on a daily basis at Brandy-wine Creek at Wilmington, Del., in cooperation with the Delaware Geological Survey. - 4. Suspended-sediment data are being collected on a daily basis at two sites on the Schuylkill River, Berne and Philadelphia (Manayunk), Pa. The data will be anaylzed by the U. S. Corps of Engineers to evaluate the Delaware River dredging programs. Sediment data are also being collected on a daily and storm basis on Schuylkill River near Landingville, Penn., to determine storm and daily sediment discharge rates. ## Susquehanna Subregion - 1. Suspended-sediment data are being collected on a daily basis at Switzer Creek near Cohocton, N.Y., and with an automatic sampler to provide additional data during high flow. Data are collected in cooperation with the Suscuehana River Basin Commission. - 2. Suspended-sediment data are being collected on a monthly and storm event basis at Young Womens Creek near Renovo, Penn., as part of the National Hydrologic Benchmark Network. - 3. Suspended-sediment data are being collected at Juniata River at Newport, Penn., as a Federal sediment index station. - 4. Suspended-sediment data are being collected on a daily basis at Tioqa River at Lindley, N.Y., in cooperation with the U.S. Corps of Engineers. - 5. Suspended-sediment data are being collected on a daily basis at Susquehanna River at Conowingo, Md., for the Environmental Protection Agency's Chesapeake Bay Program and as a part of NASOAN. ## Upper Chesapeake Subregion 1. Suspended-sediment data are being collected on a montly basis at Chootank River near Greensboro, Md., and at Patuxent River near Bowie, Md., as a part of NASQAN. ## Potomac Subregion - 1. Suspended-sediment data are being collected on a monthly basis at the following stations as part of the hydrologic assessment of the Eastern Coal Province: - a. North Branch Potomac River at Steyer, Md. - b. Savage River below Savage River Dam near Bloomington, Md. - c. Georges Creek at Franklin, Md. - d. North Branch Potomac River at Pinto, Md. - e. Wills Creek near Cumberland, Md. - 2. Suspended-sediment data are being collected on a daily basis at North Branch Potomac River near Cumberland, Md., and at Monacacy River at Reichs Ford Bridge near Frederick, Md., in cooperation with the Maryland Geological Survey. - 3. Suspended-sediment data are being collected on a daily basis at Conoco-cheague Creek at Fairview, Md., and at Potomac River at Point of Rocks, Md., as a part of the Federal CBR program. - 4. Suspended-sediment data are being collected at Potomac River at Shepherds-town, W.Va., and Shenandoah River at Millville, W.Va., as a part of NASQAN. - 5. Suspended-sediment data are being collected on a monthly basis at Lost River at McCauley near Baker, W. Va., for the U.S. Soil Conservation Service (discontinued September 30, 1979). - 6. Suspended-sediment data are being collected on a monthly basis at North Fork of South Fork Potomac River at Cabin, W.Va., and at Abram Creek at Highway 50 Bridge near Mount Storm, W.Va., as part of the Coal Hydrology Program. - 7. Suspended-sediment data are being collected on a daily basis at Potomac River at Chain Bridge, Washington, D.C., for the Environmental Protection Agency's Chesapeake Bay Program, and as part of NASQAN. ## Lower Chesapeake Subregion 1. Suspended-sediment data are being collected on a daily basis on Rappahanock River at Remington, Va., as a Federal sediment index station. ## Special Studies 1. A study of non-point sources of sediment, nutrients, and pesticides was started during the 1977 water year in the Pequea Creek Basin in Lancaster County, Pennsylvania. Data collection which continued through the 1978 water year includes the operation of an automatic suspended-sediment sampler on the Pequea Creek at Martic Forge. The study is in cooperation with the Susquehanna River Basin Commission, and has the support of the Chesapeake Bay Program. - 2. Sediment data were collected during the 1978 and 1979 water years at three sites in Northern Pennsylvania. The data were collected as part of a study to evaluate the effects of surface mining operations on the Babb Creek basin. The study is in cooperation with USGS-OACR. - 3. The basic suspended-sediment sampling network of 210 stations established by the New Jersey District is carried out in cooperation with the U.S. Corps of Engineers, N.J. Department of Environmental Protection, and the N.J. Department of Agriculture, Soil Conservation Service. Suspended-sediment samples are collected six to eight times a year. - 4. Collection of sediment data was obtained at the Coastal Plain Index Station at Great Egg Harbor River at Folsom, N.J., normally at a frequency of twice weekly and twice daily during runoff conditions. This work is being done as part of the Federal CBR program to determine trends and the general hydrologic conditions. For additional information about Geological Survey activities within this region, contact the following offices: District Chief, WRD U.S. Geological Survey Carroll Building, Room 208 8600 LaSalle Road Towson, MD 21204 District Chief, WRD U.S. Geological Survey P.O. Box 1238 Federal Building, Room 436 Trenton, NJ 08607 District Chief, WRD U.S. Geological Survey Federal Building and U.S. Courthouse Room 3017 500 Quarrier Street East Charleston, WV 25301 District Chief, WRD U.S. Geological Survey P.O. Box 1350 U.S. Post Office and Courthouse Building, Room 304 Albany, NY 12201 District Chief, WRD U.S. Geological Survey 200 Grace Street, Room 304 Richmond, VA 23220 District Chief, WRD U.S. Geological Survey Post Office Box 1107 4th Floor, Federal Building 228 Walnut Street Harrisburg, PA 17108 #### SOUTH ATLANTIC-GULF REGION #### CORPS OF ENGINEERS #### South Atlantic Division #### Charleston District A sedimentation report for W. Kerr Scott Reservoir is being compiled by the Charleston District. All data has been gathered and computations have been made.
The report is scheduled to be released during March 1980. #### Jacksonville District Suspended sediment measurements were made monthly on Rio Fajardo Basin in Puerto Rico. #### Mobile District ## Sedimentation Range Network Monitoring - 1. The sedimentation range networks in the Demopolis and Gainesville Projects were resurveyed during the year. These projects are located on the Tombigbee River and are a part of the Tennessee-Tombigbee Waterway. - 2. Complete network resurveys of the projects are made annually to provide data for a cooperative study that is being conducted by this office and the Waterways Experiment Station at Vicksburg, Mississippi. - 3. In addition, resurveys of selected ranges are being conducted at 6 month intervals to supplement the data collected annually. #### Sedimentation Design Memoranda - 1. The sedimentation design memorandum for the Aberdeen Lock and Dam project was completed and approved on 17 September 1979. - 2. Work has progressed during 1979 on the sedimentation design memorandum for the Canal Section Project. This memorandum is the fifth in a series of five for the Tennessee-Tombigbee Waterway. #### Sedimentation Studies - 1. The on-going study to determine the natural sedimentation characteristics of the Tibbee River and its tributaries continued through 1979 and probably will be completed in 1980. - 2. The analysis to determine the erosion rates, deposition, and predicted future effects to six Alabama Power Company dams by the proposed construction of the Coosa River Waterway continued, but without much progress due to the limitation of man-hours available. 3. Plans were formulated to conduct a study of the lower Tombigbee and Alabama Rivers and the Mobile River Delta. This plan is being implemented in 1980 with emphasis on the sedimentation load being deposited in the delta and amount being passed into Mobile Bay. ## Suspended Sediment Investigations - 1. During the year data were collected on a daily basis from four locations, on the Tombigbee River, at Columbus, Aberdeen, Amory, and Fulton, Mississippi. Additionally, suspended sediment samples were obtained at about 5-week intervals at 20 stations located in the Tombigbee River basin. Three stations were discontinued during 1979 Tombigbee River above Columbus, MS, Town Creek above Amory, MS and Alabama River at Clairborne, AL. The 1978 report stated that this office discontinued the collection of data at three stations North Abbott and Trebloc on Houlka Creek and Mayhew on Catalpa Creek, however this function was resumed in 1979. - 2. Progress is being made on installing permanent suspended sediment monitors on dams located in the Tenn-Tom Project area. It is anticipated that collection of data at 3 dams will begin in 1980 and will become part of the process for monitoring post-project sedimentation effects of the Tennessee-Tombigbee Waterway. #### Savannah District Core sediment samples were gathered in Hartwell and Clark Hill Lakes on 20-23 March 1979 and analyzed for iron, manganese, phosphorous, and mercury. A list of the sampling stations is as follows: Chauga River at Highway 123 Keowee River at County Road 291 Twelve Mile Creek at Highway 15 Seneca River at Highway 93 Seneca River Between Martin Creek and Coneross Creek Tugaloo River at I-85 Seneca River at I-85 Twelve Mile Creek at I-85 Savannah River at Junction of Tugaloo and Seneca Rivers Savannah River at Richard B. Russell damsite Long Cane Creek at Highway 28 Savannah River at Highway 378 Little River at Highway 378 Broad River at Highway 77 Savannah River at Confluence with Fishing Creek Fishing Creek at Highway 77 Little River at Highway 47 Little River at Highway 43 Hart Creek near Big Hart Park Little River at Confluence with Kemp Creek Savannah River near Modoc, SC Savannah River at Confluence with Little River, GA #### Sedimentation Surveys - 1. John R. Kerr Dam and Reservoir, Roanoke River, VA and NC. The sedimentation ranges at Kerr were resurveyed during 1976 in order to determine the amount of storage lost to sedimentation since the last survey was made in 1959-60. Equipment used was a 17-foot fiberglass boat, a Raytheon Model 719-B Fathometer with narrow beam transducer, an Interspace Technology Model 412 Digitizer, a Systron-Donner Model 5103 digital printer and a Tellurometer Model CA-1000-D range meter. A report is drafted and will be finalized just as soon as higher priority work will permit. When adjustments are made in the reservoir capacity curve, the dependable capacity of the project will be redetermined and power sales contracts modified to reflect the new dependable capacity. - 2. Philpott Lake, Smith River, VA. The sedimentation ranges at Philpott were resurveyed during 1976 in order to determine the amount of storage lost to sedimentation since the last resurvey was made in 1960. Equipment was the same as listed for John H. Kerr. Preparation of a final report on the resurvey is underway. The report should be completed in 1980. The dependable capacity of Philpott will be redetermined, if necessary, but not until both Kerr and Philpott can be redetermined together. - 3. B. Everett Jordan Dam and Lake, Haw River, NC. In CY 1979 a system of 57 sedimentation ranges were established across the main body and tributaries of Jordan Lake (a new unfilled lake), extending upstream as far as the upper limits of the top of the flood control pool. Ranges were monumented and vertical and horizontal survey run. Objective of the system is to be able to periodically determine the amount of sediment deposits in the lake through resurveys. Sediment Load Measurement. Two suspended sediment sampling stations (at Randolph, VA on Roanoke River and at Paces, VA on Dan River) upstream from John H. Kerr Reservoir were operated. The data (suspended sediment, particle size, chemical analysis and temperature) were used in connection with operation and maintenance of the reservoir. ## SOUTH ATLANTIC-GULF REGION ## GEOLOGICAL SURVEY ## Chowan-Roanoke Subregion - 1. Suspended-sediment data are being collected daily during flood events and at 7-day intervals for periods of medium to low flows at Dan River at Paces, Va., and at Roanoke River at Randolph, Va., in cooperation with the U.S. Corps of Engineers. - 2. Suspended-sediment data are collected monthly at Roanoke River at Roanoke Rapids, N.C., as part of the National Stream Quality Accounting Network (NASQAN). ## Neuse-Pamlico Subregion - 1. Suspended-sediment data are being collected on a daily basis at the main station on the Chicod Creek and on a monthly basis at three sites in the Chicod Creek watershed near Grimesland, N.C., in cooperation with the U.S. Soil Conservation Service. Automatic sediment samplers were installed at two in-stream sediment traps to determine settling characteristics of the traps. Cross-sectional surveys of the traps were made immediately following major storms to determine the amounts of sediment deposited by high flows. - 2. Suspended-sediment data are collected monthly at three sites as part of NASQAN. ## Cape Fear Subregion - 1. Suspended-sediment data are being collected at Black River at Dunn, N.C. to determine effects on stream characteristics by channel construction. This is being done in cooperation with the U.S. Corps of Engineers. - 2. Suspended-sediment data are collected monthly on the Cape Fear River at Lock 1 as part of the NASQAN program. ## Pee Dee Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Scape Ore Swamp near Bishopville, S.C., as a part of the National Hydrologic Benchmark Network. - 2. Suspended-sediment data are being collected on a monthly basis at Lynches River at Effingham, S.C., Black River at Kingstree, S.C., Pee Dee River at Pee Dee, S.C., and at Pee Dee River near Rockingham, N.C., as a part of NASQAN. - 3. Suspended-sediment data are being collected at the Yadkin River at Yadkin College, N.C., as a Federal Sediment Index Station. ## Santee-Edisto Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Lakes Marion Moultrie Diversion Canal near Pineville, S.C., at Edisto River near Givhans, S.C., and at Coosawhatchie River near Hampton, S.C., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a monthly basis at Crawl Creek near Pineville, S.C., Santee River below St. Stephens, S.C. This is being done in cooperation with the U.S. Corps of Engineers. ## Ogeechee-Savannah Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Upper Three Runs near New Ellenton, S.C., as a part of the National Hydrologic Benchmark Network. - 2. Suspended-sediment data are being collected on a monthly basis at Savannah River near Clyo, Ga., and at Ogeechee River near Eden, Ga., as a part of NASQAN. - 3. Suspended-sediment data are being collected on a periodic basis at Brier Creek near Wagesboro, Ga., in cooperation with the Georgia Geologic Survey. ## Altamaha-St. Marys Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Falling Creek near Juliette, Ga., as a part of the National Hydrologic Benchmark Network. - 2. Suspended-sediment data are being collected on a monthly basis at Altamaha River near Everett City, Ga., at Satilla River at Atkinson, Ga., and at one site in Florida as a part of NASQAN. - 3. Suspended-sediment data are being collected at South River near McDonough, Ga., at Yellow River near Covington, Ga., at Pates Creek near Flippin, Ga., Ohoope River near Reidsville, Ga., Penholoway Creek near Jessup, Ga., and at Little Satilla River near Offerman, Ga., in cooperation with the Georgia Geologic Survey Division. ## St. Johns Subregion 1. Suspended-sediment data are being collected on a periodic basis at three sites in Florida as a part of NASQAN. ## Southern Florida Subregion 1. Suspended-sediment data are being collected on a periodic basis at seven sites in Florida as a part of NASQAN. ## Peace-Tampa Bay Subregion 1.
Suspended-sediment data are being collected on a periodic basis at five sites in Florida as a part of NASQAN. ## Suwannee Subregion 1. Suspended-sediment data are being collected on a monthly basis at four sites in Florida as a part of NASQAN. ## Ochlockonee Subregion - 1. Suspended-sediment data are being collected on a monthly basis at two sites in Florida as a part of NASQAN. - 2. Suspended-sediment data are being collected on a periodic basis at one site in Florida as a part of the National Hydrologic Benchmark Network. ## Apalachicola Subregion - 1. Suspended-sediment data are being collected on a monthly basis at three sites in Florida as a part of NASQAN. - 2. Suspended-sediment data are being collected on a periodic basis at Chatta-hoochee River near Cornelia, Ga., at Sweetwater Creek near Austell, Ga., at Upatoi Creek near Columbus, Ga., in cooperation with the Georgia Geologic Survey. ## Choctawhatchee-Escambia Subregion 1. Suspended-sediment data are being collected on a monthly basis at four sites in Florida as a part of NASQAN. ## Alabama Subregion - 1. Suspended-sediment data are being collected on a periodic basis at Coosawattee River near Ellijay, Ga., Holly Creek near Chatsworth, Ga., and West Armuchee Creek near Subligna, Ga., in cooperation with the Georgia Geologic Survey. - 2. Suspended-sediment data are being collected in the Upper Coosa River basin at two sites on a monthly basis and at ten sites on a quarterly basis as part of the OSM Coal Hydrology study in Georgia. - 3. Suspended-sediment data are being collected on a monthly basis at Alabama River at Montgomery, Ala., and at Alabama River at Claiborne, Ala., as a part of NASQAN. ## Mobile-Tombigbee Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Tombigbea River at Gainesville, Ala., and at Tombigbee River at Coffeeville lock and dam, Ala., and at Black Warrior River below Warrior Dam near Eutaw, Ala., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a monthly basis at Sipsey Fork near Grayson, Ala., as a part of the National Hydrologic Benchmark Network. - 3. Suspended-sediment data are being collected by an automatic pumping sampler at Mackeys Creek near Dennis, Miss., in cooperation with the U.S. Corps of Engineers, to estimate the impact of sediment loads on the Tennessee-Tombigbee Waterway. ## Pascagoula Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Pascagoula River near Benndale, Miss., and at Wolf Creek near Landon, Miss., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a bimonthly basis at Cypress Creek near Janice, Miss., as a part of the National Hydrologic Benchmark Network. ## Pearl Subregion - 1. Suspended-sediment data are being collected on a daily basis at Pearl River near Bogulusa, La., as a part of the Federal CBR program. - 2. Suspended-sediment data are being collected on a monthly basis at Bogue Chitto River near Bush, La., as a part of NASQAN. ## Special Studies - I. Suspended-sediment sampling by an automatic sampler was continued on Yellow Creek near Northport, Ala., and on Bear Creek near Samantha, Ala., as part of a study of coal-mine hydrology in cooperation with the Bureau of Land Management. Samples were collected monthly and during flood events at three additional sites in the Yellow Creek basin, one additional site in the Bear Creek basin, one site on Turkey Creek (Tuscaloosa County) near Tuscaloosa, Ala, and one site on Turkey Creek east of Samantha, Ala. - 2. Suspended-sediment sampling by an automatic sampler was continued on Trinity Creek near Carbon Hill, Ala., and on Blue Creek near Oakman, Ala. - 3. Suspended-sediment sampling during storm events was continued in two agricultural basins in southwest Georgia in conjunction with an ongoing study of the effects of agricultural runoff on receiving waters. 4. Suspended-sediment sampling by automatic pumping sampler was started on Dorsey Creek near Arkadelphia, Ala., on March 1, 1979. For additional information about Geological Survey activities within this region, contact the following offices: District Chief, WRD U.S. Geological Survey P.O. Box V Oil and Gas Board Building Room 202 University, AL 35486 District Chief, WRD U.S. Geological Survey 325 John Knox Road, Suite F-240 Tallahassee, FL 32303 District Chief, WRD U.S. Geological Survey 6481 Peachtree Industrial Boulevard, Suite B Doraville, GA 30360 District Chief, WRD U.S. Geological Survey 100 W. Capitol St., Suite 710 Jackson, MS 39201 District Chief, WRD U.S. Geological Survey 2001 Assembly Street, Suite 200 Columbia, SC 29201 District Chief, WRD U.S. Geological Survey P.O. Box 66492 6554 Florida Boulevard Baton Rouge, LA 70896 District Chief, WRD U.S. Geological Survey P.O. Box 2857, Century Station Post Office Building Room 436 Raleigh, NC 27602 District Chief, WRD U.S. Geological Survey 200 West Grace Street, Room 304 Richmond, VA 23220 ## SOUTH ATLANTIC GULF REGION ## SOIL CONSERVATION SERVICE 1. Studies of sediment damages and determinations of sediment yields were made for work plans and environmental statements for the following: ## a. Public Law 566 | Major Drainage | Watershed | Stream | County | State | |------------------------------|-----------------------------------|-----------------------------------|-----------------------------|-------| | Rocky River | Coddle-Coldwater
Dutch Buffalo | Coddle-Coldwater
Dutch Buffalo | Cabarrus | NC | | Northeast Cape
Fear River | Limestone-Muddy
Crk | Limestone-Muddy
Crk | Duplin | NC | | Northeast Cape
Fear River | Troublesome Crk | Troublesome Crk | Rockingham | NC | | Lumber River | Moss Neck Crk | Moss Neck Crk | Robeson | NC | | Choctawhatchee-
Escambia | Upper
Choctawhatchee | Wilkerson
Crk | Coffee,
Dale &
Geneva | AL | ## b. River Basin Investigations | Major Basins | Basin Reported | State | |----------------------|----------------------|----------| | Tar-Neuse | Tar-Neuse | NC | | Yadkin-Pee Dee River | Yadkin-Pee Dee River | NC
SC | ## 2. Sedimentation Surveys a. Sedimentation surveys are in progress on the following PL-566 watersheds: | Major Drainage | Str. No. & Watershed | Stream | County | State | |----------------|----------------------|----------------------------------|--------|-------| | Neuse River | #13-Bear Crk | Un-Named
Trib of
Bear Crk | Wayne | NC | | Neuse River | #1-Crabtree Crk | Sirrup-Iron | Wake | NC | | Yadkin River | #10-Dutchman
Crk | Un-Named
Trib of
Cedar Crk | Davie | NC | | Yadkin River | #16-Muddy Crk | South Fork
of Muddy | McDowe11 | NC | |--------------|---------------|------------------------|-----------|----| | Yadkin River | #7A-Third Crk | Third Crk | Alexander | NC | A sediment deposition survey was completed on Twelve Mile Creek Watershed, Structure No. 12, Pickens County, South Carolina, during the evaluation period. A reservoir sedimentation survey was performed at Lake Lahusage at the request of the Alabama Water Improvement Commission. | Major Drainage | Watershed | Stream | County | State | |----------------|--------------|--------------|--------------------|-------| | Upper Coosa | Little River | Little River | DeKalb
Cherokee | AL | ## 3. Other Environmental assessments and sediment yield studies for operational projects: | Major Drainage | Watershed | Stream | County | <u>State</u> | |----------------|--------------|--------------|----------------------------------|--------------| | Savannah River | Hudson River | Hudson River | Banks,
Madison,
& Franklin | GA
n | #### GREAT LAKES REGION ### CORPS OF ENGINEERS #### North Central Division Buffalo District Lake Erie Wastewater Management Study. The Water Quality Section, formerly Lake Erie Wastewater Management Study, supported sample collection and analysis at nine streams during CY 79. Three of these, Broken Sword at Nevada, Sandusky River at Bucyrus, and Sandusky River at Upper Sandusky were discontinued at the end of FY 79. Three sampling stations were reestablished at the beginning of FY 80: Sandusky River at Mexico, E. Br. Wolf Creek at Bettsville, and W. Br. Wolf Creek at Bettsville. Suspended solids is one of several parameters measured at the sampling stations. Other parameters are Total Phosphorus, Dissolved Ortho P, Nitrate and Nitrite Nitrogen, Ammonia, Silica, Chloride, Conductivity, Suspended Solids, Total Kjeldahl Nitrogen, Metals, and Pesticides. The sampling program consists of storm event sampling rather than continuous or periodic sampling at a regular interval. The hydrographs and chemographs obtained by event sampling are being used to verify and calibrate transport and watershed computer models. Four additional stations will be established during CY 80 at selected watersheds within the Lake Erie drainage basin. These watersheds will be demonstration areas for reduced tillage and no-till farming practices. Results of event sampling will again be used to calibrate a watershed non-point source computer model. Cuyahoga River Restoration Study. The Cuyahoga River Restoration Study, 3rd Interim Preliminary Feasibility Report on Erosion and Sedimentation was completed in late 1979. The results of the study indicated that the majority of natural sediment reaching the harbor is contributed by diffuse nonpoint sources of erosion (primarily sheet and rill erosion) from critically eroding areas in the upland watershed. Areas identified as critically eroding represent 24,000 acres or 16 percent of the total study area. The report also presented land management programs to control sheet and rill erosion on these critically eroding areas. Streambank erosion was determined to contribute only a small percentage of the total volume of sediment dredged annually from Cleveland Harbor. Results of the streambank erosion studies are subject to verification in Stage 3 planning. Buffalo District continues to collect flow and sediment discharge data from the
sediment sampling station on the Cuyahoga River at Independence, OH. Lorain Harbor, OH, Navigation Study. Laboratory analysis of bottom sediment samples collected from the navigation channel and upper turning basin during 1979 is being performed to determine the composition and gradation of the sediments. This information will be used to assess relative contribution of sediment from erosion and industrial discharge. Using a Ponar sampler, a total of 12 bottom sediment samples were collected. Sediment density measurement by means of nuclear sediment density probe. In calendar year 1979, in-situ density measurements were updated in the following projects: | <u>City</u> | Project | No. of Measurements | <u>Date</u> | |-----------------|------------------|---------------------|--------------| | Cleveland, Ohio | Cuyahoga River | 39 | 18-19 Mar 79 | | Fairport, Ohio | Grand River | 5 | 20 Mar 79 | | Buffalo, NY | Buffalo River | 23 | 30 May 79 | | Rochester, NY | Genesee River | 8 | 1 Jun 79 | | Toledo, Ohio | Entrance Channel | . 13 | 28 Aug 79 | Complete reports on these studies are available. Detroit District Periodic Sediment measurements of beach nourishment at: Grand Haven, Michigan St. Joseph, Michigan Holland, Michigan Muskegon, Michigan Sediment Study on Flint River at Vassar, Michigan for Flood Control Project. Seven points of sampling were done both at high flows and low flows. Determination of amount of sediment per day calculated. Work done for Corps by U.S.G.S. Data will be included in Flood Control Report for Vassar, Michigan. ## GREAT LAKES REGION ## GEOLOGICAL SURVEY ## Western Lake Superior Subregion - 1. Suspended-sediment data are being collected on a periodic and storm-event basis at Nemadji River Nr. South Superior, Wisc., at Bad River near Odanah, Wis., at Baptism River near Beaver Bay, Minn., and at St. Louis River at Scanlon, Minn., as a part of the National Stream Quality Accounting Network (NASQAN). - 2. Suspended-sediment data are being collected on a daily basis by an automatic sampler at Deer Creek near Holyoke, Minn., in cooperation with the Minnesota Department of Natural Resources, Division of Waters. - 3. Suspended-sediment measurements were made during floods at the following sites: South Branch Partridge River near Babbitt, Minn-Partridge River above Colby Lake at Hoyt, Minn-Partridge River near Aurora, Minn-St. Louis River near Aurora, Minn-St. Louis River at Forbes, Minn- ## Southern Lake Superior-Lake Superior Subregion - 1. Suspended-sediment data are being collected on a intermittent basis at Washington Creek at Windigo (Isle Royale), Mich., as a part of the National Hydrologic Benchmark Network. - 2. Suspended-sediment data are being collected on a monthly basis at Ontonagon River near Rockland, Mich., Sturgeon River near Chassell, Mich., and at Tahquamenon River near Tahquamenon, Mich., as a part of NASQAN. ## Northwestern Lake Michigan Subregion - 1. Suspended-sediment data are being collected on an intermittant basis at Popple River near Fence, Wis., as a part of the National Hydrologic Benchmark Network. - 2. Suspended-sediment data are being collected on a periodic and storm-event basis at Fox River at Wrightstown, Wis., Ford River near Hyde, Mich., Escanaba River at Cornell, Mich., and at Menominee River near McAllister, Wis., as a part of NASQAN. 3. Suspended-sediment data are being collected on a periodic and storm-event basis for the State of Wisconsin at the following sites: Highway 141 storm sewer at Green Bay, Wis. Halron Oil Company storm sewer at Green Bay, Wis. Beaver Dam Creek at Green Bay, Wis. ## Southwestern Lake Michigan Subregion - 1. Suspended-sediment data are being collected ona periodic and storm-event basis for the State of Wisconsin at the Onion River at Hingham, Wis., and at the Onion River near Sheboygan Falls, Wis. - 2. Suspended-sediment data are being collected on a periodic and storm-event basis at Milwaukee River at Milwaukee, Wis., Manitowoc River at Manitowoc, Wis. and at Little Calumet River near McCool, Ind., as a part of NASQAN. - 3. Suspended-sediment data are being collected at Trail Creek at Michigan City, Ind., and Galena River near LaPorte, Ind., for the State of Indiana. ## Southeastern Lake Michigan Subregion - 1. Suspended-sediment data are being collected on a weekly basis at Pigeon Creek near Angola, Ind., and at Little Elkhart River at Middleburg, Ind., for the State of Indiana. - 2. Suspended-sediment data are being collected on an intermittent basis at North Branch Elkhart River at Cosperville, Ind., for the State of Indiana. - 3. Suspended-sediment data are being collected on a monthly basis at Grand River at Eastmanville, Mich., St. Joseph River at Niles, Mich., and at Kalamazoo River at Saugatuck, Mich., as a part of NASQAN. ## Northeastern Lake Michigan-Lake Michigan Subregion 1. Suspended-sediment data are being collected on a monthly basis at Manistique River above Manistique, Mich., at Muskegon River near Bridgeton, Mich., and at Manistee River at Manistee, Mich., as a part of NASQAN. ## Northwestern Lake Huron Subregion 1. Suspended-sediment data are being collected on a monthly basis at Cheboygan River at Cheboygan, Mich., and Au Sable River near Au Sable, Mich., as a part of NASOAN. ## Southwestern Lake Huron-Lake Huron Subregion 1. Suspended-sediment data are being collectd on a monthly basis at Pigeon River near Caseville, Mich., Thunder Bay River at Alpena, Mich., Rifle River near Sterling, Mich., and at Saginaw River at Saginaw, Mich., as a part of NASQAN. # St. Clair-Detroit River Subregion 1. Suspended-sediment data are being collected on a monthly basis at Clinton River at Mt. Clemons, Mich., Detroit River at Detroit, Mich., and at River Raisin near Monroe, Mich., as a part of NASQAN. ### Western Lake Erie Subregion - 1. Suspended-sediment data are being collected on a daily basis at Maumee River at Waterville, Ohio, in cooperation with the U.S. Corps of Engineers, and at Sandusky River near Fremont, Ohio, in cooperation with the Ohio Department of National Resources. - 2. Suspended-sediment data are being collected on an intermittant basis at Cedar Creek near Cedarville, Ind., in cooperation with the State of Indiana. ### Southern Lake Erie Subregion - 1. Suspended-sedimient data are being collected on a daily basis at Rock River near Berea, Ohio, and at Chagrin River at Willoughby, Ohio, for the Northeast Ohio Areawide Co-ordinating Agency, and at Cuyahoga River at Old Portage, Ohio, in cooperation with the Cuyahoga County Sanitary Engineering Department (discontinued September 30, 1979). - 2. Suspended-sediment data are being collected on a daily basis at Cuyahoga River at Independence, Ohio, at Big Creek at Cleveland, Ohio, and Euclid Creek near Euclid, Ohio, in cooperation with the U.S. Corps of Engineers, Buffalo District. - 3. Suspended-sediment data are being collected on a daily basis at Grand River at Painseville, Ohio, in cooperation with the Ohio Department of Natural Resources. ### Eastern Lake Erie-Lake Erie Subregion 1. Suspended-sediment data are being collected on a periodic basis at Cattaraugas Creek at Gowanda, N.Y., 2nd Niagara River (Lake Ontario) at Ft. Niagara, N.Y., Tonawanda Creek at Batavia, N.Y., as a part of NASQAN. #### Southwestern Lake Ontario Subregion 1. Suspended-sediment data are being collected on a periodic basis at Genesea River at Charlotte Docks at Rochester, N.Y., as a part of NASQAN. ### Southeastern Lake Ontario Subregion 1. Suspended-sediment data are being collected on a periodic basis at Oswego River at Lock 7 at Oswego, N.Y., and at Sandy Creek at Adams, N.Y., as a part of NASQAN. # Northeastern Lake Onta Suspended-sediment data River at Watertown, N.Y., ' River at Brasher Center, No Massena, N.Y., and at Oswer NAS OAN. For additional information region, contact the follow District Chief, WRD U.S. Geological Survey 1819 North Meridian Street #### OHIO REGION #### CORPS OF ENGINEERS #### Ohio River Division Report on sedimentation activities in the Ohio River Division for calendar year 1979 is as follows: #### Sedimentation Resurveys - 1. Resurvey of Martins Fork Lake was completed in 1979. Analysis of the data shows that the amount of deposition was greater than the design rate. Work is scheduled for a second resurvey following this year's flood season, pending availability of operation and maintenance funds. If the rate of deposition is continuing to be greater than the design rate, a monitoring program to define sources of inflow may be initiated. Submission of the Resurvey Report is planned in March 1980. - 2. Resurvey of Wolf Creek Reservoir was completed in 1979. Ranges are being analyzed to estimate the deposition volume and compare the actual rate of deposition against the design rate. If the actual rate is significantly greater, "spudding" additional ranges may be initiated. Submission of the Resurvey Report is planned in FY 80. - 3. Fishtrap Lake, Levisa Fork, Kentucky: The report on the 1978 sedimentation survey was submitted to and approved by the Ohio River Division in 1979. The 1978 resurvey of 16 sediment ranges indicated an annual sedimentation rate of 2.52 acre-feet per square mile of contributing drainage area above Fishtrap Lake for the period September 1975 to August 1978. Since the rate of sedimentation at Fishtrap Lake continues to be excessive, the Huntington District will continue monitoring sediment inflow into the lake. - 4. Dewey Lake, Johns Creek, Kentucky: The report on the 1978 sedimentation survey was submitted to and approved by the Ohio River Division in 1979. The 1978 resurvey of 18 sediment ranges indicated an annual sedimentation rate of 0.82 acre-foot per square mile of contributing drainage area for the 2.71-year period from November 1975 to July 1978. Since the indicated rate of sedimentation for the period between the 1975 and the 1978 resurveys is greater than for the previous periods investigated, monitoring of
sediment inflow into Dewey Lake is recommended to continue. - 5. Sutton Lake, Elk River, West Virginia: A sedimentation reconnaissance survey of Sutton Lake was completed in 1979. A report on this reconnaissance investigation was submitted to and approved by Ohio River Division in 1979. - 6. Paint Creek Lake, Paint Creek, Ohio: A resurvey of 12 sediment ranges at Paint Creek Lake was completed in 1979 and a report on the results of this latest resurvey is scheduled to be completed by the Huntington District in 1981. - 7. Piedmont Lake, Stillwater Creek, Ohio: A resurvey of nine sediment ranges at Piedmont Lake was completed in 1979. The report on the results of this latest resurvey is scheduled to be completed by the Huntington District in 1981. - 8. The J. Percy Priest Reservior Resurvey Report was completed and approved in 1979. ### Initial Range Surveys and Range Layouts. - 1. One Category "C" sediment range below Piedmont Dam was established and a profile along the range obtained in 1979. - 2. Dillon Lake, Licking River, Ohio: Three Category "C" sediment ranges below Dillon Dam were established and profiles along the ranges obtained in 1979. - 3. Layout and initial survey of sedimentation ranges at Taylorsville Lake are underway. - 4. The initial survey of Laurel River Reservoir and the report "Design Memorandum No. 9, Reservoir Sedimentation Ranges, Laurel River Reservoir, Supplement" was completed and approved by Division in 1979. - 5. Tennessee-Tombigbee Waterway, Bay Springs. Establishment of base sedimentation ranges and control surveys is presently underway. Submission of the Sediment Design Memorandum "Canal and Reservoir Sediment Range Survey N-16" is scheduled for October 1980. #### Sediment Load Measurements. - 1. A full-section sediment station is being operated on the Ohic River by U.S.G.S. at Louisville. They are gaging suspended sediment. Some bottom flow samples will be taken. Mr. Russell Flint, the program manager, has measured an unexpected large volume of sand-size (0.062 mm+) particles in the suspended samples. - 2. Big South Fork Recreation Area. - (a) Construction has been completed of water quality and sediment monitoring stations at Big South Fork near Stearns and Clear Fork near Robbins. Monitoring at these stations is to begin soon. - (b) An additional water quality and sediment monitoring station is planned for Big South Fork at Leatherwood Ford. The gage house is to be incorporated in the bridge abutment of the new Leatherwood Ford Bridge. - 3. Fishtrap Lake, Levisa Fork, Kentucky and Dewey Lake, Johns Creek, Kentucky: Suspended sediment data were collected by the U.S. Geological Survey in cooperation with the Huntington District at Levisa Fork at Big Rock, Virginia and Johns Creek at Meta, Kentucky, gaging stations. The Huntington District collected suspended sediment data on four tributary streams in the Fishtrap Lake drainage basin, and on three tributary streams in the Dewey Lake drainage basin during 1979. - 4. R. D. Bailey Lake, Guyandot River, West Virginia: The sediment monitoring program, being conducted in cooperation with the U.S. Geological Survey at R. D. Bailey Lake, was modified in 1979. Sediment data were collected by the Huntington District at the Clear Fork and Indian Creek monitoring stations during 1979. The U.S. Geological Survey collected sediment data at the Guyandot River near Baileysville, West Virginia, monitoring station through 30 September 1979. After that date, the Huntington District operated the Baileysville monitoring station. - 5. The Huntington District discontinued participation with the U.S. Geological Survey in the collection of suspended sediment data at the Tug Fork at Glenhayes, West Virginia, and the Levisa Fork at Paintsville, Kentucky, gaging stations at the close of calendar year 1978. Data collected at these two stations are being used in the development of a mathematical model of the lower reach of the Big Sandy River by the Waterways Experiment Station at Vicksburg, Mississippi. The Big Sandy River discharges into the Ohio River between Huntington, West Virginia and Ashland, Kentucky, and into the pool created by the Greenup Dam. The objective of the study is to identify measures to maintain sediment movement through the lower reach of the Big Sandy River to the Ohio River. Dredging to maintain a navigation channel in this area would thus be reduced. ### Additional Division Activities #### Special Programs. 1. Construction of a high level intake at Sutton Dam began in October 1979 and is scheduled for completion in May 1980. Its purpose is the improvement of environmental attributes of the Elk River downstream of Sutton Dam. With the high level intake, it is anticipated that a slight increase in sediment deposition in the lake will be experienced. ### 2. Tennessee-Tombigbee Waterway: (a) In order to control the sediment and turbidity of flows flowing South from the Divide Cut work area, a 300-acre impoundment was created behind a 10-foot high dam constructed in the future pool of Bay Springs Lake. The removal efficiency of the reservoir has been measured as high as 98 percent for sediment and 82 percent for turbidity. In the Bay Springs Lock and Dam construction area, contractors have been fairly successful in meeting turbidity specifications. Turbidity measurements downstream of the site are taken at the new water quality monitoring station on Mackeys Creek and compared to inflow turbidities to insure no increase due to construction activities. - (b) Section 4 and 2A (Big 4). Diversion ditches for flows flowing north out of the contract area are under construction. The ditches will be diverting the flows into the old test pit which will be used as a settling basin. Potential sediment runoff from disposal areas into the waterway work area is being controlled by diking systems. - (c) Northern End. A silt curtain that was planned for installation in the Yellow Creek embayment was eliminated. Plans are now being prepared for the removal of sediment in the Yellow Creek embayment. Turbidity measurements are being taken at the water quality monitoring station on Yellow Creek. #### 3. Local Protection Projects: - (a) Middlesboro, Kentucky. Bennets Fork Diversion Canal. The remedial work of removing sediment in the channel between Station 0+95 and Station 73+50 has been completed. - (b) Lake City, Tennessee. Coal Creek Channel Improvement. The amount of deposition from the April 1977 Flood was determined for Federal Emergency Management Agency. - 4. Construction of the Littcarr Sediment Dam is nearly complete with four sampling stations to be operational in the spring of 1980. ### OHIO REGION # GEOLOGICAL SURVEY # Monongahela Subregion - 1. Suspended-sediment data are being collected about monthly at Shavers Fork at Bemis, W. Va., Stalnaker Run near Bowden, W. Va., Taylor Run near Alpena, W. Va., and at Shavers Fork near Elkins, W. Va., in cooperation with the West Virginia Department of Highways. - 2. Suspended-sediment data are being collected on a daily basis at Taylor Run at Bowden, W. Va., at Shavers Fork above Bowden, W. Va. and at Shavers Fork below Bowden, W. Va., as part of the Shavers Fork Basin Cooperative Program with the West Virginia Department of Highways. - 3. Suspended-sediment data are being collected on a near monthly and storm event basis at Becky Creek at Hwy. 56, Branch near Huttonsville, W. Va., Leading Creek at Hwy. 3 Branch near Kerens, W. Va.; Sand Run near Buckhannon, W. Va.; Three Fork Creek at Hwy. 33 Branch near Gladesville, W. Va.; West Fork River at Hwy. 19 Branch at Roanoke, W. Va.; Little Paw Creek at Hwy. 25 Branch at Hoodsville, W. Va.; Shavers Fork at Hwy. 250 Branch at Cheat Bridge, W. Va.; Big Sandy Creek at Hwy. 14 Branch at Clifton Mills, W. Va. as part of the USGS's Coal Hydrology Monitoring project. - 4. Suspended-sediment data are being collected on a monthly basis at Youghiogheny River at Friendsville, Md., and Casselman River at Grantsville, Md., as part of hydrologic assessment of the Eastern Coal Province. #### Upper Ohio Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Ohio River at Benwood, near Wheeling, W. Va., and at Little Kanawha River at Palestine, W. Va., as a part of the National Stream Quality Accounting Network (NASQAN). - 2. Suspended-sediment data are being collected on a monthly basis at Kings Creek near Weirton, W. Va., (discontinued January 1979), at Little Grave Creek near Moundsville, W. Va., at Par Run near mouth near Moundsville, W. Va., and at Middle Grave Creek near Moundsville, W. Va., in cooperation with the U.S. Soil Conservation Services. - 3. Suspended-sediment data are being collected on a near monthly and storm event basis at Little Grave Creek at Hwy. 10 Branch at Glendale Hts., W. Va. - 4. Suspended-sediment data are being collected on a daily basis and with automated samplers at Little Kanawha River near Wildcat, W. Va., as part of the USGS's Coal Hydrology Monitoring project. - 5. Suspended-sediment data are being collected on a near monthly and storm-event basis at Coxcamp Fork at Hwy. 47 Branch at Coxs Mills, W. Va.; Henry Fork at Hwy. 25 Branch at Linden, W. Va.; Bonds Creek at Hwy. 1 Branch at Highland, W. Va., as part of the USGS's Coal Hydrology Monitoring project. - 6. Suspended-sediment data are being collected on a daily basis at Hocking River below Athens, Ohio, in cooperation with the Ohio Department of National of Natural Resources. - 7. Suspended-sediment data are being collected on a daily basis at Consol Run near Bloomingdale, Ohio, in cooperation with the U.S. Environmental Protection Agency (EPA). ### Muskingum Subregion - 1. Suspended-sediment data are being collected on a daily basis at Muskingum River at McConnelsville, Ohio, in cooperation with the Ohio Department of National Resources. - 2. Suspended-sediment data are being collected on a daily basis at Sard Fork near Wakatomika, Ohio, in cooperation with
the U.S. EPA. - 3. Suspended-sediment data are being collected on a near-monthly and stormevent basis at Clear Fork tributary near Hanover, Ohio, and at Opossum Run tributary near Wakatomika, Ohio, in cooperation with the U.S. EPA. ### Kanawha Subregion - 1. Suspended-sediment data are being collected on a near monthly basis at Kanawha River at Winfield, W. Va. as a part of NASQAN. - 2. Suspended-sediment data are being collected on a daily basis at Little Coal River at Danville, W. Va., Little Coal River at Julian, W. Va., Fig Coal River near Alum Creek, W. Va., Coal River at Alum Creek, W. Va., Coal River at Tornado, W. Va., Rock Creek at Danville, W. Va., and Rock Creek at Rock Creek, W. Va., in cooperation with the West Virginia Department of Highways. - 3. Suspended-sediment data are being collected on a near monthly basis at Howard Creek at Caldwell, W. Va., (discontinued January 1979), in cooperation with the U.S. Soil Conservation Service. - 4. Suspended-sediment data were collected about monthly at Cranbery Creek at Beckley, W. Va., Little Whitestick Creek at Beckley, W. Va., Soak Creek at Sophia, W. Va., Crab Orchard Creek at Crab Orchard, W. Va. (discontinued September 30, 1979), Beaver Creek at Beaver, W. Va., (discontinued September 30, 1979), and at Piney Creek at Raleigh, W. Va. (discontinued September 30, 1979), in cooperation with the U.S. Soil Conservation Service. - 5. Suspended-sediment data are being collected on a near monthly and storm-event basis at Laurel Creek at Wallis Branch near Sandstone, W. Va.; Gauley River at Hwy. 46 Branch at Williams River, W. Va.; Campbells Creek at Hwy. 73 Branch downstream from Coal Fork, W. Va.; Leatherwood Creek at Hwy. 26/4 Branch at Bergoo, W. Va.; Laurel Creek at Hwy. 9 Branch at Erbacon, W. Va.; Grassy Creek at Hwy. 20 Branch at Diana, W. Va.; Little Birch River at Hwy. - 40/15 Branch near Little Birch, W. Va.; Eighteen Mile Creek at Hwy. 6 Branch at White Star School, W. Va.; Clear Fork at Hwy. 1/21 Branch at Leevale, W. Va., as part of the USGS's Coal Hydrology Monitoring project. - 6. Suspended-sediment data are being collected on a daily basis and with automatic samplers at Buffalo Creek at Barracksville, W. Va.; Piney Creek at Raleigh, W. Va.; and Cranberry River near Richwood, W. Va., as part of the USGS's Coal Hydrology Monitoring project. # Scioto Subregion - 1. Suspended-sediment data are being collected on a daily basis at Scioto River at Higby, Ohio, in cooperation with the Ohio Department of National Resources. - 2. Suspended-sediment data are being collected on a daily and storm-event basis at the following locations in cooperation with the Ohio Department of Transportation: Olentangy River near Worthington, Ohio 315 Expressway and Rt. 161 Drainage at Worthington, Ohio Rush Run at Worthington, Ohio Linworth Road Creek at Columbus, Ohio Bethel Road Creek at Columbus, Ohio Unnamed Tributary to Olentangy River at 315 Expressway at Columbus, Ohio Olentangy River at Henderson Road at Columbus, Ohio ### Big Sandy-Guyandotte Subregion - 1. As part of the Coal Monitoring program in southwestern Virginia, suspended-sediment samples were collected at six stations on about a 6-week basis, suspended-sediment and coal-separation samples were collected three times at about 25 synoptic sites, bottom-material samples for coal-separation analysis were collected at 20 sites and bottom-material samples for trace-metals analysis were collected at 19 sites in the Big Sandy River basin. - 2. Suspended-sediment data are being collected on a daily basis at Levisa. Fork at Big Rock, Va., as part of the Coal Hydrology program. - 3. Suspended-sediment data are being collected, on a near monthly basis at Guyandotte River at Branchland, W. Va., as a part of NASQAN. - 4. Suspended-sediment data are being collected on a daily basis at Guyandotte River near Baileysville, W. Va., (discontinued September 30, 1979), as part of the Cooperative Reservoir Study with the U.S. Corps of Engineers. - 5. Suspended-sediment data are being collected on a daily basis at Marsh Fork at Maben, W. Va., Still Run at Itman, W. Va., Allen Creek at Allen Junction, W. Va., and at Bearhole Fork at Pineville, W. Va., as part of a study on the effects of mining on the hydrologic environment of Southern West Virginia, in cooperation with the West Virginia Geological and Economic Survey. - 6. Suspended-sediment data are being collected on about monthly and storm event basis at Milan Fork at McGraws, W. Va. (changed to daily basis January 1979), as part of a study of the effects of mining on the hydrologic environment of Southern West Virginia, in cooperation with the West Virginia Geological and Economic Survey. - 7. Suspended-sediment data are being collected on a daily basis at Elkhorn Creek at Maitland, W. Va., Tug Fork at Welch, W. Va., Pigeon Creek at LeNore, W. Va., and at Dry Creek at Avondale, W. Va., as part of the Tug River Basin project in cooperation with the West Virginia Geological and Economic Survey and the West Virginia Department of Natural Resources. - 8. Suspended-sediment data are being collected on a daily basis at Tug Fork near Glenhayes, W. Va., in cooperation with the West Virginia Geological and Economic Survey as part of the Tug River Basin project. - 9. Suspended-sediment data are being collected on a near monthly and storm-event basis at Pennacle Creek at Hwy. 16 Branch near Pineville, W. Va.; Buffalo Creek at Hwy. 16/5 Branch at Kistler, W. Va.; Middle Fork at Hwy. 3 Branch at Hamlin, W. Va.; Elkhorn Creek at Hwy. 52/20 Branch at Elkhorn, W. Va.; Panther Creek near Panther, W. Va.; Pigeon Creek near LeNore, W. Va., as part of the USGS's Coal Hydrology Monitoring project. - 10. Suspended-sediment data are being collected on a monthly basis at Big Sandy River at Louisa, Ky., as a part of NASQAN, and as part of the Coal Hydrology program. - 11. Suspended-sediment data are being collected on a daily basis at Johns Creek near Meta, Ky., to monitor sediment discharge into Dewey Lake. The work is being done in cooperation with the U.S. Corps of Engineers, Huntington District, and as part of the Coal Hydrology program. - 12. Suspended-sediment data are being collected on a quarterly basis at Grape-vine Creek near Phyllis, Ky., and at Dicks Fork at Phyllis, Ky., as a part of the Coal Hydrology project. - 13. Suspended-sesdiment data are being collected on a weekly and storm-event basis at Russell Fork at Elkhorn City, Ky., Levisa Fork at Pikeville, Ky., and Johns Creek near Van Lear, Ky., as part of the Coal Hydrology program. - 14. Suspended-sediment data are being collected on a quarterly basis at 41 other locations as part of the Coal Hydrology program. # Great Miami Subregion - 1. Suspended-sediment data are being collected on an intermittant basis at White-water River near Hagerstown, Ind., and on a flood-event basis at East Fork Whitewater River at Abington, Ind. This work was done in cooperation with the State of Indiana. - 2. Suspended-sediment data are being collected on an intermittent basis at Whitewater River at Brookville, Ind., as a part of NASQAN. # Middle Ohio Subregion - 1. Suspended-sediment data are being collected at Ohio River at Greenup Dam, Ky., as part of NASQAN. - 2. Suspended-sediment data are being collected on a monthly basis at Upper Twin Creek at McGaw, Ohio, and at South Hogan Creek near Dillsboro, Ind., as a part of the National Hydrologic Benchmark Network. - 3. Suspended-sediment data are being collected at Little Miami River at Milford, Ohio, in cooperation with the Ohio Department of Natural Resources. - 4. Suspended-sediment data are being collected daily at Big Four Hollow Creek near Lake Hope, Ohio, and at the following stations in the Raccoon River basin on a storm-event basis in cooperation with the Ohio Department of Natural Resources: Sandy Run above Big Four Hollow Creek, near Lake Hope, Ohio Big Four Hollow Creek below East Fork, near Lake Hope, Ohio Hull Hollow Creek near Lake Hope, Ohio Sandy Run below Hull Hollow Creek, near Lake Hope, Ohio - 5. Suspended-sediment data are being collected on a monthly basis at Ohio River at Greenup Dam, Ky., and Ohio River at Markland Dam, Ky., as a part of NASQAN. - 6. Suspended-sediment data are being collected on a weekly and storm-event basis at Tygarts Creek near Greenup, Ky., and Little Sandy River at Grayson, Ky., as part of the Federally funded Coal Hydrology network. - 7. Suspended-sediment data are being collected on a quarterly basis at 10 locations in Kentucky, as part of the Federally funded Coal Hydrology network. # Kentucky-Licking Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Licking River at Butler, Ky., and at Kentucky River at Lock 2 at Lockport, Ky., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a five week frequency at the following stations to define sediment yields by physiographic province in Kentucky. North Fork Triplett Creek near Morehead, Ky. North Fork Licking River near Lewisburg, Ky. Troublesome Creek at Noble, Ky. Goose Creek at Manchester, Ky. Red River near Hazel Green, Ky. Elkhorn Creek near Frankfort, Ky. This work is done in cooperation with the Kentucky Geological Survey. The Goose Creek and Red River stations are also part of the Coal Hydrology program. - 3. Suspended-sediment data are being collected on a daily basis at Middle Fork Kentucky River near Hyden, Ky., in cooperation with the U.S. Corps of Engineers, Louisville District, and as part of the Coal Hydrology program. - 4. Suspended-sediment data are being collected on a weekly and storm-event basis at: North Fork Kentucky River at Hazard, Ky. North Fork Kentucky River at Jackson, Ky. Middle Fork Kentucky River at Tallega, Ky. South Fork Kentucky River at Booneville, Ky. 5. Suspended-sediment data are being collected on a quarterly basis at 54 locations in Kentucky as part of the Coal Hydrology program. # Green Subregion - 1.
Suspended-sediment data are being collected on a monthly basis at Graen River near Beech Grove, Ky., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a daily basis at Green River at Munfordville, Ky., as a part of the Federal Sediment Index Network. - 3. Suspended-sediment data are being collected on a 5-week frequency at the following stations in cooperation with the Kentucky Geological Survey. Russell Creek near Columbia, Ky. Nolin River near White Mills, Ky. South Fork Panther Creek near Whitesville, Ky. Bacon Creek near Priceville, Ky. (started Oct. 1, 1978) 4. Suspended-sediment data are being collected on a weekly and storm-event basis as part of the Federally funded Coal Hydrology network at: Rough River at Dundee, Ky. Pond River near Apex, Ky. Pond River near Vandetta, Ky. Green River at Rockport, Ky. Cypress Creek near Calhoun, Ky. Panther Creek near Owensboro, Ky. Green River at Lock 2 at Calhoun, Ky. 5. Suspended-sediment data are being collected on a quarterly basis at 47 locations in Kentucky as part of the Federally funded Coal Hydrology network. ### Wabash Subregion 1. Suspended-sediment data are being collected on a daily basis at Buck Creek near Muncie, Ind., and at East Fork White River at Seymour, Ind., in cooperation with the State of Indiana, and at Big Blue River at Carthage, Ind., for - the U.S. Corps of Engineers. Additional sampling in cooperation with the State of Indiana consists of six weekly stations, five intermittent stations, and four high-flow only stations. - 2. Suspended-sediment data were collected once at 40 sites and bed-material samples once at seven sites in Indiana as part of the Federal Energy program. - 3. Suspended-sediment data were collected monthly at White River at Hazelton, Ind., as part of NASQAN. - 4. Suspended-sediment data are being collected on a daily basis at Eel River near Logansport, Ind., and at Wabash River at Lafayette, Ind., in cooperation with the State of Indiana. - 5. Suspended-sediment data are being collected on an weekly basis at three sites, on an intermittent basis at six sites, and on a storm-event basis at five sites in cooperation with the State of Indiana. - 6. Suspended-sediment data were collected once at 33 sites and bed-material samples once at seven sites in Indiana as part of the Federal Energy program. - 7. Suspended-sediment data were collected four times at four sites as part of the Federal Energy program and in cooperation with the U.S. Environmental Protection Agency. - 8. Suspended-sediment data are being collected on a intermittent basis at Wabash River at New Harmony, Ind., and on a monthly basis at Little Wabash River at Carmi, Ill., as a part of NASQAN. - 9. Suspended-sediment data are being collected on a daily basis at Little Wabash River at Louisville, Ill., and at Embarras River near Oakland, Ill., in cooperation with the U.S. Corps of Engineers, Louisville District. #### Cumberland Subregion - 1. As part of the Coal Hydrology program, a suspended-sediment discharge station is being operated at Smoky Creek near Hembree, Tenn., in the New River basins. This station monitors daily and storm loads. Also in conjunction with this same program, miscellaneous suspended-sediment discharge measurements are being made at 51 other sites in this Subregion within the State of Tennessee. - 2. In cooperation with the Tennessee Department of Public Health, Division of Water Quality Control, suspended-sediment discharge measurements are being made on a six-week frequency at 11 sites in this Subregion within the State of Tennessee. - 3. Suspended-sediment data are being collected on a monthly basis at Cumberland River at Carthage, Tenn., and at Cumberland River near Grand Rivers, Ky., as a part of NASQAN. 4. Suspended-sediment data are being collected on a 5-week frequency at the following stations in cooperation with the Kentucky Geological Survey: Buck Creek near Shopville, Ky. Little River near Cadiz, Ky. 5. Suspended-sediment data are being collected on a daily and storm-event basis in cooperation with the U.S. Army Corps of Engineers, Nashville District, and as part of the Coal Hydrology program at the following stations: Clover Fork near Harlan, Ky. Yellow Creek near Middlesboro, Ky. Cumberland River at Barboursville, Ky. Cumberland River near Pineville, Ky. 6. Suspended-sediment data are being collected on a weekly and storm-event basis as part of the Coal Hydrology program at: South Fork Cumberland River near Sterns, Ky. Clear Fork near Saxton, Ky. Rockcastle River near Billows, Ky. Cumberland River at Williamsburg, Ky. 7. Suspended-sediment data are being collected on a quarterly basis at 29 miscellaneous stations of the Coal Hydrology program. # Lower Ohio Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Rolling Fork near Lebanon Junction, Ky., Salt River at Shepherdsville, Ky., Ohio River at Cannelton Dam, Ky., and at Ohio River at Lock and Dam 53 near Grand Chain, Ill., as part of NASQAN. - 2. Suspended-sediment data are being collected on an intermittent basis at Indian-Kentuck Creek near Canaan, Ind., on a highflow only basis at Middle Fork Anderson River at Bristow, Ind., and on a daily basis at West Fork Blue River at Salem, Ind., in cooperation with the State of Indiana. - 3. Suspended-sediment data were collected once at nine sites in Indiana as part of the Federal Energy program. - 4. Suspended-sediment data are being collected on a 3-times weekly and stormevent basis at Ohio River at Louisville, Ky., in cooperation with the U.S. Corps of Engineers, Louisville District. - 5. Suspended-sediment data were collected 3-times at four sites and once at four other sites in Indiana in cooperation with the U.S. Soil Conservation Service. - 6. Suspended-sediment data are being collected on a daily and storm-event basis at Floyds Fork near Crestwood, Ky., in cooperation with the Kentucky Department of Natural Resources. - 7. Suspended-sediment data on a weekly and storm-event basis at Tradewater River at Olney, Ky., as part of the Coal Hydrology program. - 8. Suspended-sediment data are collected on a quarterly basis at 13 locations in Kentucky as part of the Coal Hydrology program. - 9. Suspended-sediment data are collected on a 5-week and storm-event basis at Massac Creek near Paducah, Ky. in cooperation with the Kentucky Geological Survey. # Special Studies Suspended-sediment data were collected with automatic samplers at three sites in Greene County, Penn., during 1979,--Castile Run at Clarksville, Penn., Whitely Creek near Kirby, Penn., and Enlow Fork of Wheeling Creek, near West Finley, Penn. These data were collected as part of a study to evaluate the effects of mining on streams in Greene County. A four-year study began in 1978 to evaluate surface mining influences on sedimentation characteristics of basins in the Allegheny and Monogahela geologic series in Ohio. A four-year study began in 1978 to evaluate and quantify any impact that highway construction has on sediment loads to neighboring streams at the construction site of Ohio State Route 315 in Columbus, Ohio. The project report is in review stage on the Federally-funded project, "Down-stream effects of coal mining on Levisa Fork of the Big Sandy River, Kentucky-Virginia. Suspended-sediment data were collected with automatic samplers at two sites in the Big Sandy Creek basin during 1979. The sites are a tributary to Stoney Fork near Gibson Glade and Stoney Fork near Elliotsville. The data were collected as part of a study to evaluate the effects of surface mining on the Big Sandy Creek basin of Southwestern Pennsylvania. In cooperation with the Tennessee Department of Transportation, the problem of scour at highway bridges is being investigated at known and potential problem sites across Tennessee. Reports documenting data and research findings are planned. In cooperation with several State and Federal agencies, suspended-and bed-sediment yields were measured at several locations in the heavily mined New River basin, Tenn. Suspended-sediment discharge was measured at two storm-event and three daily-plus-storm-event sites. Bedload measurements were also made at two other sites. Periodic bed and suspended-sediment particle-size determinations were made. Data collection in conjunction with this effort ceased on September 30, 1979. A final project report is in preparation. A paper, "Sediment Characteristics of the New River, Tennessee," by William P. Carey was published in December 1979, in the Proceedings Symposium on Surface Mining, Hydrology, Sedimentology and Reclamation, University of Kentucky BUll9, p. 197-202. In cooperation with the U.S. Army Corps of Engineers, two suspended-sediment discharge stations were established; one at the mouth of the Clear Fork basin and one on the Big South Fork Cumberland River, Tenn. A third suspended-sediment discharge station on New River at New River, Tenn., is currently in operation. These stations monitor daily and storm-event loads. These data will be used to define current water quality conditions within the Big South National River and Recreation Area, Tennessee. Professional paper 427D by John A. McCabe, a report on the 1974 phase of sediment studies at Cane Branch near Parkers Lake, Ky., is in review stage. This work was done in cooperation with a number of Federal and state agencies. For additional information about Gelogical Survey activities within this region, contact the following offices: JDistrict Chief, WRD U.S. Geological Survey P.O. Box 1026 605 North Neil Street Champaign, IL 61820 District Chief, WRD U.S. Geological Survey 975 West Third Avenue Columbus, OH 43212 District Chief, WRD U.S. Geological Survey Federal Building and U.S. Courthouse, Room A-413 Nashville, TN 37203 District Chief, WRD U.S. Geological Survey Federal Building and U.S. Courthouse Room 3017 500 Quarrier Street East Charleston, WV 25301 District Chief, WRD U.S. Geological Survey
1819 North Meridian Street Indianapolis, IN 46202 District Chief, WRD U.S. Geological Survey P.O. Box 1107 Federal Building, Fourth Floor 228 Walnut Street Harrisburg, PA 17108 District Chief, WRD U.S. Geological Survey 200 West Grace Street Room 304 Richmond, VA 23220 District Chief, WRD U.S. Geological Survey Rm. 572, Federal Building 600 Federal Place Lawrence, KY 40202 #### OHIO REGION #### SOIL CONSERVATION SERVICE 1. Studies of sediment damages and determinations of sediment yields were made in the following watersheds: ### a. Public Law 566 | Major Drainage | Watershed | Stream | County(s) | <u>State</u> | |----------------|-----------------|--------------------|-----------|--------------| | Scioto River | Rattlesnake Crk | Rattlesnake
Crk | Clinton | ОН | | | | | Fayette | | | | | | Greene | | | | | | Highland | | | | | | Madison | | #### b. Public Law 9587 Loch Mary was constructed in 1892, and is presently the water supply reservoir for Earlington, Kentucky. Much of the drainage area to the lake has been strip mined in the past. As a consequence of the mining activity, large quantities of sediment have accumulated in the lake, necessitating cleanout several times to renovate storage capacity. A reservoir survey was conducted to determine the present water capacity of the lake and to provide a datum for measuring the effectiveness of furture changes in land use and treatment of the drainage area. | Major Drainage | Watershed | Stream | County | State | |----------------|------------|-----------|---------|-------| | Ohio River | Tradewater | Clear Crk | Hopkins | KY | #### 2. Reservoir Sedimentation Surveys - a. A reservoir sedimentation survey was made on structure No. 12, Little Cache Creek watershed, Johnson County, Illinois. - A reservoir sedimentation survey was made on structure No. 9, Elk Creek watershed, Washington County, Indiana. Computations are incomplete. #### TENNESSEE REGION ### GEOLOGICAL SURVEY ### Upper Tennessee Subregion - 1. As part of the Coal Hydrology program in southwestern Virginia, suspended-sediment samples were collected at nine stations on about a 6-week basis, suspended-sediment and coal-separation samples were collected three times at about 20 synoptic-survey sites, bottom-material samples for coal-separation analysis were collected at 14 sites, and bottom-material samples for trace-metals analysis were collected at 15 sites, in the Clinch-Powell River basins. - 2. Suspended-sediment data are being collected on a monthly basis at French Broad River at Marshall, N.C., French Broad River near Knoxville, Tenn., and at Clinch River at Melton Hill Dam, Tenn., and at Holston River near Knoxville, Tenn., as part of NASQAN. - 3. In conjunction with the Coal Hydrology program, miscellaneous susperdedsediment discharge measurements are being made at 21 sites within the State of Tennessee. - 4. In cooperation with the Tennessee Department of Public Health, Division of Water Quality Control, suspended-sediment discharge measurements are being made on a 6-week frequency at eight sites within the State of Tennessee. ### Middle Tennessee-Hiwassee Subregion - 1. In conjunction with the Coal Hydrology program, miscellaneous susperdedsediment discharge measurements are being made at 13 sites within the State of Tennessee. - 2. In cooperation with the Tennessee Department of Public Health, Division of Water Quality Control, suspended-sediment discharge measurements are being made on a 6-week frequency at Oostanaula Creek near Sanford, Tennessee. - 3. Suspended-sediment data are being collected on a monthly basis at Tennessee River at Watts Bar Dam, Tenn., as part of NASQAN. - 4. Suspended-sediment data are being collected in the Tennessee River hasin in Georgia at three sites on a monthly basis and at 13 sites on a quarterly basis as part of the OSM Coal Hydrology program. #### Tennessee-Elk Subregion 1. In conjunction with the Coal Hydrology program, miscellaneous suspendedsediment discharge measurements are being made at 12 sites within the State of Tennessee. - 2. In cooperation with the Tennessee Department of Public Health, Division of Water Quality Control, suspended-sediment discharge measurements are being made on a 6-week frequency at Shoal Creek near Iron City, Tenn. - 3. Suspended-sediment data are being collected on a monthly basis at Tennessee River at South Pittsburg, Tenn., as a part of NASQAN. This site is also in a national pesticide monitoring network which requires periodic streambed sediment sampling. - 4. Suspended-sediment data are being collected by an automatic sampler at Yellow Creek at Cross Roads, Miss., in cooperation with the U.S. Corps of Engineers. # Lower Tennessee Subregion - 1. In cooperation with the Tennessee Department of Public Health, Division of Water Quality Control, suspended-sediment discharge measurements are being made on a 6-week frequency at three sites within the State of Tennessee. - 2. Suspended-sediment data are being collected on a monthly basis at Tennessee River at Pickwick Landing Dam, Tenn., and at Tennessee River at Highway 60 near Paducah, Ky., as a part of NASQAN. - 3. Suspended-sediment data are being collected on a periodic basis at Buffalo River near Flat Woods, Tenn., as part of the National Hydrologic Benchmark Network. - 4. Suspended-sediment data are being collected on a 5 week-frequency at West Fork Clarks River near Brewers Creek, Ky., in cooperation with the Kentucky Geological Survey. - 5. Suspended-sediment data are being collected on a periodic basis at Toccoa River near Dial, Ga., in cooperation with the Georgia Geologic Survey. ### Special Studies In cooperation with the Tennessee Department of Transportation, the problem of scour at highway bridges is being investigated at known and potential problem sites across Tennessee. Reports documenting data and research findings are planned. For additional information about Geological Survey activities within this region, contact the following offices: District Chief, WRD U.S. Geological Survey 6481 Peachtree Industrial Boulevard, Suite B Doraville, GA 30360 District Chief, WRD U.S. Geological Survey 100 W. Capitol St., Suite 710 Jackson, MS 39201 District Chief, WRD U.S. Geological Survey P.O. Box 2857, Century Station Post Office Building, Room 436 Raleigh, NC 27602 District Chief, WRD U.S. Geological Survey Room 572, Federal Building 600 Federal Place Louisville, KY 40202 District Chief, WRD U.S. Geological Survey Federal Building and U.S. Courthouse Room A-413 Nashville, TN 37203 District Chief, WRD U.S. Geological Survey 200 West Grace St., Rm. 304 Richmond, VA 23220 #### TENNESSEE REGION ### Tennessee Valley Authority During 1979 established sediment ranges were sounded on the La Follette, Tennessee, water supply reservoir, Ocoee No. 1, Ocoee No. 3, and Cherokee Reservoirs. Sediment ranges were established and initial surveys made on Cedar Creek Reservoir, part of the Bear Creek Project in north Alabama. Suspended sediment sampling began at four locations as part of the St. Charles, Virginia, Watershed Reclamation Project, a cooperative study with the Office of Surface Mining and the Virginia Division of Mined Land Reclamation. Suspended sediment sampling, deposited sediment surveys, and core sampling were conducted as part of a comprehensive engineering and environmental investigation of DDT contamination of Huntsville Spring Branch, Indian Creek and adjacent land and waters, Wheeler Reservoir in northern Alabama. # La Follette Water Supply Reservoir (Upper Ollis Creek Reservoir) This reservoir, filled in 1964, was surveyed for the ninth consecutive year since the 46 sediment ranges were established, sounded, and probed in 1970. Deposited sediment accumulations are being monitored to ascertain the effects of strip mining and subsequent reclamation work in the watershed. The 1979 survey showed a total of 60 acre-feet of sediment, an average increase of 3.6 acre-feet since 1974, but about one-third the rates experienced in 1972 and 1973. #### Ocoee No. 1 Reservoir Thirty-seven sediment ranges of the 38 ranges established in 1949 were sounded. The reservoir was filled in 1911 and TVA made a survey in 1940, but ranges were not established during this investigation. Five sediment surveys were made from 1954 to 1976. The 1979 survey indicated a total deposit of 24,800 acre-feet of sediment and a storage loss of 22.7 percent since dam closure in 1911. #### Ocoee No. 3 Reservoir Thirty of the 31 established sediment ranges were sounded. This reservoir was filled and ranges established in 1942. Thirteen sediment surveys were made from 1945 to 1976. The 1979 survey indicated a total deposit of 11,000 acre-feet of sediment and a storage loss of 77 percent, a net reduction of 400 acre-feet of deposits since the previous survey in 1976. The reservoir was drawn to minimum levels in December 1976, and in March and October 1978 to flush sediment from the reservoir. #### Cherokee Reservoir Twenty-nine ranges were established prior to filling the reservoir in 1941. Prior to the 1979 survey, surveys were made at 5-year intervals between 1949 and 1964. #### UPPER MISSISSIPPI REGION ### CORPS OF ENGINEERS #### North Central Division Chicago District Two sediment-related studies conducted for the Chicago District were completed in 1979. Both studies are related to the "Study and Demonstration Program for an Increase in Lake Michigan Diversion at Chicago" as authorized by Section 166 of the Water Resources Development Act of 1976. The first study, entitled "Bank Erosion of the Illinois River" involved a bank erosion survey of the Illinois River between Joliet (River mile 285.0) and Grafton, Illinois (River mile 0.0). A total of 20 eroded river reaches within the Study area were selected for detailed analysis. Plan views and bank slopes were surveyed and a permanent concrete monument was installed at each selected reach to allow for the possibility of future monitoring. A total of 67
bank material samples and 54 bed material samples were classified and analyzed with respect to particle size distribution to determine the nature and extent of shoreline erosion. Stability analyses indicated that bank erosion along the Illinois River would not be affected by the proposed Increased Diversion Program. The second study, entitled "Sediment Transport in the Illinois River", provided relationships between sediment loading and water discharge at select locations based on historic data collected by the United States Geological Survey (USGS), the Northeastern Illinois Planning Commission (NIPC), and the Metropolitan Sanitary District of Greater Chicago (MSDGC). On the basis of these data, computations were made to estimate the probable sedimentation effects of increased Lake Michigan diversion from 3200 cfs (current) to 6600 cfs and 10,000 cfs (proposed). The following conclusions were made: - 1. The most severe sediment-related effects of increased diversion will be in the Chicago Sanitary and Ship Canal, which is located between and hydraulically connected to Lake Michigan and the Illinois River. The sewage sludge deposited on the bed and banks of the Canal (from wastewater treatment plant effluents and combined sewer overflows) will probably be washed away, at least partially, during the initial period of diversion. A gradual decrease in the scour will take place possibly within a few days of the start of diversion, depending upon the rate of increase of the diverted flow. - 2. The eroded sludge will deposit in the pools downstream of the Canal. 3. An increase in sediment load will take place with an increase in discharge in the middle and lower reaches of the Illinois River. The above conclusions were based on an extremely limited amount of data. Statistically, the reliability of the sediment rating curves developed for this study is not very high. Additional data may or may not substantiate these conclusions. #### References: - 1. Bhowmik, N. G., and R. J. Schicht, "Bank Erosion of the Illinois River," Illinois State Water Survey Contract Report, January 1979. - 2. Lee, M. T., and N. G. Bhowmik, "Sediment Transport in the Illinois River," Illinois State Water Survey Contract Report, April 1979. #### Rock Island District <u>Sedimentation Surveys</u>. The establishment and survey of reservoir sedimentation ranges in Lake Red Rock and about 100 percent completed. A resurvey report is scheduled to be prepared this calendar year. The establishment and survey of reservoir sedimentation ranges in Saylorville Lake are approximately 60 percent completed. Suspended Sediment Sampling. Suspended load sampling is being conducted at 35 stations, four located on the Mississippi River and 31 on its tributaries. Seventeen long term stations are operated and maintained directly by the Rock Island District. Eighteen stations which began in conjunction with the GREAT II program are now being operated and maintained under a cooperative program with the US Geological Survey. Sampling at Monticello, Missouri, on the Middle Fabius River and at Keosauqua, Iowa, on the Des Moines River will begin this year. Bedload Sampling. Bedload sampling is being conducted at 19 stations located on tributaries of the Mississippi River. At 15 of these stations suspended sediment samples are also collected. At the remaining four stations: the Turkey River at Garber, Iowa; Skunk River at Augusta, Iowa; Rock River at Jefferson, Wisconsin; and the Rock River at Afton, Wisconsin, only bedload samples are collected. Bedload samples are collected during the three peak flows for the year using the Helley Smith bedload sampler. All stations at which bedload samples are collected are operated and maintained in cooperation with the USGS. Records for the bedload stations are also maintained by the USGS. #### St. Paul District A report on the progress and development accomplished in the "Study of Methods Used in Measurement and Analysis of Sediment Loads in Streams", conducted at the St. Anthony Falls Hydraulic Laboratory during the calendar year 1979, is described under "Laboratory and other Research Activities." Sediment load measurements are currently being made at twenty-three stations sponsored by the St. Paul District. There are sixteen stations in the Upper Mississippi River Basin and seven in the Souris - Red - Rainy Rivers Basin. Eleven of the sediment stations in the Upper Mississippi River Basin will provide basic data for the Great River Study. All sediment load measurements are being conducted by the U. S. Geological Survey under St. Paul District sponsorship. ### UPPER MISSISSIPPI REGION ### GEOLOGICAL SURVEY # Mississippi Headwaters Subregion - 1. Suspended-sediment are being collected on a monthly basis at Mississippi River near Royalton, Minn., and at Mississippi River at Naninger, Minn., as a part of the National Stream Quality Accounting Network (NASQAN). - 2. Suspended-sediment data are being collected on a daily basis at Mississipri River near Anoka, Minn., in cooperation with the U.S. Corps of Engineers. - 3. Suspended-sediment data are being collected on an intermittent and storm-€vent basis at Crow River at Rockford, Minn., and at Elk River near Big Lake, Minn., in cooperation with the Minnesota Department of Natural Resources, Division of Waters. - 4. Suspended-sediment measurements were made during floods at the following sites: Mississippi River at Bemidji, Minn. Mississippi River below Sandy River at Libby, Minn. Mississippi River at Aitkin, Minn. Mississippi River Diversion near Aitkin, Minn. # Minnesota Subregion - 1. Suspended-sediment data are being collected on a daily basis at Minnesota River at Mankato, Minn., at Whetstone River near Big Stone City, S. Dak., and at Yellow Bank River near Odessa, Minn., in cooperation with the U.S. Corps of Engineers. - 2. Suspended-sediment data are being collected on a monthly basis at Minnesota River near Jordon, Minn., as a part of NASQAN. - 3. Suspended-sediment data are being collected on an intermittent or stormevent basis at Watonwan River near Garden City, Minn., Chippewa River near Milan, Minn., and at Yellow Medicine River near Granite Falls, Minn., in cooperation with the Minnesota Department of Natural Resources, Division of Waters. ### St. Croix Subregion 1. Suspended-sediment dfta are being collected on a periodic basis at the following sites: St. Croix River at CTH "T" near Dairyland, Wis. Namekagon River at Hayward, Wis. Namekagon River at Trego, Wis. St. Croix River near Danbury, Wis. Yellow River at Danbury, Wis. Clam River at ice house bridge near Webster, Wis. Kettle River near Cloverdale, Minn. Snake River near Pine City, Minn. Apple River near Somerset, Wis. 2. Suspended-Sediment data are being collected on a monthly basis at St. Croix River at St. Croix Falls, Wis., as a part of NASQAN. # Upper Mississippi-Black-Root Subregion - 1. Suspended-sediment data are being collected on a monthly and storm-event basis at North Fork Whitewater River near Elba, Minn., as a part of the National Hydrologic Benchmark Network. - 2. Suspended-sediment data are being collected on a daily basis at Zumbro River at Kellogg, Minn., at Whitewater River near Beaver, Minn., at Mississippi River at Winona, Minn., at Root River near Houston, Minn., and at South Fork Root River near Houston, Minn., in cooperation with the U.S. Corps of Engineers. - 3. Suspended and bed load-sediment data are being collected on a periodic and storm-event basis for the U.S. Corps of Engineers, at Chippewa River at Durand, Wis., and at Black River at Galesville, Wis. - 4. Suspended and bedload sediment data are being collected on an intermittent basis for the U.S. Corps of Engineers, at Plum Creek near Ella, Wis., Chippewa River near Caryville, Wis., and at Chippewa River near Pepin, Wis. - 5. Suspended-sediment measurements were made of the Mississippi River at LaCrosse, Wis., as part of a project study of Lake Onalaska in cooperation with the U.S. Fish and Wildlife Service. ### Upper Mississippi-Maquoketa-Plum Subregion - 1. Suspended-sediment data are being collected on a daily basis at Upper Iowa River near Dorchester, Iowa, and at Mississippi River at McGregor, Iowa, as a part of the Great River Environmental study in cooperation with U.S. Corps of Engineers, St. Paul District. - 2. Suspended-sediment data are being collected on a periodic and storm-event basis for the U.S. Corps of Engineers at the Grant River at Burton, Wis. - 3. Suspended-sediment data are being collected at Maquoketa River near Maquoketa, Ia., as a part of the Great II River Environmental study in cooperation with the U.S. Corps of Engineers, Rock Island District. - 4. Suspended-sediment data are being collected on an intermittent and storm-event basis at Cedar River near Austin, Minn., in cooperation with the Minnesota Department of National Resources, Division of Waters. - 5. Suspended-sediment data are being collected three times per year on an event basis at Turkey River at Garber, Iowa, as part of Great II study in cooperation with the U.S. Corps of Engineers, Rock Island District. # Wisconsin Subregion - 1. Suspended-sediment and bedload data are being collected on a periodic and storm-event basis for the U.S. Corps of Engineers at Wisconsin River at Muscoda, Wis. - 2. Suspended-sediment data are being collected on a periodic and storm-event basis at the following sites in cooperation with the State of Wisconsin. Big Eau Pleine River near Stratford, Wis-Fenwood Creek at Bradley, Wis-Freeman Creek at Halder, Wis-Big Eau Pleine River near Mosinee, Wis- 3. Suspended-sediment data are being collected on a periodic and storm-event basis to determine daily suspended-sediment discharge in cooperation with the State of Wisconsin at the following sites: Site A, Trout Creek near Ridgeway, Wis. Site B, Trout Creek near Ridgeway, Wis. Site D, Trout Creek near Ridgeway, Wis. - 4. Suspended-sediment data are being collected on an
intermittent and stormevent basis in cooperation with Dane County, Wis., at Black Earth Creek at Black Earth, Wis. - 5. Suspended-sediment data are being collected on a periodic and event-basis to determine daily suspended-sediment discharge in cooperation with the State of Wisconsin, at Yellowstone River near Blanchardville, Wis. and at Steiner Branch near Waldwick, Wis. Upper Mississippi-Iowa-Skunk-Wapsipinicon Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Mississippi River at Clinton, Iowa, and at Mississippi River at Keokuk, Iowa, as a part of NASQAN. - 2. Suspended-sediment data are being collected on a daily basis at the following in cooperation with the Iowa Geological Survey: Iowa River at Iowa City, Iowa Ralston Creek at Iowa City, Iowa Skunk River at Augusta, Iowa 3. Suspended-sediment data are being collected on a daily basis at the following sites as part of the Great II River Environmental study in cooperation with U.S. Corps of Engineers, Rock Island District. Crow Creek at Bettendorf, Iowa Iowa River at Wapello, Iowa 4. Suspended-sediment data are being collected three times per year on an event basis at Wapsipinicon River at De Witt, Iowa, as part of Great II study in cooperation with the U.S. Crops of Engineers, Rock Island District. # Rock Subregion - 1. Suspended-sediment data are being collected on a daily plus storm-event basis in cooperation with Dane County, Wis., on Willow Creek at Madisor, Wis. - 2. Suspended-sediment data are being collected on a weekly and storm-event basis in cooperation with the U.S. Corps of Engineers and the City of Middleton, Wis., at: Pheasant Branch Creek at Middleton, Wis., at U.S. Highway 12 Pheasant Branch at Century Avenue at Middleton, Wis. Tributary to Pheasant Branch at Hwy. 14 at Middleton, Wis. Tributary to Pheasant Branch at Airport Road at Middleton, Wis. Pheasant Branch at Middleton, Wis., at CTH "M" 3. Suspended-sediment data are being collected on an intermittent and stormevent basis in cooperation with Dane County, Wis., at the following sites: > Maunesha River near Sun Prairie, Wis. Yahara River at Windsor, Wis. Token Creek near Madison, Wis. Yahara River at STH 113 at Madison, Wis. Sixmile Creek at Waunakee, Wis. Sixmile Creek near Waunakee, Wis. Spring Creek at CTH "M" near Middleton, Wis. Spring Harbor Storm Sewer at Madison, Wis. Starkweather Creek - West - at Madison, Wis. Starkweather Creek - East - at Madison, Wis. Olbrich Park Storm Ditch at Madison, Wis. Door Creek near Cottage Grove, Wis. Mt. Vernon Creek near Mt. Vernon, Wis. - 4. Suspended-sediment data are being collected on a monthly basis at Rock River near Joslin, Il., as a part of NASQAN. - 5. At the Kishwaukee River near Perryville, Illinois, daily suspended-sediment data collection began in April 1979 in cooperation with the Rock Island Corps of Engineers. ### Des Moines Subregion 1. Suspended-sediment data are being collected on a daily basis at Des Moines River near Saylorville, IA, in cooperation with the Iowa Geological Survey. - 2. Suspended-sediment data are being collected on a daily basis at Des Moines River at St. Francisville, Mo., as a part of the Great II study in cooperation with the U.S. Corps of Engineers, Rock Island District. - 3. Suspended-sediment data are being collected on an intermittent basis at Des Moines River at Jackson, Minn., in cooperation with the Minnesota Department of Natural Resources, Division of Waters. - 4. Suspended-sediment data are being collected on a daily basis at Middle Fork Raccoon River at Bayard, Iowa, and Middle Fork Raccoon River at Panora, Iowa. In conjunction with the operation of these stations, a sediment reservoir sedimentation study is being conducted at Lake Panorama at Panora, Iowa. This study is a cooperative undertaking with the Engineering Research Institute, Iowa State University at Ames, Iowa. ### Upper Mississippi-Salt-Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Salt River near New London, Mo., and Mississippi River below Alton, Ill., as a part of NASQAN. - 2. Suspended-sediment data are being collected on three to six storm-events per year at Middle Fabius River near Monticello, Mo., as a part of the Great II study in cooperation with the U.S. Corps of Engineers, Rock Island Districts. # Upper Illinois Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Illinois River at Marseilles, Ill., as a part of NASQAN. - 2. Suspended-sediment data are being collected on an intermittent basis at Davis Ditch near Kouts, Ind., Kankakee River near Kouts, Ind., Cobb Ditch near Kouts, Ind., Singleton Ditch at Schneider, Ind., Iroquois River near Rosebud, Ind., and at Iroquois River near Foresman, Ind., in cooperation with the State of Indiana. - 3. Suspended-sediment data are being collected on a daily basis at Yellow River at Plymouth, Ind., in cooperation with the State of Indiana. - 4. Suspended-sediment data are being collected on a weekly basis at Kankakee River near North Liberty, Ind., in cooperation with the State of Indiana. - 5. Bed-material data are being collected on an intermittent basis at Davis Ditch near Kouts, Ind., and at Kankakee River near Kouts, Ind., in cooperation with the State of Indiana. - 6. Suspended-sediment data are being collected on a daily basis at Iroquois River near Chebanse, Ill., in cooperation with the Illinois Department of Transportation, Division of Water Resources. 7. Suspended-sediment data are being collected on a daily basis at the following sites in cooperation with the Illinois Kankakee River Basin Task Force: Kankakee River at Momence, Ill. (begun Oct. 1, 1978) Kankakee River near Wilmington, Ill. (begun Oct. 1, 1978) Iroquois River at Iroquois, Ill. (begun Oct. 1, 1978) 8. In cooperation with the Chicago Corps of Engineers daily suspended-sediment data collection began in April 1979 at the Des Plaines River at Riverside, Ill. # Lower Illinois Subregion 1. Suspended-sediment data are being collected on a monthly basis at Illinois River at Valley City, Ill., as a part of NASQAN. # Upper Mississippi-Kaskaskia-Meramec Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Mississippi River at Thebes, Ill., at Kaskaskia River at Venedy Station, Ill., at Big Muddy River at Murphysboro, Ill., and at Meramec River near Eureka, Mo., as a part of NAS QAN. - 2. Suspended-sediment data area being collected on a daily basis at Kaskaskia River at Cooks Mills, Ill., in cooperation with the U.S. Army Corps of Engineers, St. Louis District. - 3. Suspended-sediment data are being collected on a daily basis at Mississippi River at St. Louis, Mo., in cooperation with the U.S. Army Corps of Engineers, St. Louis District. # Special Studies Three stations are operated in cooperation with the Metropolitan Sanitary District of Greater Chicago to record changes in sediment transport during reclamation of strip-mined areas for irrigation with digested sludge from sewage treatment facilities. Two stations on Big Creek, one above the reclamation area at St. David, Ill., and one below the area near Bryant, Ill., monitor changes in sediment load. One station is operated on Slug Run rear Bryant, Ill., which drains an area scheduled to be reclaimed. Annually, size analyses are run on suspended sediment at these stations. In cooperation with the Rock Island District, Corps of Engineers, daily suspended sediment sampling began at Henderson Creek near Oquawka, Ill, and Green River near Geneseo, Ill. on April 1. At the same time at these stations and at Rock River near Joslin, Ill., sampling began for bed load and bed material sizing during high discharge events. And on December 21, daily suspended sediment sampling began at Edwards River near New Boston, Ill. All these data were gathered for the Sediment and Erosion Work Group of the Great II Mississippi River Basin Study. In April 1978, in cooperation with Federal Environmental Protection Agency (Energy R&D), six stations were established to determine sediment yield changes from drainage areas affected by coal strip mining. At these locations suspended-sediment samples are being collected monthly with increased sampling during high runoff periods. Three stations: Turkey Creek near Fiatt, South Branch Doza Creek near Lenzburg, Ill., and Little Cana Creek near Creal Springs, Ill., monitor sediment loads from natural drainage areas. The remaining stations: West Branch Big Creek near Canton, Ill., Doza Creek near Lenzburg, Ill., and Bankston Fork near Crab Orchard, Ill., monitor sediment loads from areas affected by strip mining. # Laboratory Activities The Geological Survey laboratory in Iowa City, Ia., analyzed suspendedsediment samples collected by the Corps of Engineers at: Mississippi River at Hannibal, Mo. Hadley Creek at Kinderhook, Ill. Bay Creek at Nebo, Ill. Wapsipinicon River at DeWitt, Iowa Iowa River at Marengo, Iowa Iowa River at Coralville Dam, Iowa Mississippi River at Burlington, Iowa South Skunk River below Squaw Creek near Ames, Iowa Mississippi River at Keokuk, Iowa Des Moines River near Stratford, Iowa Raccoon River at Van Meter, Iowa North River near Norwalk, Iowa Middle River near Indianola, Iowa South River near Ackworth, Iowa Des Moines River near Tracy, Iowa White Breast Creek near Dallas, Iowa Mississippi River at East Dubuque, Ill. For additional information about Geological Survey activities within this region, contact the following offices: District Chief, WRD U.S. Geological Survey P.O. Box 1026 605 North Neil Street Champaign, IL 61820 District Chief, WRD U.S. Geological Survey P.O. Box 1230 Federal Building, Room 269 400 South Clinton Street Iowa City, IA 52244 District Chief, WRD U.S. Geological Survey 1819 North Meridian Street Indianapolis, IN 46202 District Chief, WRD U.S. Geological Survey Post Office Building Room 702 St. Paul, MN 55101 District Chief, WRD U.S. Geological Survey 1400 Independence Road
Mail Stop 200 Rolla, MO 65401 District Chief, WRD U.S. Geological Survey 1815 University Avenue Room 200 Madison, WI 53706 ### UPPER MISSISSIPPI REGION # SOIL CONSERVATION SERVICE 1. Studies of sediment damages and determinations of sediment yields were made in the following watersheds: # a. Public Law 566 | Major Drainage | Watershed | Stream | County(s) | State | |-------------------|---------------------------|--|----------------------------|-------| | Mississippi River | Little Wyaconda-
Sugar | Little
Wyaconda
River and
Sugar Crk | Scotland
Clark
Lewis | МО | | Rock River | Upper Sugar
River | Sugar River | Dane | WI | # b. Public Law 639 | Major Drainage | Watershed | Stream | County(s) | State | |-----------------|-----------------|---------------------------|---|----------| | Minnesota River | Yellow Bank | Yellow Bank
Crk | Grant
Deuel
Lac qui Parle | SD
MN | | Minnesota River | Lac qui Parle | Lac qui Parle | Deuel
Brookings
Lac qui Parle
Yellow
Medicine | SD
MN | | Minnesota River | Yellow Medicine | Yellow
Medicine
Crk | Lincoln
Lyon
Yellow
Medicine | MN | | Minnesota River | Redwood | Redwood
Crk | Lincoln
Pipestone
Lyon
Yellow
Medicine
Redwood | MN | | Minnesota River | Cottonwood | Cottonwood
Crk | Murray
Lyon
Redwood
Brown
Cottonwood | MN | #### c. River Basin Investigations | Major Drainage | Basin Reported | State | |-----------------|-----------------|-------| | Wisconsin River | Wisconsin River | WI | Suspended sediment and bedload sampling were conducted by the Great River Environmental Action Team, Sediment and Erosion Control Work Group, at the following locations: | River | Location | State | |-----------------|---|-------| | Mississippi | Anoka-Lowry Avenue Bridge | MN | | Mississippi | Winona-Burlington-Northern
Railroad Bridge | MN | | Zumbro | Kellogg | MN | | Whitewater | Near Beaver | MN | | Root | Near Houston | MN | | South Fork Root | Near Houston | MN | | Mississippi | McGregor | IA | | Iowa | Dorchester | IA | | Chippewa | Durand | WI | | Black | Near Galesville | WI | | Wisconsin | Muscoda | WI | ### 2. Reservoir Sedimentation Surveys - a. A reservoir sedimentation survey was made on LeRoy Hemish pond in Yellow Medicine County, Minnesota. - b. A reservoir sedimentation survey was made on Lyle Harris pond in Lyon County, Minnesota. - c. A reservoir sedimentation survey was made on Mellinthin-Runholt pond in Lyon County, Minnesota. #### LOWER MISSISSIPPI REGION #### CORPS OF ENGINEERS ### Lower Mississippi Valley Division A draft report "Characterization of the Suspended Sediment Regime and Bed Material Gradation for the Mississippi River Basin" has been completed. The final report is being prepared for publication. This report provides average annual suspended sediment loads for major tributaries and the main stem Mississippi River as well as available information on bed material gradations. It features before and after sediment loads where reservoirs have been constructed and data are available. It also contains general information on land use changes. #### Memphis District Sampling at twenty-four sediment stations established in FY78 on the St. Francis River, Arkansas and its tributaries between Madison, Arkansas and Fisk, Missouri was continued. Suspended sediment, bed sediment, temperature and flow data are being collected on a monthly basis. Suspended sediment samplers DH76TM, DH78, D74ALTM and bed sampler BMH60 were used. New Orleans District #### Sediment Load Measurements - 1. Suspended sediment and bed material sampling was continued at the ranges located in the Mississippi River at Coochie, La., and at Tarbert Landing, Ms., at a frequency of one per week; in the Old River Outflow Channel near Knox Landing, La., semimonthly; in the Atchafalaya River at Simmesport, La., weekly; monthly at Wax Lake Outlet at Calumet, La., and Lower Atchafalaya River at Morgan City, La. On the Red River samples were taken at Fulton, Ark., and Shreveport, La., weekly while at Alexandria, La., and above Old River Outflow Channel samples were taken semimonthly. Weekly sampling was continued in the Atchafalaya Basin at ranges located at Bayou Chene below Bayou Crook Chene, Lake Long below Bayou La Rompe, Little Tensas below Blind Tensas Cut, and East Access Channel above Chicot Pass. - 2. Daily suspended sediment samples were taken on the Red River at Colfax, La. - 3. A cooperative program with the US Geological Survey for collection and analysis of suspended sediment samples was in effect for stations located on the Mississippi River at St. Francisville, Plaquemine, Union, Luling Ferry, Violet, and Venice, La. Samples were taken on the Red River at Boyce and Moncla, La. The sampling frequency was monthly and the data will be published by USGS in its annual publication. 4. Suspended sediment samples were taken with a U.S. P-46, or U.S. P-61 sampler. Bed material samples were taken with a BM-54 sampler or drag bucket type sampler. Daily suspended sediment samples were taken with a trap type sampler. ### Office Investigations - 1. Use of a Digital Flow-Sediment Model of the Atchafalaya Basin developed in conjunction with the Hydrologic Engineering Center is continuing. The model is being used to study alternatives in preparation of the Atchafalaya Basin, Phase I GDM/Feasibility Study. This model is currently being recalibrated using data obtained from the Mississippi Basin Model in Clinton, Mississippi. - 2. NOD is continuing development of a Flow-Sediment Model of the Mississippi River throughout the District. - 3. A Flow-Sediment Model of the Red River Waterway is being used to study maintenance dredging associated with the construction sequence and the completed project. - 4. As part of the LMVD Potamology Program (P-1), WES is compiling a report on the characterization of the suspended-sediment regime and the bed-material composition of the Mississippi River. The study will be completed shortly. - 5. A Computer Data Base System is being built to store hydrographic data for the period of record in the New Orleans District. - 6. A Computer Data Base System is being written to analyze, store and retrieve sediment data. - 7. For NOD, WES is preparing a physical model and a mathematical model of the Atchafalaya Bay. - 8. NOD, through a contract with LSU and as part of the LMVD Potamology Program, has digitized and stored on computer tape all available hydrograph surveys in the New Orleans District. - 9. As part of the LMVD Potamology Program, NOD through a contract with University of Missouri-Rolla, is documenting changes in morphological charateristics in the Mississippi and Atchafalaya Rivers. #### St. Louis District A third resurvey of Carlyle Lake was conducted in 1979. This resurvey was required in order to evaluate and determine the accuracy between the computed volume of sediment deposited from the initial sediment survey (1971) and the sediment resurvey (1976). The data analysis has not been completed at this time. However, these results along with a report should be forthcoming this year if there is no higher priority work scheduled. Sediment and retrogression ranges at both Rend Lake and Lake Shelbyville were surveyed in the spring of 1974. These reports were not submitted during calendar year 1979 due to higher priority work. Suspended and bed samples were collected at Chester, Illinois, in conjunction with SLD Potamology Study (S-3). This study was completed in March 1979. Data collected during the study included 283 depth-integrated suspended sediment samples and 196 bed samples. River stage fluctuations at Chester, Illinois, during this study ranged from a low of zero to a high of 33 feet, with a corresponding discharge range from 60,000 to 650,000 cfs (Chester gage). Analysis of these data is incomplete at this time. #### Vicksburg District #### Sedimentation Surveys - 1. Cross sections and profiles were made on various streams in the Vicksburg District for use in sediment, hydrology, and hydraulic studies and in the design of channel improvements, levees, floodgates, pumps and other flood control and navigation features. - 2. A study begun in 1978 to determine the amount of sediment deposited in Grenada Reservoir was completed. The study indicates the rate of deposition in the reservoir has increased sufficiently since the last study in 1965; however, only 4% of the total volume in the reservoir has been lost. #### Sediment Load Measurements - 1. In connection with potamology investigations, there are three ranges located on the Mississippi River at Vicksburg, Mississippi; Arkansas City, Arkansas; and Natchez, Mississippi; where both bed samples and suspended sediment measurements are taken weekly. - 2. For other sedimentation study, suspended sediment, bed material, temperature, discharge and stage were taken intermittently at seventy-one stations on Bayou LaFourche, Bayou Macon, Big Creek, Big Sunflower River, Black River, Boeuf River, Caddo River, Catahoula Diversion Canal, Coldwater River, Connerly Bayou, Ditch Bayou, Hickahala Creek, Little Missouri River, Little River, Little Tallahatchie River, Lower Auxiliary Channel, Macon Lake, Muddy Bayou, Ouatchita River, Panola-Quitman Floodway, Quiver River, Senatobia Creek, Tallahatchie River, Tchula Lake, Tensas Bayou, Tippah River, Tippo Bayou, Yalobusha River, Yazoo Backwater Connecting Channel, Yazoo River and Yocona River. ## Other Investigations - 1. A study was made using the HEC-6 Program on the Tensas River to determine the magnitude of deposition in the channel and the deposition rate for various design alternates. Various dredging intervals were translated for each alternative to determine the most efficient maintenance dredging interval. - 2. A water sediment model
developed to analyze sediment problems in the Yazoo Basin in Mississippi was used to investigate alternatives with which to alleviate the sedimentation problems in the Greenwood bendway in the Yazoo Basin of the alternatives studied the two that produced the most stable channel was (1) a structure in the Greenwood bendway cutoff to distribute flows and sediment through the cutoff and bendway and (2) a plan which would make part of the Yazoo River bendway into a lake. Since both plans perform satisfactorily from a flood control and sediment standpoint they are now being considered from a cost standpoint. - 3. A study was initiated by the Vicksburg District and Colorado State University to determine possible alternatives for reducing sediment inflow into the main stem Yazoo-Tallahatchie-Coldwater River System from its hill tributaries and to determine design of structural measures to reduce sediment problems. This study should be completed in October 1982. - 4. A comprehensive data collection program was continued as part of the Yazoo Basin Streambank Erosion Control Evaluation and Demonstration Program. This data collection program has been contracted with the Agricultural Research Service and includes detailed water, sediment, and geology data collection, analysis, and evaluation on selected hill tributaries in the Yazoo Basin. 64 ## LOWER MISSISSIPPI REGION ## GEOLOGICAL SURVEY # Lower Mississippi - Hatchie Subregion - 1. In cooperation with the Tennessee Department of Public Health, Division of Water Quality Control, suspended-sediment discharge measurements are being made on a 6-week frequency at seven sites within the State of Tennessee. - 2. Suspended-sediment data are being collected on a monthly basis at Mississippi River at Memphis, Tenn., at Obion River at Obion, Tenn., and at Hatchie River at Bolivar, Tenn., as a part of NASQAN. ## Lower Mississippi - St. Francis Subregion 1. Suspended-sediment data are being collected on a monthly basis at St. Francis River at Parkin, Ark., St. Francis Bay at Riverfront, Ark., Arkansas River at Dam 2 near Gillette, Ark., and at White River at Clarendon, Ark., as a part of NASQAN. # Lower Mississippi - Yazoo Subregion 1. Suspended-sediment data are being collected on a monthly basis at Mississippi River near Arkansas City, Ark., Yazoo River near Shell Bluff, Miss., and at Yazoo River at Redwood, Miss., as a part of NASQAN. ## Lower Red - Ouachita Subregion 1. Suspended-sediment data are being collected on a monthly basis at Ouachita River at Columbia, La., and at Red River near Simmesport, La., and at Ouachita River at Camden, Ark., as a part of NASQAN. Sediment data are being collected on a monthly basis at Big Creek at Pollock, La., as a part of the National Hydrologic Benchmark Network. # Boeuf - Tensas Subregion 1. Suspended-sediment data are being collected on a monthly basis at Tensas River at Tendal, La., and at Boeuf River at Fort Necessity, La., as a part of NASQAN. ## Lower Mississippi - Big Black Subregion 1. Suspended-sediment data are being collected on a monthly basis at Mississippi River at Vicksburg, Miss., Big Black at Bovina, Miss., and at Homochitto Creek at Rosetta, Miss., as part of NASQAN. ## Lower Mississippi - Lake Maurepas Subregion 1. Suspended-sediment data are being collected on a monthly basis at Amite River at 4-H Camp near Denham Spring, La., Tangipahoa River at Robert, La., Lower Grand River at Bayou Sorrel, La., and at Mississippi River near St. Francisville, La., as a part of NASQAN. ## Louisiana Coastal Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Bayou Teche at Keystone Lock and Dam below St. Martinville, La., Mermentau River at Mermentau, La., Atchafalaya River near Melville, La., and at Caleasieu River near Kiner, La., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a monthly basis at the following sites as a part of NASQAN. Mississippi River at Belle Chasse, La. Tchefuncta River near Covington, La. Houma Navigation Canal at Houma, La. ## Special Studies In cooperation with the Tennessee Department of Transportation, the problem of scour at highway bridges is being investigated at known and potential problem sites across Tennessee. Reports documenting data and research findings are planned. Monthly collection was begun at 23 stations on the St. Francis River and selected tributaries in October 1977 for the Corps of Engineers. Monitoring is expected to continue for 5 years. Following the 5-year period, the existing network may be reduced to a few stations that would be monitored more intensively. Suspended-sediment data are collected on a weekly basis and for selected storm events on Tillatoba Creek below Oakland, Miss., and South Fork Tillatoba Creek near Charleston, Miss. This information is collected in cooperation with the U.S. Soil Conservation Service in order to estimate the sediment loads of Tillatoba Creek during periods of high discharge. # Laboratory Activities The Geological Survey sediment laboratory located in Baton Rouge, La., analyzed suspended-sediment and bed-material samples collected by the U.S. Corps of Engineers at the following locations: Red River at Alexandria Old River Outflow near Knox Landing Red River above Old River Outflow Mississippi River at Coochie Mississippi River at Tarbert Landing Atchafalaya River at Simmesport Bayou Chen above Bayou Crook Chen East Access Channel above Lake Chicot Lake Long below Bayou LaRompe Little Tensas below Blind Tensas Cut Lower Atchafalaya River at Morgan City Wax Lake Outlet at Calumet For additional information about Geological Survey activities within this region, contact the following offices: District Chief, WRD U.S. Geological Survey Federal Office Building Room 2301 700 West Capitol Avenue Little Rock, AR 72201 District Chief, WRD U.S. Geological Survey 100 W. Capitol St., Suite 710 Jackson, MS 39201 District Chief, WRD U.S. Geological Survey P.O. Box 66492 6554 Florida Boulevard Baton Rouge, LA 70896 District Chief, WRD U.S. Geological Survey Federal Building and U.S. Courthouse Room A-413 Nashville, TN 37203 #### SOURIS-RED-RAINY REGION ## CORPS OF ENGINEERS #### North Central Division St. Paul District Sediment loads were measured by the US Geological Survey at seven river stations (Wild Rice, two at Sheyenne, two at Pembina, Souris and Little South Pembina Rivers) under the St. Paul District sponsorship. ## SOURIS-RED-RAINY REGION ## GEOLOGICAL SURVEY ## Souris Subregion - 1. Suspended-sediment data are being collected on a daily basis at Souris River near Sherwood, N. Dak., as part of the Waterways Treaty program with the U.S. Department of State. - 2. Suspended-sediment data are being collected on a monthly basis at Souris River near Foxholm, N. Dak., in connection with a pre-impoundment quality water study in cooperation with the U.S. Corps of Engineers. - 3. Suspended-sediment data are being collected on a monthly basis at Souris River near Westhope, N. Dak., as part of the National Stream Quality Accounting Network (NASQAN). - 4. Suspended-sediment data are being collected on a monthly basis at Souris River near Verendrye, N. Dak., and at Wintering River near Karlsruhe, N. Dak., as part of the Missouri River Basin program. - 5. Suspended-sediment data are being collected on a monthly basis at West Branch Short Creek near Columbus, N. Dak., as part of the Coal Hydrology Program. ## Red Subregion - 1. Suspended-sediment data are being collected on a daily basis at Sheyenne River at Lisbon, N. Dak., (discontinued Sept. 30, 1979), and at Sheyenne River at Kindred, N. Dak., in connection with a pre-impoundment study in cooperation with the U.S. Corps of Engineers. - 2. Suspended-sediment data are being collected on a monthly basis at Wild Rice River near Abercrombie, N. Dak., and at Red River of the North at Hickson, N. Dak., as part of the Missouri River Basin program. - 3. Suspended-sediment data are being collected on a monthly basis at Beaver Creek near Finley, N. Dak., as a part of the National Hydrologic Benchmark Network. - 4. Suspended-sediment data are being collected on a monthly basis at Red River of the North at Halstad, Minn., and at Red River of the North at Emerson, Manitoba, Canada, and at the Redlake River at Crookston, Minn., as a part of NASQAN. - 5. Suspended-sediment data are being collected at Pembina River near Vang, N. Dak., (discontinued Sept. 30, 1979), at Little South Pembina River near Walhalla, N. Dak., (discontinued Sept. 30, 1979), and at Pembina River near Walhalla, N. Dak., in cooperation with the U.S. Corps of Engineers. - 6. Suspended-sediment data are being collected on an intermittent basis at Buffalo River near Dilworth, Minn., in cooperation with the Minnesota Department of Natural Resources, Division of Waters. - 7. Suspended-sediment data are being collected on a daily basis at Wild Rice River at Twin Valley, Minn., in cooperation with the U.S. Corps of Engineers. - 8. Suspended-sediment measurements were made during floods at the following sites: Wild Rice River above Ada, Minn. So. Br. Wild Rice River near Felton, Minn. So. Br. Wild Rice near Borup, Minn. Wild Rice River near Perley, Minn. Wild Rice River above So. Br. near Borup, Minn. State Ditch 45 near Felton, Minn. Wild Rice River at Hendrum, Minn. Marsh River near Shelly, Minn. Marsh River Ditch near Ada, Minn. Sandhill River near Climax, Minn. Red Lake River at Highlanding near Goodridge, Minn. Thief River near Thief River Falls, Minn. Ruffy Brook near Gonvick, Minn. Clearwater River at Plummer, Minn. Lost River at Oklee, Minn. Clearwater River at Red Lake Falls, Minn. Snake River at Warren, Minn. Snake River at Alvarado, Minn. Middle River at Argyle, Minn. So. Br. Two Rivers at Lake Bronson, Minn. Two Rivers at Hallock, Minn. Roseau River below S. Fork near Malung, Minn. Roseau River below Roseau, Minn. Sprague Creek near Sprague, Manitoba Roseau River at Ross, Minn. #### Rainy Subregion 1.
Suspended-sediment data were collected on a monthly basis at Little Fork River at Littlefork, Minn., at Roseau River below State Ditch 51 near Caribou, Minn, at Red Lake River near Crookston, Minn., and at Rainy River at Manitou Rapids, Minn., as a part of NASQAN. #### Special Studies Suspended-sediment data were collected during periods of high flow at four sites in the Park River basin, N. Dak., in cooperation with the U.S. Soil Conservation Service. 9. Suspended-sediment measurements were made during floods at the following sites: Sturgeon River near Chisholm Minn. Rapid River near Baudette, Minn. For additional information about Geological survey activities within this region, contact the following offices: District Chief, WRD U.S. Geological Survey Post Office Building, Room 702 St. Paul, MN 55101 District Chief, WRD U.S. Geological Survey 821 East Interstate Avenue Bismarck, ND 58501 # SOIL CONSERVATION SERVICE ## 1. Special Study Suspended sediment samples are being collected under contract by the USGS on the North Branch of the Park River watershed in Cavalier, Pembina, and Walsh Counties, North Dakota. #### MISSOURI BASIN REGION ## CORPS OF ENGINEERS #### Missouri River Division Kansas City District <u>Suspended Sediment Measurements</u>. The Kansas City District operated 22 suspended sampling stations during this calendar year. - 1. There are three long term stations on the Missouri River, St. Joseph, Kansas City, and Herman, Missouri. At these stations DI's are collected each week and a full set of points each month. Bed material samples are collected each time a suspended sample is taken. - 2. On the main stem of the Kansas River, seven stations are presently operated. Three are quasi long term stations, i.e., different agencies have collected with one or two year gaps between period of continuous sampling and/or a station has been moved due to loss in channel control. The three stations are Wamego, Lecompton, and DeSoto, Kansas. The four other stations are short term and will be discontinued at the end of the Bank Stabilization Study or just prior to its completion. One tributary at Eudora, Kansas, is included in these temporary special data collection stations. - 3. The remaining stations are for more routine data collections, such as reservior inflows/outflow trap efficiency, gross density, storage allocation for sediment, etc. - 4. One station at Warsaw, Missouri, is being utilized for a downstream erosion study in relation to hydropower releases as well as sediment record. A turbidity suspended sediment relationship is being attempted both with DI's and surface samples. Additional samples, both surface and DI's, have been used for water chemistry to determine salts that can be used to compute the SAR of the eroding fluid. Lake Sedimentation Investigations. The initial resurvey reports for Tuttle Creek, Pomona, and Pomme de Terre Lakes are still pending and will be finalized when other special studies with higher priority are completed. Perry Lake sedimentation and degradation ranges have been resurveyed and are being compiled and plotted. An inflow measurement station is being continued until insitu lake data can be performed (cores, density, etc.). Preliminary advance range monument location was initiated by the Survey Section at Milford and Rathburn Lakes. Survey are being conducted presently at Rathburn Lake. Some surveying work at the following lakes is still pending; however, most of these ranges are in the flood pools and are awaiting easement negotiation. Smithville Lake ## Special Studies. #### 1. Kansas River - (a) The bank stabilization study is continuing. Little data were collected this past year because of other studies. However, data collected included cross section surveys and bed materials at key ranges for input into HEC 6 in order to reconsititute observed phenomena. Results to date are not conclusive. A contract was let to HEC to modify HEC 6 for mechanical removal of bed materials (dredging). It is understood that this mod is nearing completion and will be received in the near future. - (b) The navigation study for the lower Kansas is continuing between the mouth and Turner. Bed materials and water samples were taken for elutriate testing and delivered to the EPA and Division laboratories. The labortories have completed their testing, but the final results are unknown at present. #### 2. Sac River - (a) In August, monitoring downstream for a complete hydropower release cycle was conducted again. Data were collected at 30± minute intervals continuously from the initial rise in stage through the crest until a noticeable decrease in stage occurred on the back side of the hydrograph. The primary location of these data collections was performed at Highway J where DI's, points, and velocities were taken. Other data were collected below the outlet works, above and below the cutoff, and downstream at Caplinger Mills (nr) (a rated station). Sediment concentration and turbidity analysis correlations will be made at all these downstream stations. - (b) Attempts were made to determine withdrawal velocities in Stockton Lake immediately above the weir during power generation. Circular current patterns observed coupled with the low velocities measured throughout the vertical raised more questions about the methodology, equipment used, and hydrodynamics than the intended purpose of the data collected. Neither a 100# P-61 weight nor the Price current meter would align themselves in a particular direction to indicate streamlining, rather these pieces of equipment rotated randomly very slowly clockwise and then counter. No recognizable period of oscillation was deteted. - 3. Osage River. (Downstream HST DAM). A considerable amount of data was collected for a distance of 40 to 45 miles downstream of the dam. These data were collected for a contractor to be used in his evaluation of potential bed and bank erosion, turbidity attenuation or dampening due to power releases. Early in the year, velocity distributions were made, both longitudinal and laterally, water surface elevations measured for development of water surface profiles, suspended sediment samples were collected both insitu longitudinally and an increased sampling was made at the Warsaw gage. Water samples were collected for testing soil samples and chemistry ion analyzed. Bed and bank materials were sampled, bed fluff measurements were made, longitudinal bed profiles were sounded along with attempts to measure insitu densities and take multidepth soundings. New cross sections were laid out and surveyed. Surveys were made of the existing Union Electric ranges both along the main stem and in the tributaries. A contractor's study of the sedimentation and erosion potential should be forthcoming in April 1980. 4. Missouri River. A month of effort and manpower was extended in sediment and velocity data collection in an attempt to aid Operations Division with the testing and evaluation of the "Elsie M." The "Elsie I" is a modified LCM with hydraulic deflector plates added to deflect the twin screw prop wash in a downward direction to the bed and scour bed materials. A considerable amount of testing was conducted in an off channel area in an attempt to determine the most effective method of operation. Data collected consisted of suspended sediments, bed materials, and velocity distribution prior to the testing, and suspended sediments and velocity during the tests. An evaluation report is being prepared by the Operations Division at this time. #### Omaha District Sediment Load Measurements. The measurement and computation of suspended sediment load records were continued at eight stations. Of these, two are Missouri River mainstem stations, four are major tributary stations and two are minor tributary stations. The U.S. Geological Survey operates the four major and two minor tributary stations under a cooperative stream gaging program which includes computation and publication of sediment load records. In addition, with the Corps' assistance, they collect suspended and bed sediment samples, including flow velocities in the Missouri River at Nebraska City, Nebraska; Omaha, Nebraska; Sioux City, Iowa and Ponca, Nebraska and two new stations at Maskell, Nebraska and Gayville, South Dakota. The data include five to seven point integrated samples per stream vertical at a minimum of five vertical locations in the channel cross-section; as well as one bed sample of each vertical using a BM-54 sampler. The sampling data, including the velocity measurements, are obtained from a boat at each station at about six week intervals during the open water season. It is intended that this data will be used to document the bed material load being transported by the Missouri River. The Corps operates PS-69 automatic samplers at the two minor tributary stations in the Omaha Metropolitan area. Suspended sediment load records for stations operated under the cooperative program are published annually in the USGS Water Data reports. Reservoir Sedimentation Activities. - 1. Garrison Project. The resurvey of the Garrison aggradation reach started in 1978 was completed. - 2. Gavins Point Project. A complete sedimentation resurvey was made of the degradation reach below Gavins Point Dam. Observations included profiling of all degradation ranges and bed surface sampling to determine degradation and/or armoring trends and bank erosion in the reach. This resurvey, originally scheduled for 1981, was moved ahead to 1979 in order to provide field survey data for use in a dye study to determine the mixing characteristics of Lewis and Clark Lake. - 3. Big Bend Project. A complete sedimentation resurvey was made of the aggradation reach above Big Bend Dam. Observations included profiling all aggradation ranges and collection of bed material and suspended sediment samples in the headwater reach. The reservoir resurvey data will be used to update water volume and sediment
accumulation values. - 4. Oahe Project. A complete sedimentation resurvey was made of the degradation reach below Oahe Dam. # Other Investigations. - 1. Missouri River bed surface samples were gathered in conjunction with Kansas City personnel along the 750 miles of river from Ponca, Nebraska to St. Louis, Missouri. The channel bed was sampled every 5 miles at 5 to 7 lateral positions. A size gradation determination for each sample is being performed at the Missouri River Division Laboratory. - 2. Two new sediment sampling stations were established in the "Wild and Scenic River" reach of the Missouri River between Gavins Point Dam and Ponca, Nebraska as part of the 1979 F.Y. Cooperative Stream Gaging Program with the USGS. The new sites are located near Gayville and Maskell, Nebraska. An additional site was also re-established at Sioux City, Iowa. The sampling effort at the new sites will require conjunctive point and velocity measurements, bed samples, and discharge measurements from a boat at about four to six week intervals during the open water season. - 3. The first phase of the Missouri River Degradation Study, begun in 1978, was completed and is being finalized into draft report form. As part of the study objective to assess the ultimate level of degradation in the river reach extending from Gavins Point Dam to the Platte River confluence, major study items included transient impacts of river channel bend cutoffs, channel stabilization works, changed flow regime and degradation impacts of the dam construction. Concurrent investigations of stage-discharged rating curve trends, spatial and temporal changes in water surface slopes, and changes in channel flow roughness were also made. Continued efforts will be made during the coming year to assess the time rate of degradation and evaluate the feasibility of alternative solutions to adverse impacts. - 4. A study was conducted in conjunction with a proposed Section 22 action to determine the feasibility of dredging Wall Lake, in South Dakota, to improve lake water quality conditions. - 5. A contract was initiated with Dr. Khalid Mahmood at Rockville, Maryland to interpret and analyze digital data obtained in a test of a multi-channel bed profiler. In general, the work will consist of a reassessment of sediment movement in the Missouri River and a comparison against theoretical transport functions. - 6. A report was published entitled "Sediment Transport Relationships." It presents a new sediment transport program for computing the total sand load based on data collected from a comprehensive Missouri River sediment and flow data collection program. - 7. A dye study was conducted, under contract by the Sutron Corporation, of the Missouri River Reach from Fort Randall Dam to Sioux City, Iowa. Work Items included coordinating the data collection, injecting the dye, collecting samples and supporting hydrologic data, analyzing dye samples and preparing a report of the findings. Data gathered will be used to: - (a) Modify the two-dimensional mathematical model for mixing processes in the Missouri River (previously developed by Sutron, Inc.) to apply to the waters below Gavins Point Dam. Emphasis will be given to modeling flows around islands. - (b) Modify the dimension requirements of the two-dimensional mixing model to apply to conditions in Lewis and Clark Lake. This will require increasing the grid size in the lateral direction from 10 to 100 grid points, permitting the use of streamlines as grid lines, and including algorithms to model the transport and deposition of the finer grain size sediments. - 8. Several reports and letters were written concerning shoreline erosion along mainstem project boundaries. Problems addressed included: - (a) Design of protective measures for preservation of an archaeological site along the shore of Lake Oahe. - (b) Design of protective revetment for a private development in danger of encroachment by Lake Oahe. ## MISSOURI REGION ## GEOLOGICAL SURVEY ## Saskatchewan Subregion 1. Suspended-sediment data are being collected on a monthly basis at St. Mary's River at Montana, U.S.A.--Alberta, Canada border, as a part of the National Stream Quality Accounting Network (NASQAN). # Missouri-Marias Subregion - 1. Suspended-sediment data are being collected on a daily basis at two sites on Muddy Creek near Vaughn, Mont., to monitor irrigation practices. - 2. Suspended-sediment data are being collected on a monthly basis at Missouri River at Toston, Mont., and at Marias River near Chester, Mont., as a part of NASQAN. ## Missouri - Musselshell Subregion - 1. Suspended-sediment data are being collected on a daily basin at Missouri River near Landusky, Mont., in cooperation with the U.S. Corps of Engineers. - 2. Suspended-sediment data are being collected on a monthly basis at the following as a part of NASQAN: Missouri River at Virgelle, Mont. Musselshell River at Mosby, Mont. Missouri River below Fort Peck Dam, Mont. 3. Suspended-sediment data are being collected on a monthly basis at the following sites in cooperation with the Bureau of Land Management: Rehder Coulee near Klein, Mont. Half Breed Creek near Klein, Mont. Musselshell River near Roundup, Mont. East Parrot Creek near Roundup, Mont. West Parrot Creek near Roundup, Mont. Fattig Creek near Delphia, Mont. 4. Suspended-sediment data are being collected periodically at Crow Rock Creek near Cohagen, Mont., as part of Coal Hydrology program. #### Milk Subregion I. Suspended-sediment data are being collected on a monthly basis at Milk River at Nashua, Mont., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a quarterly basis at Little Peoples Creek near Hays, Mont., and Boxelder Creek near Rocky Boy, Mort., as part of the Federal CBR program. - 3. Suspended-sediment data are being collected on a monthly basis at Fock Creek below Horse Creek at the international boundary, as a part of the National Hydrologic Benchmark Network. ## Missouri - Poplar Subregion - I. Suspended-sediment data are being collected on a monthly basis at Fedwater River at Circle, Mont., and at Redwater Creek near Vida, Mont., as a part of the Federal CBR program. - 2. Suspended-sediment data are being collected on a monthly basis at East Poplar River at international boundary in cooperation with the Department of State (International Joint Commission). - 3. Suspended-sediment data are being collected on a monthly basis at the following sites to define water quality characteristics of the Poplar River Basin in cooperation with the Environmental Protection Agency: Poplar River at international boundary East Fork Poplar River near Scobey, Mont. Poplar River above West Fork near Bredette, Mont. West Fork Poplar River near Bredette, Mont. Poplar River near Poplar, Mont. - 4. Suspended-sediment data are being collected on a monthly basis at Missouri River near Culbertson, Mont., as a part of NASQAN. - 5. Suspended-sediment data are being collected on a monthly basis at fig Muddy Creek near Antelope, Mont., as part of the Federal CBR program. #### Upper Yellowstone Subregion - 1. Suspended-sediment data are being collected on a daily basis at Yellow-stone River at Billings, Mont., as a part of the Federal CBR program. - 2. Suspended-sediment data are being collected on a monthly basis at Yellow-stone River at Huntley, Mont., in cooperation with the Environmental Protection Agency. - 3. Suspended-sediment data are being collected on a monthly and storm-event basis from March to October at Big Sand Coulee at Montana-Wyoming State Line, in cooperation with the U.S. Bureau of Land Management. - 4. Suspended-sediment data are being collected on a monthly basis at Yellowstone River near Livingston, Mont., as part of NASQAN. ## Big Horn Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Bighorn River at Bighorn, Mont., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a monthly and storm-event basis at East Fork Wind River near Dubois, Wyo, in cooperation with the U.S. Bureau of Indian Affairs. - 3. Suspended-sediment data are being collected on a monthly and storm-event basis at Wind River near Crowheart, Wyo., at Nowood River near Tensleep, Wyo., and at Shoshone River near Lovell, Wyo., in cooperation with the Wyoming State Engineer. - 4. Suspended-sediment data are being collected on a daily basis at the following sites, in cooperation with the U.S. Bureau of Land Management: Dry Creek near Bonneville, Wyo. East Fork Nowater Creek near Calter, Wyo. Fifteenmile Creek near Worland, Wyo. - 5. Suspended-sediment data are being collected on a quarterly basis at Bighorn River at Kane, Wyo., as a part of the Missouri River Basin Program. - 6. Suspended-sediment data are being collected on a weekly basis during irrigation season at Wyoming Canal near Lenore, Wyo., and at Wyoming Canal below Pilot Wasteway near Morton, Wyo., in cooperation with the U.S. Bureau of Reclamation, Upper Missouri Region. - 7. Suspended-sediment data are being collected on a quarterly basis at Middle Fork Fifteenmile Creek near Worland, Wyo., in cooperation with the Bureau of Land Management. - 8. Suspended-sediment data are being collected on a monthly and storm-event basis at Fivemile Creek near Shoshoni, Wyo., as a part of the Missouri River Basin program. #### Powder-Tongue Subregion - 1. Suspended-sediment data are being collected on a daily basis at Tongue River at Brandenberg Bridge, Mont., at Tongue River at Miles City, Mont., and at Powder River at Locate, Mont. - 2. Suspended-sediment data are being collected on a daily basis during spring runoff and summer periods at Powder River at Moorhead, Mont., and at Powder River at Broadus, Mont. - 3. Suspended-sediment data are being collected on a monthly basis at Tongue River at Birney Day School Bridge near Birney, Mont., in cooperation with the Environmental Protection Agency. 4. Suspended-sediment data are being collected on
a monthly storm-event basis at the following sites in cooperation with the Wyoming State Engineer: Goose Creek below Sheridan, Wyo. Little Powder River above Dry Creek, near Weston, Wyo. - 5. Suspended-sediment data are being collected on a daily basis at Powder River at Arvada, Wyo., in cooperation with the U.S. Bureau of Land Management. - 6. Suspended-sediment data are being collected on monthly storm-event basis at Clear Creek near Arvada, Wyo., in cooperation with the U.S. Bureau of Land Management. - 7. Suspended-sediment data are being collected on a monthly storm-event basis at the following sites in connection with the Federal CBR program: Salt Creek near Sussex, Wyo. Powder River near Sussex, Wyo. Crazy Woman Creek at upper station, near Arvada, Wyo. Clear Creek below Rock Creek, near Buffalo, Wyo. Clear Creek at Ucross, Wyo. Little Powder River below Corrall Creek, near Weston, Wyo. Little Powder River near Weston, Wyo. 8. Suspended-sediment data are being collected on a monthly basis in cooperation with the Bureau of Land Management: Spring Creek near Decker, Mont. Squirrel Creek near Decker, Mont. Tongue River at Tongue River Dam, near Decker, Mont. Prairie Dog Creek near Birney, Mont. Hanging Woman Creek at state line, near Otter, Mont. Waddle Creek near Otter, Mont. Trail Creek near Otter, Mont. East Trail Creek Otter, Mont. Corral Creek near Otter, Mont. Horse Creek near Birney, Mont. Hanging Woman below Horse Creek, near Birney, Mont. Hanging Woman Creek near Birney, Mont. Otter Creek near Otter, Mont. Otter Creek below Fifteen Mile Creek, near Otter, Mont. Home Creek near Ashland, Mont. Otter Creek at Ashland, Mont. Pumpkin Creek near Miles City, Mont. Mizpah Creek ner Mizpah, Mont. Locate Creek near Ismay, Mont. 9. Suspended-sediment data are being collected daily, March through September, at Powder River at Moorhead, Mont., and Powder River at Broadus, Mont., as part of the Federal CBR program. # Lower Yellowstone Subregion - 1. Suspended-sediment data are being collected on a daily basis at Yellow-stone River near Sidney, Mont., in cooperation with the U.S. Corps of Engineers. - 2. Suspended-sediment data are being collected on a daily basis at Yellow-stone River at Forsyth, Mont. - 3. Suspended-sediment data are being collected on a monthly basis at the following sites in cooperation with the U.S. Bureau of Land Management: Sarpy Creek near Hysham, Mont. East Fork Armelles Creek near Colstrip, Mont. Armelles Creek near Forsyth, Mont. Rosebud Creek at reservation boundary near Kirby, Mont. Rosebud Creek near Colstrip, Mont. Cow Creek near Colstrip, Mont. Snyder Creek near Brandenburg, Mont. Rosebud Creek at mouth, near Rosebud, Mont. Cherry Creek near Terry, Mont. Glendive Creek near Glendive, Mont. Cottonwood Creek near Intake, Mont. Beaver Creek near Wibaux, Mont. - 4. Suspended-sediment data are being collected on a monthly basis at Yellowstone River near Miles City, Mont., and Yellowstone River near Terry, Mont., in cooperation with the Environmental Protection Agency. - 5. Suspended-sediment data are being collected on a periodic basis for coal hydrology investigations at the following sites: Muster Creek near Kinsey, Mont. Custer Creek near Kinsey, Mont. O'Fallon Creek near Ismay, Mont. Clear Creek near Hoyt, Mont. Upper Sevenmile Creek near Lindsay, Mont. Deer Creek near Glendive, Mont. #### Missouri-Little Missouri Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Missouri River near Williston, N. Dak., in cooperation with the Environmental Protection Agency. - 2. Suspended-sediment data are being collected on a monthly basis at Bear Den Creek near Mandaree, N. Dak., as part of the National Hydrologic Benchmark Network. - 3. Suspended-sediment data are being collected on a monthly basis at Little Missouri River near Watford City, N. Dak., as part of NASQAN. 4. Suspended-sediment data are being collected on a monthly basis at the following sites as part of the Coal Hydrology program: Stony Creek near Williston, N. Dak. Beaver Creek near Ray, N. Dak. Deep Creek near Amidon, N. Dak. Beaver Creek near Trottlers, N. Dak. ## Cheyenne Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Belle Fourche River near Elm Springs, S. Dak., and at Cheyenne River at Cherry Creek, S. Dak, as a part of NASQAN. - 2. Suspended-sediment data are being collected on a monthly basis at Castle Creek above Deerfield Dam, near Hill City, S. Dak., as a part of the National Hydrologic Benchmark Network. - 3. Suspended-sediment data are being collected on a monthly and storm-event basis at Red Water Creek at Wyoming South Dakota State line in cooperation with the Wyoming State Engineer. - 4. Suspended-sediment data are being collected on a monthly and storm-event basis at Cheyenne River near Dull Center, Wyo., as a part of the Federal energy program. - 5. Suspended-sediment data are being collected on a monthly and storm-event basis at Dry Fork Cheyenne River near Bill, Wyo., at Belle Fourche River below Moorcraft, Wyo., and at Lance Creek near Riverview (formerly known as near Spencer, Wyo.), Wyo., in cooperation with the U.S. Bureau of Land Management. - 6. Suspended-sediment data are being collected on a daily basis at Belle Fourche River below Rattlesnake Creek, near Piney, Wyo., and at Belle Fourche River above Dry Creek, near Piney, Wyo., in cooperation with the U.S. Bureau of Land Management. - 7. Suspended-sediment data are being collected on a monthly storm-event basis at the following sites as part of the Federal energy program: Antelope Creek near Teckla, Wyo. Lodgepole Creek near Hampshire, Wyo. Little Thunder Creek near Hampshire, Wyo. Caballo Creek at mouth, near Piney, Wyo. Raven Creek near Moorcraft, Wyo. Donkey Creek near Moorcraft, Wyo. #### Missouri-Oahe Subregion 1. Suspended-sediment data are being collected on a monthly basis at Spring Creek near Zap, N. Dak., in cooperation with the U.S. Environmental Protection Agency. - 2. Suspended-sediment data are being collected on a monthly basis at Knife River at Hazen, N. Dak., at Grand River at Little Eagle, S. Dak., at Moreau River near Whitehorse, S. Dak., at Heart River near Mandan, N. Dak., and at Cannonball River at Breien, N. Dak., as a part of NASQAN. - 3. Suspended-sediment data are being collected at Missouri River at Bismarck, N. Dak., in cooperation with the U.S. Corps of Engineers. - 4. Suspended-sediment data are being collected on a monthly basis at Apple Creek near Mehoken, N. Dak., as part of the Missouri River Basin program. - 5. Suspended-sediment data are being collected on a monthly basis during periods of flow at the following sites as part of the Coal Hydrology program: Knife River at Manning, N. Dak. Stray Creek near Manning, N. Dak. Knife River at Marshall, N. Dak. Elm Creek near Golden Valley, N. Dak. Coyote Creek near Zap, N. Dak. Brush Creek near Beulah, N. Dak. Spring Creek below Lake Ilo at Dunn Center, N. Dak. Spring Creek near Halliday, N. Dak. Antelope Creek above Hazen, N. Dak. Antelope Creek Tributary near Hazen, N. Dak. Coal Creek near Stanton, N. Dak. Alderin Creek near Fort Clark, N. Dak. Missouri River Tributary 2 near Hensler, N. Dak. Coal Lake Cl near Hensler, N. Dak. Buffalo Creek near Washburn, N. Dak. Square Butte Creek near Hannover, N. Dak. Square Butte Creek above Nelson Lake near Center, N. Dak. Hagel Creek near Center, N. Dak. Norwegian Creek near Belfield, N. Dak. S Branch Heart River near South Heart, N. Dak. North Creek near South Heart, N. Dak. Heart River near South Heart, N. Dak. Green River near New Hradec, N. Dak. Cannonball River at New England, N. Dak. Coal Bank Creek near Havelock, N. Dak. Cannonball River at Regent, N. Dak. Timber Creek near Bentley, N. Dak. Buffalo Creek Tributary near Gascoyne, N. Dak. ## Missouri- White Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Missouri River at Pierre, S. Dak., and at Missouri River below Ft. Randall Dam, S. Dak., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a daily basis at Bad River near Ft. Pierre, S. Dak., in cooperation with the U.S. Corps of Engineers. ## Niobrara Subregion 1. Suspended-sediment data are being collected on a daily basis at Niobrara River near Verdel, Nebr., in cooperation with the U.S. Corps of Engineers, and as part of NASQAN. ## James Subregion - 1. Suspended-sediment data are being collected on a monthly basis at James River near Scotland, S. Dak., and at James River near Columbia, S. Dak. as a part of NASQAN. - 2. Suspended-sediment data are being collected on a monthly basis at James River at LaMoure, N. Dak., and at James River near Columbia, S. Dak. ## Missouri - Big Sioux Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Big Sioux River at Akron, Iowa, as a part of NASQAN. - 2. Suspended-sediment data are being collected on a monthly basis at Big Sioux River near Dell Rapids, S. Dak. - 3. Suspended-sediment data are being collected six times a year on the Missouri River near Gayville, S. Dak., Missouri River near Maskall, Nebr., and Missouri River near Ponca, Nebr., in cooperation with the U.S. Corps of Engineers. ## North Platte Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Buffalo Creek near Hebron, Colo., at Grizzly Creek near Spicer, Colo. at Grizzly Creek near Hebron, Colo., at Little Grizzly Creek above Coalmont, Colo., and Little Grizzly Creek above Hebron, Colo. in cooperation with Jackson County, Colo. - 2. Suspended-sediment data are being collected on a daily basis at Canadian River near Lindland, Colo., and at Canadian River near Brownlee, Colo., as a part of the Federal CBR program. - 3. Suspended-sediment data are being collected on a monthly basis at North Platte River near Lisco, Nebr., as part of NASQAN. - 4. Suspended-sediment data are being collected on a monthly basis at Encampment River above Hog Park Creek,
near Encampment, Wyo, as a part of the National Hydrologic Benchmark Network. 5. Suspended-sediment data are being collected on a monthly and storm-event basis at the following stations in cooperation with the Wyoming State Engineer: Little Medicine Bow River near Medicine Bow, Wyo. Medicine Bow River above Seminoe Reservoir, near Hanna, Wyo. Sweetwater River near Alcova, Wyo. North Platte River at Casper, Wyo. North Platte River at Orin, Wyo. Laramie River near Fort Laramie, Wyo. North Platte River at Wyoming - Nebraska State line 6. Suspended-sediment data are being collected on a monthly and storm-event basis at the following stations in cooperation with the U.S. Bureau of Land Management: Sage Creek near Saratoga, Wyo. Big Ditch near Coyote Springs, Wyo. North Ditch near Coyote Springs, Wyo. Hannah Draw near Hanna, Wyo. - 7. Suspended-sediment data are being collected on a monthly basis at Sand Creek near Glenrock, Wyo., for the Federal CBR program. - 8. Suspended-sediment data are being collected on a daily basis from April through September at North Platte River at Orin, Wyo., (in addition to monthly and storm-event sampling), at North Platte River below Guernsey Reservoir, Wyo., and at North Platte River below Whalen Diversion Dam, Wyo., in cooperation with the Wyoming State Engineer. ## South Platte Subregion - 1. Suspended-sediment data are being collected on a daily basis during the irrigation season April thru October at South Platte River near Weldona, Colo., starting April 1977, and bi-monthly at 15 sites on irrigation canals in the Weldona, Colo., area. This activity was in cooperation with the U.S. Bureau of Reclamation, Lower Missouri River Basin Region (discontinued September 30, 1979). - 2. Suspended-sediment data are being collected on a monthly basis at South Platte River at Julesburg, Colo., as a part of NASQAN. - 3. Suspended-sediment data are being collected on a monthly basis at Tarryall Creek near Jefferson, Colo., as part of the Federal CBR program. - 4. Suspended-sediment data are being collected on a monthly basis at the following sites in cooperation with the Lefthand St. Vrain Water Conservation District. - St. Vrain Creek at Lyons, Colo. Lefthand Creek at mouth, at Longmont, Colo. St. Vrain Creek below Longmont, Colo. ## Platte Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Platte River near Duncan, Nebr., as part of NASQAN. - 2. Suspended-sediment data are being collected on a miscellaneous basis at Mill Creek at Louisville, Nebr., and Cedar Creek near Louisville, Nebr., and at Four-mile Creek near Plattsmouth, Neb., in cooperation with the Nebraska Department of Water Resources. - 3. Suspended-sediment data are being collected on a daily basis at Platte River at Louisville, Nebr., in cooperation with the U.S. Corps of Engineers, Omaha District, and as part of NASQAN. - 4. Suspended-sediment data are being collected on a monthly basis at Salt Creek at Greenwood, Nebr., and on an intermittent basis at Rock Creek near Ceresco, Nebr., in cooperation with the Nebraska Natural Resources Commission. - 5. Suspended-sediment data are being collected on a miscellaneous basis at Platte River at North Bend, Nebr., in cooperation with the Nebraska Natural Resources Commission. ## Loup Subregion 1. Suspended-sediment data are being collected on a monthly basis at Loup River near Genoa, Nebr., as part of NASQAN. # Elkhorn Subregion 1. Suspended-sediment data were collected through September 30, 1979, on an intermittent basis during periods of high flow at Elkhorn River near Norfolk, Nebr., on a miscellaneous basis at Elkhorn River at Waterloo, Nebr., and Logan Creek at Pender, Nebr., in cooperation with the Nebraska Natural Resources Commission. #### Missouri - Little Sioux Subregion 1. Suspended-sediment data which includes bed-material, suspended-sediment samples, and velocities at several points in a vertical, are being collected at the following stations in cooperation with the Corps of Engineers, Omaha District: Missouri River near Ponca, Nebr. (replaces site near Sioux City, Iowa) Missouri River at Omaha, Nebr. Missouri River at Nebraska City, Nebr. 2. Suspended-sediment data are being collected at Missouri River at Sioux City, Iowa, and Missouri River at Omaha, Nebr., as a part of NASQAN. ## Missouri - Nishnabotna - Subregion - 1. Suspended-sediment data are being collected on a periodic basis at Walnut Creek near Fairview, Kans., Walnut Creek near Hamlin, Kans., Walnut Creek at Reserve, Kans., Wolf River at Hiawatha, Kans., Buttermilk Creek near Willis, Kans., Wolf River at Leona, Kans., Wolf River near Sparks, Kans., and at Wolf River southwest of Hiawatha, Kans., in cooperation with the U.S. Soil Conservation Service. - 2. Suspended-sediment data are being collected on a daily basis at Nodaway River at Clarinda, Iowa, in cooperation with the Iowa Geological Survey. - 3. Suspended-sediment data are being collected on a monthly basis at Platte River at Sharps Station, Mo., and Missouri River at St. Joseph, Mo., as a part of NASQAN. - 4. Suspended-sediment data are being collected on a miscellaneous basis at Weeping Water Creek at Weeping Water, Nebr., South Branch Weeping Water Creek near Union, Nebr., and Weeping Water Creek near Union, Nebr., in cooperation with the Nebraska Natural Resources Commission. ## Republican Subregion - 1. Suspended-sediment data are being collected on a near-monthly basis at Beaver Creek at Cedar Bluffs, Kans., South Fork Sappa Creek near Brewster, Prairie Dog Creek above Norton Reservoir, Kans., and White Rock Creek near Burr Oak, Kans., in cooperation with the Kansas Water Resources Board. - 2. Suspended-sediment data are being collected on a flow rate basis at Frenchman Creek near Palisade, Neb., in cooperation with the U.S. Bureau of Reclamation. #### Smoky Hill Subregion 1. Suspended-sediment data are being collected on a near-monthly basis at Smoky Hill River near Enterprise, Kans., Saline River near Tescott, Kans., Solomon River at Niles, Kans., North Fork Smoky Hill River near McAllaster, Kans., Ladder Creek below Chalk Creek near Scott City, Kans., Big Creek near Hays, Kans., North Fork Big Creek near Victoria, Kans., Saline River near Russell, Kans., North Fork Solomon River at Glade, Kans., Deer Creek near Phillipsburg, Kans., South Fork Solomon River above Webster Reservoir, Kans., and Kill Creek near Bloomington, Kans., in cooperation with the Kansas Water Resources Board. # Kansas Subregion 1. Suspended-sediment data are being collected on a near monthly basis at Kansas River at Wamego, Kans., Little Blue River near Barnes, Kans., and Stranger Creek near Tonganoxie, Kans., in cooperation with the Kansas Water Resources Board. - 2. Suspended-sediment data are being collected on a periodic basis at Kansas River at Lecompton, Kans., and Kansas River at DeSoto, Kans., in cooperation with the U.S. Corps of Engineers. - 3. Suspended-sediment data are being collected on a periodic basis at Sixmile Creek trib. 5 mi. NE of Auburn, Kans., Sixmile Creek trib. 4 mi. NE of Auburn, Kans., Wakarusa River 5 mi West of Auburn, Kans., and Wakarusa River 4 mi west of Auburn, Kans., in cooperation with the U.S. Soil Conservation Service. - 4. Suspended-sediment data are being collected on a miscellaneous basis at Big Blue River at Beatrice, Nebr., and at Little Blue River at Hollenberg, Kans., in cooperation with the Nebraska Natural Resources Commission. # Chariton-Grand Subregion - 1. Suspended-sediment data are being collected on an intermittent basis at Elk Creek near Decatur City, Iowa, as part of the National Hydrologic Benchmark Network. - 2. Suspended-sediment data are being collected on a monthly basis at Grand River near Summer, Mo., and at Chariton River at Praire Hill, Mo., as a part of NASQAN. ## Gasconade-Osage Subregion - 1. Suspended-sediment data are being collected on a near-monthly basis at Dragoon Creek near Burlingame, Kans., and Pottawatomie Creek near Garnett, Kans., in cooperation with the Kansas Water Resources Board. - 2. Suspended-sediment data are being collected on a monthly basis at Osage River near Schell City, Mo., Osage River below St. Thomas, Mo., and at Gasconade River at Jerome, Mo., as a part of NASQAN. # Lower Missouri Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Missouri River at Hermann, Mo., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a monthly basis at Lamino River near Blackwater, Mo., as part of NASQAN. #### Special Studies A study by the Kansas district is in progress to find relations between channel bed and bank material, gradient, discharge, and channel geometry for streams throughout the Missouri River basin has been completed and the final report is in review. Through a program in cooperation with the U.S. Bureau of Land Management to help define baseline conditions in the potential coal mining Bull Mountain region of Montana, six monthly suspended-sediment stations were established in October. In addition, sediment sampling was continued at Timber Creek near Van Norman, Mont., and at Nelson Creek near Van Norman, Mont., in cooperation with the U.S. Bureau of Land Management. As part of the program to establish baseline data in areas of potential development for coal extraction in the Tongue and Powder River drainages of Montana, 15 sites were sampled for suspended sediment. Sampling frequencies ranged from monthly on perennial streams to periodic on intermittent streams. Sediment data are being collected at several sites in the Little Powder River basin and the adjacent Donkey Creek basin to relate suspended-sediment discharge to water discharge. The purpose is to determine and compare the sediment-yield characteristics of these two basins, one of which has considerable mining activity and contains a rapidly growing municipality while the other is relatively untouched. Sediment data are being collected at
several sites in the Rock Creek-Clear Creek drainage basin to relate suspended-sediment discharge to water discharge. The purpose is to detect changes in the sediment discharge characteristics of the stream as it heads in the mountains, flows through a municipal area, through an agricultural area, and finally through a badlands, semiarid region. PS-69 pumping sediment samplers are operating at Lower Hay Creek Trib. near Wibaux, Mont., and at Antelope Creek Trib. No. 4 near Zap, N. Dak., as part of EMRIA studies. Sediment data are collected at these and several other sites in the study basins. For additional information about Geological Survey activities within this region, contact the following offices: District Chief, WRD U.S. Geological Survey Box 25046, Mail Stop 415 Denver Federal Center Lakewood, CO 80225 District Chief, WRD U.S. Geological Survey 1950 Avenue A-Campus West University of Kansas Lawrence, KS 66045 District Chief, WRD U.S. Geological Survey 301 South Park Avenue Federal Building, Room 428 Drawer 10076 Helena, MT 59601 District Chief, WRD U.S. Geological Survey P.O. Box 1230 Federal Building, Room 269 400 South Clinton St. Iowa City, IA 52244 District Chief, WRD U.S. Geological Survey 1400 Independence Road Mail Stop 200 Rolla, MO 65401 District Chief, WRD U.S. Geological Survey Federal Building and U.S. Courthouse Room 406 100 Centennial Mall North Lincoln, NE 68508 District Chief, WRD U.S. Geological Survey 821 East Interstate Avenue Bismarck, ND 58501 District Chief, WRD U.S. Geological Survey P.O. Box 1125 J.C. O'Mahoney Federal Center Room 5017 2120 Capitol Avenue Cheyenne, WY 82001 District Chief, WRD U.S. Geological Survey 200 Fourth Street, SW Federal Building, Room 308 Huron, SD 57350 #### MISSOURI REGION ## SOIL CONSERVATION SERVICE 1. Studies of sediment damages and determinations of sediment yields were made in the following watersheds: # a. Public Law 566 | Major Drainage | Watershed | Stream | County(s) | State | |--------------------|------------------------|--------------------------------|--|-------| | Missouri River | Twin Ponies | Pony Crk | Pottawattamie | IA | | Kansas River | Wakarusa River | Wakarusa
River | Douglas
Osage
Shawnee
Wabaunsee | KS | | Missouri River | Wolf River | Wolf River | Brown
Doniphan | KS | | Missouri River | Roys Crk | Roys Crk | Brown | KS | | Missouri River | Pony Crk | Pony Crk | Brown
Nemaha | KS | | Elkhorn River | Maple Crk | Maple Crk | Stanton
Cuming
Colfax
Dodge | NE | | Big Blue River | Wolf-Wildcat | Wolf Crk
Wildcat Crk | Gage
Pawnee | NE | | Platte River | Bone Crk | Bone Crk | Butler | NE | | Platte River | Rock Crk | Rock Crk | Saunders
Lancaster | NE | | Platte River | Stevens-Callahan | Stevens Crk
Callahan
Crk | Lancaster
Cass | NE | | North Platte River | Upper North
Laramie | | Albany | WY | | South Platte River | East Bijou Crk* | East Bijou
Crk | Adams,
Arapahoe
and Elbert | CO | ^{*} An inventory of gully and streambank erosion as well as sheet erosion, including mapping on 1/24,000 scale, was made on 175,000 acres. ## b. Public Law 534 | Major Drainage | Watershed | Stream | County(s) | State | |--------------------|-----------|---------------------|-----------------|-------| | Little Sioux River | Westside | Bacon Crk | Ida
Woodbury | IA | | Little Sioux River | Camp Crk | Direct
Tributary | Woodbury | IA | #### c. Resource Conservation and Development | Major Drainage | Watershed | Stream | County(s) | <u>State</u> | |----------------|-------------|-------------|-----------|--------------| | White River | Deadman Crk | Deadman Crk | Sioux | NE | ## d. River Basin Investigations | <u>Major Basin</u> | Basin Reported | | |--------------------|----------------------|----| | Missouri River | Missouri Tributaries | NE | # e. Conservation Operations Public Law 46 | Major Drainage | Watershed | County | <u>State</u> | |----------------|-------------|--------|--------------| | | | | | | North Platte | Doby Spring | Albany | WY | #### 2. Reservor Sedimentation Surveys - a. A reservoir sedimentation survey was made on Mule Creek "R" reservoir, Mills County, Iowa. - b. A reservoir sedimentation survey was made on Lake Mitchell in Davison County, South Dakota. ## 3. Special Study #### a. National Systematic Sedimentation Surveys Box Elder Creek Reservoir in Sheridan County, Montana: sediment accumulation survey, watershed land treatment inventory and erosion study in drainage area completed. East Fork Big Springs Creek Reservoir in Fergus County, Montana: sediment accumulation survey completed. Baker Lake Reservoir in Fallon County, Montana: land use inventory, land treatment inventory and erosion study in drainage area completed. # MISSOURI BASIN REGION ## Water and Power Resources Service A sediment yield of 4.76 m 3 /km 2 (1.0 acre-feet/mi 2) per year was used for the drainage areas for West Bow and Pearl Reservoirs. The 100-year values of sediment inflow to West Bow Reservoir of 5.0 x 10^6 m 3 (4,100 acre-feet) and to Pearl Reservoir of 6.2 x 10^6 m 3 (5,000 acre-feet) are being used in an appraisal report. Angostura Reservoir in South Dakota was resurveyed by surveying preestablished range lines. In all, 24 range lines were surveyed, of which 11 were in the mainstream of the Cheyenne River and 13 were in the tributaries. In addition, sediment samples were taken at several locations in the reservoir, the headwaters, and the tributaries. For the resurvey, distances across range lines were fixed using either the "cutting-in" method or by the use of piano wire. Depths were recorded continuously using the E&R Center's Raytheon sonic device. The sediment study for Coal Creek Dam, Longs Peak Division, showed that a yield estimate of 71.4 $\rm m^3/km^2$ (0.15 acre-feet/mi²) per year and 100-year sediment estimates 0.5 x $10^6\rm m^3$ (390 acre-feet) with a depth of sediment at the dam of 4.6 m (15 ft) should be used in preparing feasibility level designs. The Niobrara River Environmental Study has been contracted to Environmental Research & Technology, Inc., of Fort Collins, Colorado. This study will include a whooping crane habitat assessment as well as a hydraulics, sedimentation, and channel morphology study to determine minimum flow requirements below the proposed Norden Dam to maintain the sandbar habitat of the whooping crane. Hydraulic and sedimentation data in the Niobrara River Channel downstream from the proposed Norden Damsite were collected in 1979 by the Water and Power Resources Service to be used to monitor the river as well as to aid in the environmental study. Eleven cross sections in the 64.4 km (40 mi) study reach were established during a June data collection trip when the discharge was about 19.8 m^3/s (700 ft³/s). Then in August when the discharge was about 14.2 m^3/s (500 ft³/s) data were collected at the same 11 locations. Data for each cross section for each discharge included a suspended sediment sample, bed material samples, discharge measurement water surface elevations for computing slope, and water samples for chemical and nutrient analysis. Similar data are to be collected during the 1980 runoff period. A representative from our Sedimentation Section attended a meeting regarding the Platte River study along with representatives from several other agencies including FWS and USGS. The Water and Power Resources Service is responsible for preparing a series of technical appendixes which will include a present condition hydrologic base; a discussion of possible future demands and their water requirements; plans to supply future demands; future options and other related streamflow conditions; and an economic, social, and environmental assessment. ## MISSOURI BASIN REGION (cont) ## Water and Power Resources Service A field trip was made to Torrington, Wyoming, and vicinity, to assist in locating sediment sampling sites, taking samples, and discussing the program of sampling during the 1979 silt run for Guernsey Reservoir. Five sampling sites were selected on the North Platte River: North Platte at Orin; North Platte below Glendo Reservoir; North Platte below Whalen; and North Platte at the Wyoming/Nebraska stateline. Four sites were selected on Interstate Canal: miles 2.7, 50.8, 73.7, and 94.6; and four sites were selected on Fort Laramie Canal: miles 0.7, 30.1, 83.5, and 110.0. Samples will be taken at least once a week during the irrigation season and once a day during the week of the silt run. #### ARKANSAS-WHITE-RED REGION #### CORPS OF ENGINEERS #### Southwestern Division #### Albuquerque District Sediment Load Measurements. Suspended sediment measurements were made at two stations in this region. The collection of suspended sediment samples on the Arkansas River at Las Animas and the Purgatoire River near Las Animas was temporarily discontinued during CY 1979. <u>Sedimentation Surveys</u>. Although a resurvey of John Martin Reservoir, Arkansas River, Colorado had been scheduled for CY 1979; this work was not accomplished. This survey has been rescheduled for CY 1980. #### Little Rock District Sediment load measurements continued at 44 stations during the year on Arknasas River, Mulberry, Spadra Creek, Little Piney Creek, Piney Creek, Petit Jean, Dutch Creek, Fourche La Fave, White River, Taylor Bay, James River, Buffalo River, Bryant Creek, North Fork, Current River, Black River, Eleven Point River, Strawberry River and Little Red River. #### Tulsa District Sedimentation Surveys. A resurvey of John Redmond Lake was conducted and a resurvey of Great Salt Plains Lake, initiated in 1978, was completed. A contract was initiated for installation of pole monuments on 12 sedimentation ranges on John Redmond Dam and Reservoir for use in making hydrographic resurveys during flood stages. A computer program was developed for editing hydrographic survey data from cassette tapes generated on board the
survey boat. This program displays original and resurveyed range profiles simultaneously on a CRT and enables error corrections, after which a hard copy plot tape or punched cards of the corrected profiles can be obtained automatically. Sediment Load Measurements. The suspended sediment sampling program was reduced as a cost reduction measure. A total of 65 stations, 40 in the Arkansas River Basin and 15 in the Red River Basin are presently in operation. Other Investigations. Design Memorandum No. 22, Sedimentation and Degradation Ranges, Candy Lake, was prepared. Segmental elevation-area data for Birch, Hugo, Kaw, L&D 15, L&D 16, Oologah, Optima, and Waurika Lakes were developed. All historical sediment sampling data for the Tulsa District was compiled and sent to USGS, Oklahoma District for entry in the WATSTORE data system which will enable computer retrieval and statistical manipulation for future studies using the data of several agencies. A mathematical model for sediment inflow and distribution for Canton Lake, in conjunction with the Waterways Experiment Station, was initiated. ## ARKANSAS-WHITE-RED REGION ## GEOLOGICAL SURVEY ## Upper White Subregion - 1. Suspended-sediment data are being collected on a monthly basis at North Sylamore Creek near Fifty Six, Ark., as part of the National Hydrologic Benchmark Network. - 2. Suspended-sediment data are being collected on a monthly basis at White River at Newport, Ark., as a part of the National Stream Quality Accounting Network (NASQAN). ## Upper Arkansas Subregion - 1. Suspended-sediment data are being collected on a twice monthly basis at Arkansas River at Canon City, Colo., at Arkansas River at Portland, Colo., and at Arkansas River near Portland, Colo., in cooperation with the U.S. Bureau of Reclamation, Lower Missouri River Basin Region. - 2. Suspended-sediment data are being collected on a monthly basis at Halfmoon Creek near Malta, Colo., as a part of the National Hydrologic Benchmark Network. - 3. Suspended-sediment data are being collected on a daily basis at Purgatoire River below Trinidad Dam, Colo., in cooperation with the U.S. Corps of Engineers, Albuquerque District. - 4. Suspended-sediment data were collected on a daily basis in cooperation with the U.S. Bureau of Land Management: Apishapa River at Aquilar, Colo. MFK Purgatoire River at Stonewall, Colo. Mulino Canyon near Weston, Colo. Sarcillo Canyon near Segundo, Colo. Purgatoire River at Madrid, Colo. Mulligan Canyon near Boncarbo, Colo. Reilly Canyon at Cokedale, Colo. Carpios Canyon near Jansen, Colo. #### Middle Arkansas Subregion 1. Suspended-sediment data are being collected on a near monthly basis at the following sites in cooperation with the Kansas Water Resources Board: Arkansas River at Syracuse, Kans. Whitewoman Creek near Leoti, Kans. Mulberry Creek near Dodge City, Kans. Arkansas River near Kinsley, Kans. Guzzler's Gulch near Ness City, Kans. Pawnee River near Larned, Kans. Walnut Creek at Albert, Kans. Rattlesnake Creek near Macksville, Kans. Cow Creek near Claflin, Kans. Blood Creek near Boyd, Kans. Arkansas River near Hutchinson, Kans. Little Arkansas River at Alta Mills, Kans. Little Arkansas River at Valley Center, Kans. North Fork Ninnescah River above Cheney Reservoir, Kans. South Fork Ninnescah River near Pratt, Kans. Ninnescah River near Peck, Kans. Slate Creek at Wellington, Kans. Cole Creek near De Graff, Kans. Whitewater River at Towanda, Kans. Arkansas River at Arkansas City, Kans. Walnut River at Winfield, Kans. # Upper Cimarron Subregion 1. Suspended-sediment data are being collected on a near monthly basis at Bear Creek near Johnson, Kans., at Cavalry Creek at Coldwater, Kans., at North Fork Cimarron River near Richfield, Kans., and Crooked Creek near Nye, kans., in cooperation with the Kansas Water Resources Board. ## Lower Cimarron Subregion 1. Suspended-sediment data are being collected from Cimarron River near Buffalo, Okla., and Cimarron River at Perkins, Okla., as a part of NASQAN. ## Arkansas-Keystone Subregion - 1. Suspended-sediment data are being collected on a near monthly basis at Medicine Lodge River near Kiowa, Kans., in cooperation with the Kansas Water Resources Board. - 2. Suspended-sediment data are being collected on a monthly basis at Arkansas River at Ralston, Okla., as a part of NASQAN. #### Neosho-Verdigris Subregion 1. Suspended-sediment data are being collected at Newt Graham Lock and Dam (Verdigris River) near Inola, Okla., and at Neosho River below Fort Gibson Lake near Fort Gibson, Okla., as a part of NASQAN. ## Upper Canadian Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Canadian River near Sanchez, N. mex., in conjunction with the Water Quality Surreillance Program and in cooperation with the NMISC (New Mexico Interstate Stream Commission). - 2. Suspended-sediment data are being collected on a monthly basis at Revuelto Creek near Logan, N. Mex., in cooperation with NMISC. - 3. Suspended-sediment data are being collected on a monthly basis at Canadian River above New Mexico-Texas State line as a part of NASQAN. - 4. Suspended-sediment data are being collected on a quarterly basis at Vermejo . River near Dawson, N. Mex., in cooperation with NMISC. ## Lower Canadian Subregion - 1. Suspended-sediment data are being collected at Canadian River at Calvin, Okla., at Canadian River near Whitefield, Okla., and at Canadian River near Canadian, Tex., as part of NASQAN. - 2. Suspended-sediment data are being collected at Blue Creek tributary near Blocker, Okla., at Blue Creek near Blocker, Okla., and at Mathuldy Creek near Crowder, Okla., for use in the BLM EMRIA project. - 3. Suspended-sediment data are being collected at Brushy Creek near Hailey-ville, Okla., at Peaceable Creek near Haileyville, Okla., and at Deer Creek near McAlester, Okla., for use in the coal Monitoring project. #### North Canadian Subregion - 1. Suspended-sediment data are being collected at North Canadian River near Wetumka, Okla., at Deep Fork near Beggs, Okla., at Beaver River near Glymon, Okla., at Beaver River at Beaver, Okla., and at North Canadian River at Woodward, Okla., as a part of NASOAN. - 2. Suspended-sediment data are being collected at North Canadian River near Seiling, Okla., in cooperation with the U.S. Corps of Engineers. ## Lower Arkansas Subregion 1. Suspended-sediment data are being collected on a monthly basis at Arkansas River at near Tulsa, Okla., at Arkansas River at Dam 13 near Van Buren, Ark., and at Arkansas River at David D. Terry Lock and Dam below Little Rock, Ark., as a part of NASQAN. 2. Suspended-sediment data are being collected at the following sites for use in the BLM - EMRIA project: James Fork near Hackett, Ark. James Fork near Williams, Okla. Coal Creek tributary near Bokoshe, Okla. Coal Creek near Panama, Okla. 3. Suspended-sediment data are being collected at the following sites for use in the Coal Monitoring project: Coal Creek near Spiro, Okla. Fourche Maline near Wilburton, Okla. Red Oak Creek near Red Oak, Okla. Caston Creek at Wister, Okla. Morris Creek at Howe, Okla. Sugarload Creek near Monroe, Okla. Owl Creek near McCurtain, Okla. Holi-tuska Creek near Panama, Okla. # Red Headwaters Subregion - 1. Suspended-sediment data are being collected on a monthly basis at North Fork Red River near Headrick, Okla., at Salt Fork Red River near Elmer, Okla., at Prairie Dog Town Red River near Wayside, Tex., and at and at Prairie Dog Town Fork Red River near Childress, Tex., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a periodic basis at the following sites in cooperation with the U.S. Corps of Engineers: Little Red River near Turkey, Tex. (started daily operation Feb. 1, 1979) Jonah Creek at Weir, near Estelline, Tex. Salt Creek at County Road Bridge, near Estelline, Tex. (discontinued Sept. 30, 1979) Salt Creek near Estelline, Tex. (discontinued Sept. 30, 1979) East Salt Creek at County Road Bridge, near Estelline, Tex. (discontinued Sept. 30, 1979) * 3. The collection of suspended-sediment data on a daily or more frequent basis began Feb. 1, 1979, at Little Red River near Turkey, and Prairie Dog Town Red River near Lakeview, Tex., in cooperation with The University of Texas at Austin. ### Red-Washita Subregion 1. Suspended-sediment data are being collected at Blue Beaver Creek near Cache, Okla., as a part of the National Hydrologic Benchmark Network. - 2. Suspended-sediment data are being collected on a monthly basis at Red River near Burkburnett, Tex., at Red River at Denison Dam near Denison, Tex., at Red River near Gainesville, Tex., and at Washita River near Durwood, Okla. as a part of NASQAN. - 3. Suspended-sediment data are being collected on a periodic basis at the following sites in cooperation with the U.S. Corps of Engineers: Wichita River near Seymour, Tex. (discontinued Sept. 30, 1979) Red River near Quanah, Tex. North Pease River near Childress, Tex. (discontinued Sept. 30, 1979) Middle Pease River near Paducah, Tex. (discontinued Sept. 30, 1979) Middle Pease River below Paducah, Tex. (started Oct. 1, 1979) Pease River near Childress, Tex. North Wichita River near Paducah, Tex. (discontinued Sept. 30, 1979) North Wichita River near Truscott, Tex. South Wichita River at Ross Ranch, near Benjamin, Tex. (discontinued Sept. 30, 1979) South Fork Wichita River near Benjamin, Tex. (discontinued Sept. 30, 1979) ### Red-Sulphur Subregion - 1. Suspended-sediment data are being collected from Kiamichi River near Big Cedar, Okla., as a part of the National Hydrologic Benchmark Network. - 2. Suspended-sediment data are being collected at Coal Creek near Lehigh, Okla., for use in the BLM EMRIA project. - 3. Suspended-sediment data are being collected at Muddy Boggy Creek at Atoka, Okla., for use in the Coal Monitoring project. - 4. Suspended-sediment data are being collected on a monthly basis at Little River at Millwood Dam, near Ashdown, Ark., Red River at Fulton,
Ark., and at Sulphur River south of Texarkana, Ark., as a part of NASQAN. - 5. Suspended-sediment data are being collected on a monthly basis at Twelvemile Bayou near Dixie, La., as a part of NASQAN. #### Laboratory Activities 1. The Geological Survey sediment laboratory located in Baton Rouge, La., analyzed suspended-sediment and bed-material samples collected by the U.S. Corps of Engineers at the following locations. Red River at Fulton, Ark. Red River at Shreveport, La. Red River at Colfax, La. For additional information about Geological Survey activities within this region, contact the following offices: District Chief, WRD U.S. Geological Survey Federal Office Building Room 2301 700 West Capitol Avenue Little Rock, AR 72201 District Chief, WRD U.S. Geological Survey P.O. Box 66492 6554 Florida Boulevard Baton Rouge, LA 70896 District Chief, WRD U.S. Geological Survey 201 Northwest Third Street Room 621 Oklahoma City, OK 73102 District Chief, WRD U.S. Geological Survey Bldg. 53, Denver Federal Center Mail Stop 415, Box 25046 Lakewood, CO 80225 District Chief, WRD U.S. Geological Survey 1950 Avenue A - Campus West University of Kansas Lawrence, KS 66045 District Chief, WRD U.S. Geological Survey P.O. Box 26659 815 Western Bank Building 505 Marquette, NW Albuquerque, NM 87125 District Chief, WRD U.S. Geological Survey Federal Building, Room 649 300 East Eighth Street Austin, TX 78701 #### ARKANSAS-WHITE-RED REGION ### SOIL CONSERVATION SERVICE # a. Public Law 566 | Major Drainage | Watershed | Stream | County(s) | <u>State</u> | |------------------------------|-----------------------------------|--|--|--------------| | Neosho River | Diamond Crk | Diamond Crk | Morris
Chase | KS | | Neosho River | South Fork
Cottonwood
River | Cottonwood
River | Butler
Greenwood
Chase | KS | | Neosho River | Middle Crk | Middle Crk | Morris
Chase
Marion | KS | | Neosho River | Peyton Crk | Peyton Crk | Chase | KS | | White River | Fourche Crk | Fourche Crk | Randolph | AR | | Red River | Beaver Crk | Big Beaver | Comanche
Stephens | OK | | Deep Fork-
Canadian River | Dry Crk | Dry
Beaver
Shiny
N. Branch
Chuckaho
Dosie | Lincoln | OK | | Continued studies on | : | | | | | Cimarron River | Turkey Crk | Turkey Elm Sand Dry Hell Gone Buffalo Dry Salt | Garfield
Major
Kingfisher
Alfalfa | OK | | S. Canadian River | Coal Crk | Coal Crk Wildhorse Caney Buckhorn Sandy Deer | Pittsburg
Hughes | OK | ζ. #### b. River Basin Investigation | Major Basin | Basin Reported | State | | |-------------------|--------------------|-------|--| | Lower Mississippi | Arkansas Statewide | AR | | #### 2. Sedimentation Surveys Sedimentation surveys were made on two reservoirs in Colfax County, New Mexico using the range method. New Urraca Creek Reservoir is on the North Fork, Urraca Creek on Philmont Scout Ranch and is part of the drinking water supply for the Ranch. The second reservoir is an off-stream irrigation storage reservoir. Water is diverted from Ute Creek into the reservoir. Sediment accumulation in the New Urraca Creek Reservoir averaged 0.3 acre-feet/square mile/year from a drainage area of 10.2 square miles during a period of 21.5 years. The off-stream irrigation storage reservoir during the last 65 years has had an average sediment accumulation rate of 2.88 acre-feet/square mile/year. Sedimentation surveys were also completed on the following reservoirs during the evaluation period: | Reservoir | Major Drainage | County | State | |--|----------------|-----------------------------|----------------| | Site 2, Logan
Slough Crk | Red River | Lamar | TX | | Lake McClellan
Sandstone #16
Cave Crk #1 | Red River | Gray
Beckham
Okmulgee | TX
OK
OK | #### 3. Non-point Pollution Studies County sediment control plans were completed for the New Mexico counties in the region during 1979. The State of New Mexico sedimentation study was completed in March 1979. The New Mexico Water Quality Control Commission accepted the Overall Water Quality Management Plan in May 1979. These plans and studies were done under PL 92-500, Section 208, Non-point Source Pollution. A detailed work plan for continued 208 studies was submitted to the Environmental Protection Agency, September 1979, and accepted in December 1979. ## ARKANSAS-WHITE-RED REGION # Water and Power Resources Service The 100-year estimated sediment volume of 27.1 x $10^6 \mathrm{m}^3$ (22,000 acre-feat) for Cookietown Reservoir was approved which was less then the previously recommended value of 38.2 x $10^6 \mathrm{m}^3$ (31,000 acre-feet). The Draft Environmental Impact Statement for the Chikaskia Project in Kansas was reviewed and several additions and changes concerning sedimentation were recommended. A sediment yield rate of 367 $\rm m^3/km^2$ (0.77 acre-feet/mi²) per year was used for Corbin Reservoir. ### TEXAS-GULF REGION ### GEOLOGICAL SURVEY # Sabine Subregion - 1. Suspended-sediment data are being collected at Sabine River near Ruliff, Tex., as a part of the National Stream Quality Accounting Network (NASQAN). - 2. Suspended-sediment data are being collected on periodic basis at Cow Bayou near Mauriceville, Tex., as a part of the Federal CBR program (discontinued September 30, 1979). ## Neches Subregion 1. Suspended-sediment data are being collected on a monthly basis at Neches River at Evadale, Tex. as a part of NASQAN. ### Trinity Subregion - 1. Suspended-sediment data are being collected on a periodic basis at West Fork Trinity River near Jacksboro, Tex. (discontinued September 30, 1979), at Mountain Creek near Cedar Hill, Tex., Duck Creek near Garland, Tex., and at Kings Creek near Kaufman, Tex., as a part of the Federal CBR program. - 2. Suspended-sediment data are being collected on a monthly basis at Trinity River at Trinidad, Tex., as a part of NASQAN. - 3. Suspended-sediment data are being collected on a periodic basis at Cypress Creek near Westfield, Tex., and Greens Bayou near Houston, Tex., as part of the Federal CBR program (both stations discontinued September 30, 1979). - 4. Suspended-sediment data are being collected on a daily or more frequent basis at Trinity River near Oakwood, Tex., in cooperation with the U.S. Corps of Engineers. - 5. Suspended-sediment data are being collected on a monthly basis at Trinity River at Romayor, Tex., and at Chocolate Bayou near Alvin, Tex., as a part of NASQAN. ### Galveston Bay - San Jacinto Subregion 1. Suspended-sediment data are being collected on a periodic basis at West Fork San Jacinto River near Conroe, Tex., as part of NASQAN. The collection of suspended-sediment data on a periodic basis at Buffalo Bayou at West Belt Dr., Houston, Tex., began May 1, 1979, as part of NASQAN. ## Middle Brazos Subregion - 1. Suspended-sediment data are being collected at Miller Creek near Munday, Tex. (discontinued September 30, 1979), at Double Mountain Fork Brazos Fiver at Justiceburg, Tex., and at Stinking Creek near Aspermont, Tex., as a part of the Federal CBR program. - 2. Suspended-sediment data are being collected on a monthly basis at Salt Fork Brazos River near Aspermont, Tex., Double Mountain Fork Brazos River near Aspermont, Tex., Brazos River near Highbank, Tex., and at Brazos River near South Bend, Tex., as a part of NASQAN. # Lower Brazos Subregion - 1. Suspended-sediment data are being collected on a daily basis at Brazos River at Richmond, Tex., as part of the Federal CBR program. - 2. Suspended-sediment data are being collected on a monthly basis at South Fork Rocky Creek near Briggs, Tex., as a part of the National Hydrologic Benchmark Network. - 3. Suspended-sediment data are being collected on a periodic basis at Berry Creek near Georgetown, Tex., as a part of the Federal CBR program. - 4. Suspended-sediment data are being collected on a weekly or more frequent basis at Navasota River near Bryan, Tex., in cooperation with the U.S. Corps of Engineers. - 5. Suspended-sediment data are being collected on a monthly basis at Brazos River near Rosharon, Tex., and at Little River near Cameron, Tex., as a part of NASQAN. # Upper Colorado Subregion 1. Suspended-sediment data were being collected on a monthly basis at Colorado River above Silver, Tex., as a part of NASQAN. #### Lower Colorado-San Bernard Coastal Subregion - 1. Suspended-sediment data are being collected on a periodic basis at Walnut Creek at Webberville Road, Austin, Tex., and at Onion Creek at US Hwy 183, Austin, Tex., as a part of the Federal CBR program. - 2. Suspended-sediment data are being collected on a monthly basis at Colorado River at Austin, Tex., Colorado River at Wharton, Tex., Colorado River near San Saba, Tex., and at San Bernard River near Boling, Tex., as a part of NASQAN. The collection of suspended-sediment data at Llano River at Llano, Tex., began April 1, 1979, as part of NASQAN. 3. Suspended-sediment data are being collected on a daiy basis at Concho River at Paint Rock, Tex. and at Colorado River at Ballinger, Tex., in cooperation with Texas Department of Water Resources. # Central Texas Coastal Subregion 1. Suspended-sediment data are being collected on a monthly basis at Guadalupe River at Victoria, Tex., San Antonio River at Goliad, Tex., Lavaca River near Edna, Tex., and at Mission River at Refugio, Tex., as a part of NASQAN. ## Nueces-Southwestern Texas Coastal Subregion - 1. Suspended-sediment data are being collected on a periodic basis at Frio River at Calliham, Tex. (discontinued September 30, 1979), Atascosa River at Whitsett, Tex., and at San Miguel Creek near Tilden, Tex., as a part of the Federal CBR program. - 2. Suspended-sediment data are being collected on a monthly basis at Nueces River near Three Rivers, Tex., and at Los Olmos Creek near Falfurrias, Tex., as a part of NASQAN. For additional information about
Geological Survey activities within this region, contact the following office: District Chief, WRD U.S. Geological Survey Federal Building, Room 649 300 East Eighth Street Austin, TX 78701 #### TEXAS-GULF REGION #### SOIL CONSERVATION SERVICE 1. Reservoir sedimentation surveys were made in the following reservoirs in 1979: | Reservoir | Major Drainage | County | State | | |------------------------|--------------------|--------|-------|--| | Site 17, Denton Crk | Trinity River | Wise | TX | | | Site 11B, Elm Fork | Trinity River | Cooke | TX | | | Site 21, Clear Crk | Trinity River | Cooke | TX | | | Site 11. Escondido Crk | Sand Antonio River | Karnes | TX | | ### 2. Non-point Pollution Studies County sediment control plans were completed for the New Mexico counties in the region during 1979. The New Mexico state sedimentation study was completed in March 1979. The New Mexico Water Quality Control Commission accepted the Overall Water Quality Management Plan in May 1979. These plans and studies were done under PL-500, Section 208, Non-point Source Pollution. A detailed work plan for continued 208 studies was submitted to the Environmental Protection Agency and accepted December 1979. These plans and studies cover the New Mexico portion of the region. ### Water and Power Resources Service A planning meeting for the sedimentation resurvey of Lake Meredith on the Canadian River near Amarillo, Texas, was held. The field work is scheduled to begin in October 1979, and the hydrographic survey in February 1980. The resurvey funded by the University of Texas will be a cooperative effort of the Southwest Region, the Canadian River Project, and the E&R Center. #### RIO GRANDE REGION ### CORPS OF ENGINEERS #### Southwestern Division ### Albuquerque District #### Sedimentation Surveys - 1. The installation of 24 sedimentation ranges and 9 degradation ranges was completed at Los Esteros Lake on the Pecos River, New Mexico. All of these ranges were surveyed with aerial techniques in June 1979. - 2. The first detailed report on sedimentation at Cochiti Lake which described the result of the resurvey of April 1978 was published in July 1979. - 3. Computations were completed for determining changes in storage capacity and sediment deposition at Abiquiu Lake based on data collected in May 1978. New area-capacity tables were issued to interested parties for use beginning 1 January 1980. Form 1787 (Sedimentation Data Summary) and a survey summary letter report will be completed early in 1980. <u>Sediment Load Measurements</u>. Suspended sediment measurements were made at four stations in the Rio Grande Region. #### Other Investigations - 1. In February 1979, Water and Environmental Consultants, Inc. of Fort Collins, Colorado prepared a report for the Albuquerque District entitled "Plan of Study For Determining Hydraulics and Sediment Transport Characteristics of the Rio Grande in New Mexico above Elephant Butte Dam". The recommendations in this report will be used as guidelines for proceeding with sediment investigations in the Rio Grande Basin. - 2. In November 1979, a contract was awarded to Simons and Li Engineering of Fort Collins, Colorado to develop a computer program that will be used to predict long term effects of existing and proposed flood and sediment control projects on the characteristics of the Rio Grande from Cochiti Dam to Elephant Butte Reservoir. This work is scheduled to be completed in the summer of 1980. - 3. Abiquiu, Cochiti, Galisteo and Jemez Canyon Dams continued to be operated to control sediment flow in the Rio Grande. In this regard, a 2,500 acre foot permanent pool has been established at the Jemez Canyon project. ### RIO GRANDE REGION ### GEOLOGICAL SURVEY ## Rio Grande Headwaters Subregion 1. Suspended-sediment data are being collected on a monthly basis at Rio Grande near Lobatos, Colo., as a part of the National Stream Quality Accounting Network (NASQAN). # Rio Grande - Elephant Butte Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Red River at Fish Hatchery near Questa, N. Mex., in cooperation with the New Mexico Interstate Streams Commission (NMISC). - 2. Suspended-sediment data are being collected on a monthly basis at Rio Chama above Abiquiu Reservoir, N. Mex., Rio Chama below Abiquiu Dam, N. Mex., and at Rio Chama near Chamita, N. Mex., in cooperation with the U.S. Corps of Engineers. - 3. Suspended-sediment data are being collected on a daily basis at Rio Grande at Otowi Bridge near San Ildefonso, N. Mex., and at Rio Grande near Albuquerque, N. Mex., as a part of the Federal CBR program. - 4. Suspended-sediment data are being collected on a daily basis at Rio Grande below Cochiti Dam, N. Mex., in cooperation with the U.S. Corps of Engineers. - 5. Suspended-sediment data are being collected on a daily basis at Arroyo Chico near Guadalupe, N. Mex., in cooperation with the U.S. Bureau of Land Management. - 6. Suspended-sediment data are being collected on a daily basis at Rio Puerco near Bernardo, N. Mex., as a part of the Federal CBR program. - 7. Suspended-sediment data are being collected on a monthly basis at Rio Grande at San Felipe, N. Mex., and at Rio Grande at Isleta, N. Mex., in conjunction with the Water Quality Surveillance Program and financed cooperatively by NMISC. - 8. Suspended-sediment data are being collected on a daily basis at Rio Grande near Bernardo, N. Mex., at Rio Grande at San Acacia, N. Mex., and at Rio Grande at San Marcial, N. Mex., in cooperation with NMISC. - 9. Suspended-sediment data for total-load determinations are being collected on a biweekly basis at Rio Grande at Albuquerque, N. Mex., at Rio Grande near Bernardo, N. Mex., at Rio Grande at San Acacia, N. Mex., and Rio Grande at San Marcial, N. Mex., in cooperation with NMISC. - 10. Suspended-sediment data are being collected on a daily basis at Rio Grande Conveyance Channel at San Acacia, N. Mex., and at Rio Grande Conveyance Channel at San Marcial, N. Mex., in cooperation with NMISC. This includes bi-reekly determination of total-sediment loads at Rio Grande Conveyance Channel at San Marcial, N. Mex. - 11. Suspended-sediment data are being collected on an intermittent basis at Rio Salado near San Acacia, N. Mex., in cooperation with NMISC. - 12. Suspended-sediment data are being collected on a monthly basis at Rio Grande below Elephant Butte Dam, N. Mex., as a part of NASQAN. - 13. Suspended-sediment data are being collected on a monthly and storm-event basis at Rio Mora near Terrero, N. Mex., as a part of the National Hydrologic Benchmark Network. - 14. Suspended-sediment data are being collected on a monthly and intermittent basis at Pecos River below Sumner Dam, N. Mex. (formerly called Alamagordo Dam), in cooperation with NMISC, and as a part of NASQAN. - 15. Suspended-sediment data are being collected on a daily basis at Pecos River at Santa Rosa, N. Mex., and at Pecos River near Artesia, N. Mex., as part of the Federal CBR program. - 16. Suspended-sediment data were collected on a monthly basis at Pecos River near Puerto de Luna, N. Mex., in conjunction with the Water Quality Surveillance Program and in cooperation with NMISC. - 17. Suspended-sediment data are being collected on a monthly basis at Pecos River at Red Bluff, N. Mex., at Rio Grande at el Paso, Tex., and at Rio Grande at Fort Quitmon, Tex., as a part of NASQAN. - 18. Suspended-sediment data are being collected on an intermittent basis at Rito de los Frijoles in Bandelier National Monument, N. Mex., in cooperation with the National Park Service. #### Rio Grande - Amistad Subregion 1. Suspended-sediment data are being collected on a monthly basis at Rio Grande at Foster Ranch, near Langtry, Tex., and at Devils River at Pafford Crossing, near Comstock, Tex., as a part of NASQAN. #### Rio Grande Closed Basins Subregion 1. Suspended-sediment data are being collected on a monthly basis at Rio Tularosa near Bent, N. Mex., and at Mimbres River near Mimbres, N. Mex., as a part of NASQAN. ## Lower Pecos Subregion 1. Suspended-sediment data are being collected on a monthly basis at Pecos River near Langtry, Tex., as a part of NASQAN. ### Rio Grande - Falcon Subregion 1. Suspended-sediment data are being collected on a monthly basis at Rio Grande at Laredo, Tex., as a part of NASQAN. # Lower Rio Grande Subregion - 1. Suspended-sediment data are being collected on a daily basis at Rio Grande River near Brownsville, Tex., as part of the Federal CBR program. - 2. Suspended-sediment data are being collected on a weekly or more frequent basis at North Floodway near Sebastian, Tex., and at Arroyo Colorado Floodway at El Fuste Siphon, south of Mercedes, Tex., as part of the Federal CBR program. ## Special Studies A water quality monitoring plan for the Rio Grande and Red River in Tacs County, N. Mex., was initiated in October 1978 by the U.S. Bureau of Land Management. The study objectives are to monitor long-term changes in water quality (chemical and sediment) at 14 selected sampling sites. BLM personnel collect monthly samples and the Geological Survey analyzes the samples and publishes the data. For additional information about Geological Survey activities within this region, contact the following offices: District Chief, WRD U.S. Geological Survey Box 25046, Mail Stop 415 Denver Federal Center Lakewood, CO 80225 District Chief, WRD U.S. Geological Survey P.O. Box 26659 815 Western Bank Building 505 Marquette, NW Albuquerque, NM 87125 District Chief, WRD U.S. Geological Survey Federal Building Room 649 300 East Eighth Street Austin, TX 78701 #### RIO GRANDE REGION #### SOIL CONSERVATION SERVICE #### Non-point Pollution Studies County sediment control plans were completed for the New Mexico counties in the region during 1979. The New Mexico state sedimentation study was completed in March 1979. The New Mexico Water Quality Control Commission accepted the Overall Water Quality Management Plan in May 1979. These plans
and studies were done under PL 92-500, Section 208, Nonpoint Source Pollution. A detailed work plan for continued 208 studies was submitted to the Environmental Protection Agency and accepted December 1979. # Water and Power Resources Service A planning meeting was held in the project office for the sedimentation resurvey of Elephant Butte Reservoir. The field work began after October 1, 1979, and the hydrographic survey in January 1980. This was to be a full resurvey and included cutting out and profiling all sediment range lines in the reservoir. The land surveys were conducted by a survey crew out of the Carlsbad Project Office with some help from Rio Grande Project personnel. Equipment and some personnel for the hydrographic survey were provided from the E&R Center. A representative of the Sedimentation Section attended the conference on Arroyo Stabilization in Erosive Soil in Albuquerque, New Mexico, on Novemeber 8, 1979, and presented a lecture on "Channel Erosion and Control Techniques." This was a slide presentation on Water and Power Resources Service practices to stabilize river channels for controlling erosion throughout the 17 Western States. #### UPPER COLORADO REGION ### GEOLOGICAL SURVEY ## Colorado Headwaters Subregion - 1. Suspended-sediment data were collected on a daily basis by automatic pumping samplers at West Tenmile Creek at Wheeler Junction, Colo., at Black Gore Creek near Vail, Colo., and Gore Creek at Vail, Colo., in cooperation with the Colorado Department of Highways (discontinued September 30, 1979). - 2. Suspended-sediment data are being collected on a monthly basis at Parachute Creek near Grand Valley, Colo., in cooperation with the Environmental Protection Agency. - 3. Suspended-sediment data are being collected on a daily basis at Parachute Creek at Grand Valley, Colo., and at Roan Creek near Debeque, Colo., as a part of Federal sedimentation study in oil shale areas. - 4. Suspended-sediment data are being collected on a daily basis at East Middle Fork Parachute Creek near Rio Blanco, Colo., and East Fort Parachute Creek near Rulison, Colo., and on a monthly basis at North Water Creek near Anvil Point, Colo., in cooperation with the U.S. Navy. - 5. Suspended-sediment data are being collected on a monthly basis at Colorado River near Colorado-Utah State line as a part of the National Stream Quality Accounting Network (NASQAN). ### Gunnison Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Gunnison River near Grand Junction, Colo., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a monthly basis at the following sites as a part of the USGS Coal Hydrology program: Anthracite Creek near Somerset, Colo. Spring Creek near Beaver Hill, Colo. Spring Creek near Montrose, Colo. #### Upper Colorado-Dolores Subregion - 1. Suspended-sediment data are being collected on a comprehensive level at Colorado River near Cisco, Utah. - 2. Suspended-sediment data are being collected on a monthly basis at Beaver Creek near Norwood, Colo. and San Miguel River at Naturita, Colo., as a part of the USGS Coal Hydrology program. ## Great Divide-Upper Green Subregion 1. Suspended-sediment data are being collected on a monthly and storm-event basis at the following sites as a part of the U.S. Geological Survey Federal Energy program: Little Sandy Creek above Eden, Wyo. Salt Wells Creek near South Baxter, Wyo. Blacks Fork near Lyman, Wyo. - 2. Suspended-sediment data are being collected on a daily basis at Green River near Green River, Wyo. as a part of the U.S. Geological Survey Federal Energy program. - 3. Suspended-sediment data are being collected at the following sites on a monthly and storm-event basis in cooperation with the Wyoming State Engineer: Green River near LaBarge, Wyo. Big Sandy River near Farson, Wyo. Big Sandy River below Eden, Wyo. Hams Fork near Granger, Wyo. Blacks Fork near Little America, Wyo. 4. Suspended-sediment data are being collected at the following sites on a monthly and storm-event basis in cooperation with the U.S. Bureau of Land Management: Bitter Creek near Bitter Creek, Wyo. Bitter Creek above Salt Wells Creek, near Salt Wells, Wyo. Dry Canyon near South Baxter, Wyo. Salt Wells Creek near Salt Wells, Wyo. Little Muddy Creek near Glencoe, Wyo. Muddy Creek near Hampton, Wyo. Vermillion Creek near Hiawatha, Colo. - 5. Suspended-sediment data are being collected on a daily basis at Separation Creek near Riner, Wyo. in cooperation with the U.S. Bureau of Land Management. - 6. Suspended-sediment data are being collected on a monthly basis at Vermillion Creek at Ink Springs Ranch, Colo., as a part of the USGS Coal Hydrology program. #### White-Yampa Subregion - 1. Suspended-sediment data are being collected on a monthly and storm-event basis at Little Snake River near Dixon, Wyo. in cooperation with the Wyoming State Engineer. - 2. Suspended-sediment data were obtained on a monthly basis at Yampa River near Maybell, Colo., and at Little Snake River near Lily, Colo., as a part of NASQAN. - 3. Suspended-sediment data are being collected on a daily basis at Yampa River near Maybell, Colo., and on a weekly basis at Little Snake River near Lily, Colo., in cooperation with the Colorado River Water Conservation District. - 4. Suspended-sediment data are being collected at several sites in the coal mining region of the Yampa River basin. Two stations are equipped with pumping samplers and where the flow is continuous, daily samples are collected. The following stations are operated at the indicated frequencies: Middle Creek above Foidel Creek, Colo. Monthly Monthly Foidel Creek at Fish Creek Canyon Road, Colo. Foidel Creek at mouth near Oak Creek, Colo. Daily Jubb Creek near mouth, Colo. Monthly Taylor Creek at mouth near Axial, Colo. Monthly Weekly Good Springs Creek near Axial, Colo. Wilson Creek below Taylor Creek near Axial, Colo. Daily Daily Stokes Gulch near Hayden, Colo. These stations are operated in cooperation with the U.S. Bureau of Land Management. 5. Suspended-sediment data are being collected at several stations in the Piceance Creek basin to monitor the potential impact of the oil shale development project. All stations are equipped with pumping sediment samplers and where the flow is continuous, daily samples are collected. Intermittent stations are designed to sample all significant peaks and low flow samples are collected when possible. The following stations are operated at the indicated frequency: | Piceance Creek below Rio Blanco, Colo. | Daily | |--|--------| | Stewart Gulch above West Fork, Colo. | Daily | | W. F. Stewart Gulch at mouth, Colo. | Peaks | | Sorghum Gulch at mouth near Rio Blanco, Colo. | Peak s | | Cottonwood Gulch near Rio Blanco, Colo. | Peaks | | Piceance Creek tributary near Rio Blanco, Colo. | Peak s | | Scandard Gulch at mouth, Colo. | Peaks | | Willow Creek near Rio Blanco, Colo. | Daily | | Piceance Creek above Hunter Creek, Colo. | Daily | | Black Sulfur Creek near Rio Blanco, Colo. | Daily | | Piceance Creek below Ryan Gulch, Colo. | Daily | | Piceance Creek at White River, Colo. | Daily | | Stake Springs Draw near Rangely, Colo. | Peaks | | Corral Gulch below Water Gulch, Colo. | Peaks | | Dry Fk. near Rangely, Colo. | Peaks | | Box Elder Gulch near Rangely, Colo. | Peak s | | Tributary to Box Elder Gulch near Rangely, Colo. | Peaks | | Corral Gulch near Rangely, Colo. | Daily | | Yellow Creek near White River, Colo. | Daily | These stations are operated in cooperation with the Colorado River Water Conservation District. - 6. Suspended-sediment data are being collected on a monthly basis at White River below Meeker, Colo., and White River above Rangely, Colo., in cooperation with the Environmental Protection Agency, and on a weekly basis from May 1 to September 30 at White River above Rangely, Colo., in cooperation with the Colorado River Water Conservation District. - 7. Suspended-sediment data are being collected on a monthly basis at North Fork White River at Buford, Colo., and South Fork White River at Buford, Colo., and on a daily basis at Douglas Creek near mouth near Rangely, Colo., in cooperation with the Northwest Colorado Council of Governments. - 8. Suspended-sediment data are being collected on a comprehensive level at White River near Colorado-Utah State line in cooperation with the Utah Department of Natural Resources. - 9. Suspended-sediment data are being collected on a comprehensive level at White River near mouth near Ouray, Utah, in cooperation with the U.S. Bureau of Land Management. - 10. Suspended-sediment data are being collected on a monthly basis at Yampa River below Diversion, near Hayden, Colo., Yampa River below Craig, Colo., Williams Fork at mouth, near Hamilton, Colo., and at Yampa River below Elkhead, near Craig, Colo., in cooperation with the Environmental Protection Agency. - 11. Suspended-sediment data are being collected on a periodic basis at Horse Draw near Rangely, Colo., and at Horse Draw at mouth, near Rangely, Colo., in cooperation with the U.S. Bureau of Mines. ### Lower Green Subregion - 1. Suspended-sediment data are being collected on a comprehensive level at Green River near Jensen, Utah and at Green River at Green River, Utah. - 2. Sediment accumulation in Scofield Reservoir near Scofield, Utah, was surveyed as part of the Coal Hydrology program in cooperation with the U.S. Bureau of Land Management. ### Upper Colorado - Dirty Devil Subregion - 1. Suspended-sediment data are being collected on a twice monthly basis at Colorado River at Lees Ferry, Ariz., in cooperation with the U.S. Bureau of Reclamatior, and as part of NASQAN. - 2. Suspended-sediment data are being collected on a monthly basis at Paria River at White House Ruins, Utah, Paria River below Water Pockets, Ariz. and at Paria River at Lees Ferry, Ariz., in cooperation with the U.S. Bureau of Land Management. ### San Juan
Subregion 1. Suspended-sediment data are being collected on a monthly basis at Vallecito Creek near Bayfield, Colo., as a part of the National Hydrologic Benchmark Network. - 2. Suspended-sediment data are being collected on a comprehensive level at Fremont River near Cainville, Utah, in cooperation with the Utah Department of Natural Resources. - 3. Suspended-sediment data are being collected on a daily basis at Animas River at Farmington, N. Mex., and at San Juan River at Shiprock, N. Mex., as a part of the Federal CBR program. - 4. Suspended-sediment data are being collected on a monthly basis at La Plata Creek at Colorado-Utah state line and a McElmo Creek at Colorado-Utah state line as a part of the USGS Coal Hydrology Program. - 5. Suspended-sediment data are being collected on a comprehensive level at San Juan River near Bluff, Utah. ### Special Studies An energy project "Hydrologic Surveillance of Coal Lease Areas in Northwestern New Mexico" was continued. Sediment stations were established throughout the coal lease areas and are financed by Federal CBR and U.S. Bureau of Land Management funds. As part of the program for the determining baseline conditions in the areas of potential oil-shale development in the White River basin, Utah, suspended-sediment data continued to be obtained monthly at five sites and during times of flow at four sites. This work is in cooperation with the Environmental Protection Agency, the U.S. Bureau of Land Management and the Utah Department of Natural Resources. For additional information about Geological Survey activities within this region, contact the following offices. District Chief, WRD U.S. Geological Survey Federal Building 301 West Congress Street, Box FB-44 Tucson, AZ 85701 District Chief, WRD U.S. Geological Survey P.O. Box 26659 815 Western Bank Building 505 Marquette, NW Albuquerque, NM 87125 District Chief, WRD U.S. Geological Survey Box 25046, Mail Stop 415 Denver Federal Center Lakewood, CO 80225 District Chief, WRD U.S. Geological Survey Federal Building, Room 8002 125 South State Street Salt Lake City, UT 84138 District Chief, WRD U.S. Geological Survey P.O. Box 1125 J. C. O'Mahoney Federal Center Room 5017 2120 Capitol Avenue Cheyenne, WY 82001 #### UPPER COLORADO REGION #### SOIL CONSERVATION SERVICE Erosion and sediment yield estimates were made on the following watershed: #### a. Public Law 566 | Major Drainage | Watershed | County | State | |----------------|-----------|------------|-------| | Green River | Red Crk | Sweetwater | WY | Special Study Erosion maps on 1/50,000 scale were prepared for Rio Blanco and Moffat Counties, Colorado. ### Water and Power Resources Service Water surface profiles for Wolf Creek and Twin Creek were prepared for project conditions and a scour estimate for Wolf Creek Siphon crossing for Strawberry Aqueduct was prepared. The scour estimate of 1.2 m (4.0 ft) was determined by averaging Lacey's, Blench's, Mean Water Depths, Liu's, and Navajo Indian Irrigation Project Scour vs. unit discharge methods. A field trip in May was made to the reach of channel in the East Fork of the Smith's Fork River below Stateline Dam to gather base data for a sediment transport study. Cross sections were surveyed and suspended samples were taken for each cross section at 4.5 m/s (160 ft/s) or at 5.4 m/s (190 ft/s). Bed material samples were taken at two locations and a sample of material that has been deposited in the channel was also collected. Another set of suspended sediment samples and water surface elevation data were collected at five locations in the 8.8 km (5.5 mi) reach just downstream of Stateline Dam during July when the discharge was 8.2 m/s (290 ft/s). Sediment sampling equipment and field training were provided on sampling techniques to the Southwest Regional Office and private contractor, Bio/West Inc., for the sediment sampling phase of the San Juan River Environmental Study being conducted on San Juan River below Navajo Dam. ## LOWER COLORADO REGION ### GEOLOGICAL SURVEY ### Lower Colorado-Lake Mead Subregion 1. Suspended-sediment data were collected on a monthly basis at the following sites in cooperation with the U.S. Bureau of Land Management (discontinued November 1979): Virgin River near Bloomington, Utah Virgin River above I-15 Rest Area, Ariz. Virgin River below I-15 Rest Area, Ariz. Virgin River at Mouth of Narrows, Ariz. Virgin River at Littlefield, Ariz. 2. Suspended-sediment data are being collected on a monthly basis at the following sites as part of the National Stream Quality Accounting Network (NASQAN): Virgin River above Halfway Wash near Riverside, Nev. Muddy River above Lake Mead near Overton, Nev. - 3. Suspended-sediment data are being collected at North Fork Virgin River above Zion Narrows, near Glendale, Utah, in cooperation with the Utah Department of Natural Resources. - 4. Suspended-sediment data are being collected monthly at Las Vegas Wash near Henderson, Nev., and twice-monthly at Las Vegas Wash near Boulder City, Nev., in cooperation with the U.S. Water and Power Resources Service. # Little Colorado Subregion 1. Suspended-sediment data are being collected on a monthly basis at the following sites in cooperation with the Arizona Department of Health Services: Little Colorado River at Greer, Ariz. Little Colorado River above Lyman Lake, near St. Johns, Ariz. Show Low Creek near Lakeside, Ariz. 2. Suspended-sediment data are being collected on a daily basis in cooperation with the U.S. Corps of Engineers at: Little Colorado River at Holbrook, Ariz. Little Colorado River near Joseph City, Ariz. - 3. Suspended-sediment data are being collected on a flow event basis at Leroux Wash near Holbrook, in cooperation with the U.S. Corps of Engineers. - 4. Suspended-sediment data are being collected on a daily basis at Moenkopi Wash near Moenkopi, Ariz. - 5. Suspended-sediment data are being collected on a monthly basis at Little Colorado River at Cameron, as a part of NASQAN. ### Lower Colorado Subregion 1. Suspended-sediment discharge are being collected at the following sites in cooperation with the Bureau of Land Management: Boulder Creek above Copper Creek, near Bagdad, Ariz. Copper Creek near mouth, near Bagdad, Ariz. Boulder Creek near mouth, near Bagdad, Ariz. Burro Creek above Boulder Creek, near Bagdad, Ariz. Burro Creek at US 93 Bridge, near Bagdad, Ariz. Big Sandy River near Wikieup, Ariz. Bill Williams River near Planet, Ariz. Burro Creek at old US 93 Bridge, near Bagdad, Ariz. 2. Suspended-sediment data are being collected on a monthly basis as a part of NASQAN at: Colorado River below Hoover Dam, Ariz. Bill Williams River near Planet, Ariz. Colorado River above Imperial Dam, Ariz. Colorado River at northerly international boundary, above Morelos Dam, near Andrade, Calif. 3. Suspended-sediment data are being collected on a monthly basis at Colorado River below Parker Dam, Arizona-California, and at Yuma Main Drain at Southerly International Boundary, near San Luis, Ariz., in cooperation with the Arizona Department of Health Services. #### Upper Gila Subregion - 1. Suspended-sediment data are being collected on a monthly storm-event basis at Mogollon Creek near Cliff, N. Mex. as a part of the National Hydrologic Benchwork Network. - 2. Suspended-sediment data are being collected on a monthly basis at Gila River near Redrock, N. Mex., as part of NASQAN, and at San Francisco River near Glenwood, N. Mex. in cooperation with New Mexico Interstate Streams Commission. - 3. Suspended-sediment data are being collected on a monthly basis at the following sites in cooperation with the Arizona Department of Health Services: Gila River near Clifton, Ariz. San Francisco River near Clifton, Ariz. Gila River at Head of Safford Valley, near Salomon, Ariz. 4. Suspended-sediment data are being collected on a monthly basis at Gila River at Calva, Ariz., as a part of NASQAN. # Middle Gila Subregion 1. Suspended-sediment data are being collected on a monthly basis at the following sites in cooperation with the Arizona Department of Health Services: Gila river at Winkelman, Ariz. Santa Cruz River at Rio Rico, Ariz. 2. Suspended-sediment data are being collected on a monthly basis as a part of NASQAN at: San Pedro River at Winkelman, Ariz. Gila River at Kelvin, Ariz. Santa Cruz River near Laveen, Ariz. 3. Suspended-sediment data are being collected on a weekly basis at Santa Cruz River near Nogales, Ariz., in cooperation with the Arizona Water Commission. ### Salt Subregion 1. Suspended-sediment data are being collected on a monthly basis at the following sites, in cooperation with the Arizona Department of Health Services: Black River near Fort Apache, Ariz. White River near Fort Apache, Ariz. Salt River near Roosevelt, Ariz. Tonto Creek above Gun Creek, near Roosevelt, Ariz. Verde River above Clarkdale, Ariz. Oak Creek at Sedona, Ariz. Oak Creek at Red Rock Crossing, near Sedona, Ariz. Oak Creek near Cornville, Ariz. Verde River near Camp Verde, Ariz. Gila River below Gillespie Dam, Ariz. - 2. Suspended-sediment data are being collected on a monthly basis at Wet Bottom Creek near Childs, Ariz., as a part of the National Hydrologic Benchmark Network. - 3. Suspended-sediment data are being collected on a monthly basis as a part of NASQAN at: Salt River below Stewart Mountain, Dam, Ariz. Verde River below Bartlett Dam, Ariz. # Lower Gila Subregion 1. Suspended-sediment data are being collected on a monthly basis as $\hat{\epsilon}$ part of NASQAN at: Gila River above diversions, at Gillespie Dam, Ariz. Gila River near mouth, near Yuma, Ariz. ### Sonora Subregion - 1. Suspended-sediment data are being collected on a daily basis at Sar Simon Wash near Pisinimo, Ariz., in cooperation with the U.S. Bureau of Indian Affairs. - 2. Suspended-sediment data are being collected on a monthly basis as ϵ part of NASOAN at: Vamori Wash at Kom Vo, Ariz. Whitewater Draw near Douglas, Ariz. ### Special Studies Sediment data
were collected during periods of flow at two small water-sheds in the area of strip mining along Coal Mine Wash and Coal Mine Wash at mouth near Kayenta, Ariz., as part of a study pertaining to the effects of strip mining and rehabilitation of spoil piles on the sediment yield. For additional information about Geological Survey activities within this region, contact the following offices: District Chief, WRD U.S. Geological Survey Federal Building 301 West Congress Street, Box FB-44 Tucson, AZ 85701 District Chief, WRD U.S. Geological Survey P.O. Box Box 26659 815 Western Bank Building 505 Marquette, NW Albuquerque, NM 87125 District Chief, WRD U.S. Geological Survey Federal Building, Room 227 705 North Plaza Street Carson City, NV 89701 District Chief, WRD U.S. Geological Survey Federal Building, Room 8002 125 South State Street Salt Lake City, UT 84138 #### LOWER COLORADO REGION #### SOIL CONSERVATION SERVICE - 1. Sediment yield was calculated for the design storm for Reach II of the Roosevelt Water Conservation Floodway in the following watershed: - a. Public Law 566 | Major Drainage | Watershed | Stream | County | State | |----------------|-------------------|---------------|--------|-------| | Gila River | Williams-Chandler | RWCD Floodway | Pinal | AR | ### b. River Basin Investigation An erosion map was completed for the following river basin: | Major Basin | Basin Reported | <u>State</u> | |----------------|-----------------------|--------------| | Colorado River | Little Colorado River | AR | ### c. Salinity Study Erosion and sediment relative to contribution to salinity in the Virgin River was estimated for the Moapa Valley area, Nevada. #### Non-Point Pollution Studies County sediment control plans were completed for the New Mexico counties in the region. The state sedimentation study was completed and the New Mexico Water Quality Control Commission accepted the Overall Water Quality Management Plan in May 1979. These plans and studies were done under PL 92-500, Section 208, Non-point Source Pollution. A detailed work plan for continued 208 studies was submitted to the Environmental Protection Agency and accepted December 1979. #### LOWER COLORADO REGION # Water and Power Resources Service Scour estimates for all overchutes on the Granite Reef Aqueduct of the Central Arizona Project for Reaches 9, 10, and 12 were 1.1 m (3.5 ft) at the upstream end and 1.5 to 1.8 m (5 to 6 ft) for the downstream ends. Fifty-year sediment inflow values were determined using the Water and Power Resources Service Southwestern United States sediment yield curve. Sediment deposition was 3 determined using Churchill's curve. A 50-year sediment volume of 12,200 m (9.9 acre-feet) was derived for the small area of 10.2 ha (25.1 acres) above station 695+00 on Granite Reef Aqueduct - Reach 12 which will be stored with no outlet so all sediment will be retained. For cross drainage structures occurring in Reach 3 where sediment estimates were required the equation: yield = $1.098A^{-0.24}$ was used. This gives yield in m^3/km^2 per year with the drainage area size A in km^2 . A representative attended a meeting in Boulder City, Nevada, concerning Protection of Las Vegas Valley Lateral Crossing of Las Vegas Wash from possible scour damage. The meeting was held with representatives of the Water and Power Resources Service, the State of Nevada, and Southern Nevada Water System. The group flew over the headcut on Las Vegas Wash that is a threat to the lateral. It was agreed to provide data on prediction on rate of headcut, how the headcut could be stopped, and cost of a structure to control the headcut for a meeting of the Technical Advisory group for the Southern Nevada Water System. A study of the problem showed that a 6.1 m to 9.1 m (20 to 30 ft) headcut would reach the pipe on or before January 1980 (14 percent probability) or with a 50 percent probability to reach the pipe by December 1979. A grade control structure constructed downstream from the crossing prior to January 1980 would cost approximately 2 to 3 million dollars. For Dominguez Dam a longitudinal profile sediment distribution study was made in order to define the depth of sediment of 7.6 m (25 ft) at the inlet to the Rim Basin Pumping Plant. The 100-year sediment volume of 19.3 x $10^6 \mathrm{m}^3$ (15,300 acre-feet) in the delta, 8.7 x $10^6 \mathrm{m}^3$ (7,100 acre-feet) immediately behind the dam, and 31.7 x $10^6 \mathrm{m}^3$ (25,700 acre-feet) in the intervening reach. On Twin Lakes, Charleston Heights, and Robinson Laterals on Southern Nevada Water Project a revised scour depth of 0.9 m (3.0 ft) for Rate-of-Flow-Control Station on Twin Lakes Lateral and 1.2 m (4.0 ft) for Mesa Lateral was determined by averaging results from scour depths using Lacey's, Blench's, Mean Water Depth, and Navajo Indian Irrigation Project Scour vs. unit discharge methods. ### GREAT BASIN REGION #### GEOLOGICAL SURVEY ### Bear Subregion - 1. Suspended-sediment data are being collected on a monthly and storm-event basis at Twin Creek at Sage, Wyo., in cooperation with the U.S. Bureau of Reclamation. - 2. Suspended-sediment data are being collected on a monthly-storm event basis at Bear River at Border, Wyo., as a part of the U.S. Geological Survey Coal Hydrology program. # Great Salt Lake Subregion 1. Suspended-sediment data are being collected on a monthly basis at Red Butte Creek at Fort Douglas, near Salt Lake City, Utah, as part of the National Hydrologic Benchmark Network. ### Black Rock Desert-Humboldt Subregion 1. Suspended-sediment data are being collected monthly at the following sites as part of the National Stream-Quality Accounting Network (NASQAN): Humboldt River near Carlin, Nev. Humboldt River near Imlay, Nev. Humboldt River near Rye Patch, Nev. Quinn River near McDermitt, Nev. #### Central Lahontan Subregion 1. Suspended-sediment data are being collected monthly at the following sites as part of NASQAN: Walker River near Wabuska, Nev. Carson River near Churchill, Nev. Truckee River near Nixon, Nev. - 2. Suspended-sediment data are being collected at frequencies that vary from monthly to more than twice-monthly at seven sites in the Carson River basin in cooperation with the Nevada Division of Environmental Protection. - 3. Suspended-sediment data are being collected twice-yearly at the following sites in cooperation with the U.S. Army Corps of Engineers: Martis Creek at Highway 267 near Truckee, Calif. Martis Creek Lake near Truckee, Calif. Martis Creek near Truckee, Calif. 4. Suspended-solids data are being collected twice-monthly at the following sites in cooperation with the U.S. Environmental Protection Agency: Truckee River at Farad, Calif. Truckee River at Lockwood, Nev. ## Central Nevada Desert Basins Subregion 1. Suspended-sediment data are being collected monthly at the following sites as part of NASQAN: Steptoe Creek near Ely, Nev. South Twin River near Round Mountain, Nev. Chiatovich Creek near Dyer, Nev. # Special Studies An investigation of fluvial sediment hazards to potential urban areas was continued in cooperation with the Nevada Bureau of Mines and Geology. The initial area of study was Washoe Valley, a suburban valley between the urban areas of Reno and Carson City, Nevada. Similar work has also been done in the South Lake Tahoe Area, Carson City area, and in Las Vegas Valley. Results are shown as maps of potentially hazardous areas with respect to both flooding and sediment transport, and are published by the Nevada Bureau of Mines and Geology. Some sediment-transport data are being collected from the Truckee and Carson Rivers as part of a two-year water-quality assessment study of these drainages in Nevada. Additional data are being collected from the Carson River as part of a nutrient loading study of Lahontan Reservoir, Nevada. A two-year study of the relations between fluvial-sediment transport and engineered rehabilitation of erosion in the First Creek basin of Incline Village, north Lake Tahoe, was begun in October 1979. Numerous data are being collected to evaluate effects of planned erosion-control measures in this urbanized basin. Data include sediment and nutrient concentrations and particle-size distribution of transported sediment. For additional information about Geological Survey activities within this region, contact the following offices: District Chief, WRD U.S. Geological Survey Federal Building, Room 227 705 North Plaza Street Carson City, NV 89701 District Chief, WRD U.S. Geological Survey Federal Building, Room 8002 125 South State Street Salt Lake City, UT 84138 District Chief, WRD U.S. Geological Survey P.O. Box 1125 J. C. O'Mahoney Federal Center Room 5017 2120 Capitol Avenue Cheyenne, WY 82001 #### PACIFIC NORHTWEST REGION ### CORPS OF ENGINEERS #### North Pacific Division Portland District Sediment sampling was conducted at two stations on Rogue River for post-impoundment and for planning and design purposes, respectively. Data are being maintained on suspended sediment, bed load, dissolved solids, temperature, turbidity, conductivity, pH and dissolved oxygen. Information on sedimentation ranges is listed below: 1. Project: Lost Creek Reservoir Activity: Installing monuments and surveying sedimentation ranges. All 22 designated ranges have been surveyed and tied in. The draft report will be finalized by 1 October 1980. Purpose: Initial survey of reservoir and upstream and downstream channels for later evaluation of aggradation, degradation, and siltation. Type of survey: Range Survey Elements measured: Position of monuments, profile of ground surface and river sections. Equipment used: Survey scope. 2. Project: Applegate Reservoir Activity: Installing monuments and surveying sedimentation ranges. There are designated ranges which are being surveyed and tied in. The draft report will be finalized by 1 October 1980. Purpose: Initial survey of reservoir and upstream and downstream channels for later evaluation of
aggradation, degradation, and siltation. Type of survey: Range Survey Elements measured: Position of monuments, profile of ground surface and river sections. Equipment used: Survey scope. Seattle District The following table indicates the reservoir sediment range resurveyed made in 1979: | Project | Ranges Resurveyed | |------------------|-------------------| | Howard A. Hanson | 9 | | Libby | 17 | | Wynoochee | 6 | Walla Walla District For Lower Granite Reservoir, the following ranges were resurveyed: 1. Forty-four ranges on the Snake River between R.M. 107.7 and R. M. 149.0. - 2. Three ranges on Asotin Creek, tributary to the Snake River, at R. M. 145.34. - 3. Twenty-four ranges on Clearwater River between R. M. 0.67 and R. M. 7.85. In addition to sediment ranges measured on the Clearwater River, some random soundings were taken on the Clearwater River between R. M. 0.0 and 2.0. The suspended sediment and bedload sediment sampling program at the stream gaging stations, Snake River near Anatone, and Clearwater at Spalding was completed in 1979. This program was started in March 1972 and ran continuously through FY 1979. Future sampling is not anticipated at the present time. ## PACIFIC NORTHWEST REGION ### GEOLOGICAL SURVEY # Kootenai-Pend Oreille-Spokane Subregion - 1. Suspended-sediment data are being collected on a periodic basis from Pend Orielle River at international boundary and at Spokane River at Long Lake, Wash., as a part of the National Stream Quality Accounting Network (NASQAN). - 2. Suspended-solids data are being collected at Spokane River at Riverside State Park as part of the National Water Quality Surveillance System in cooperation with the U.S. Environmental Protection Agency. - 3. Suspended-sediment data are being collected on a daily basis at Kootenai River near Copeland, Idaho, as part of the U.S. Geological Survey waterwaystreaty program. ### Upper Columbia Subregion - 1. Suspended-sediment data are being collected on a periodic basis at Columbia River at Northport, Wash., at Columbia River at Vernita Bridge, near Priest Rapids Dam, Wash., and at Okanogan River at Malott, Wash., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a periodic basis at Andrews Creek near Mazama, Wash., as a part of the National Hydrologic Benchmark Network. - 3. Monthly suspended-sedient data are being collected at the following sites as part of NASQAN: Clark Fork below Missoula, Mont. Flathead River at Flathead, British Columbia Flathead River at Columbia Falls, Mont. - 4. Suspended-sediment data are being collected on a quarterly basis at Columbia River at Richland, Wash., in cooperation with the U.S. Department of Energy. - 5. Suspended-sediment data are being collected on a daily basis from irrigation return flows at three sites and periodically from irrigation delivery flows at twenty-two sites on the Royal Slope in Washington, as part of a study of best-management practices in cooperation with the Washington State University. - 6. Suspended-sediment data are being collected on a daily basis from EL 68 wasteway near Othello, Wash. ### Yakima Subregion - 1. Suspended-sediment data are being collected on a daily basis at Yakima River at Kiona, Wash., in cooperation with the Washington State Department of Ecology. - 2. Suspended-sediment data re being collected periodically at Yakima River near Union Gap, Wash., as part of NASQAN. - 3. Suspended-sediment data are being collected on a daily basis from irrigation-return flows at four sites near Sunnyside, Wash., in cooperation with the Washington State Department of Ecology. # Upper Snake Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Cache Creek near Jackson, Wyo., as a part of the National Hydrologic Benchmark Network. - 2. Suspended-sediment data are being collected on a monthly basis and at Snake River near Heise, Idaho, as a part of NASQAN. - 3. Suspended-sediment data are being collected on a periodic basis at Blackfoot River above reservoir near Henry, Idaho, Blackfoot River near Blackfoot, Idaho, Portneuf River at Pocatello, Idaho, and at Bruneau River near Hot Spring, Idaho, in cooperation with the Idaho Department of Water Resources. ### Middle Snake Subregion - 1. Suspended-sediment data are being collected at various flow rates at Snake River at King Hill, Idaho, as a part of NASQAN. - 2. Suspended-sediment data are being collected on a monthly basis at Big Jacks Creek near Bruneau, Idaho, as a part of the National Hydrologic Benchmark Network. - 3. Suspended-sediment data are being collected on a periodic basis at Mores Creek near Arrowrock Dam, Idaho, and at Weiser River near Weiser, Idaho, in cooperation with the Idaho Department of Water Resources. ### Lower Snake Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Salmon River near White Bird, Idaho, and Clearwater River at Spalding, Idaho, as part of NASQAN. - 2. Suspended-sediment data are being collected on a periodic basis at Lapwai Creek near Lapwai, Idaho, and at Palouse River near Potlach, Idaho, in cooperation with the Idaho Department of Water Resources. - 3. Suspended-sediment data are being collected at Snake River at Burbank, Wash., as a part of NASQAN. - 4. Suspended-sediment data are being collected on a periodic basis at Minam River at Minam, Oreg., as a part of the National Hydrologic Benchmark Network, and at Owyhee River near Owyhee, Oreg., as part of NASQAN. # Middle Columbia Subregion - 1. Suspended-sediment samples are being collected on a monthly basis at John Day River near McDonald Ferry, Oreg., at Klickitat River near Pitt, Wash., and at Deschutes River near Biggs, Oreg., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a daily basis at Bear Creek near Prineville, Oreg., in cooperation with the U.S. Bureau of Land Management. ## Lower Columbia Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Columbia River at Warrendale, Oreg., Lewis River at Ariel, Wash., and at Cowlitz River at Kelso, Wash., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a daily basis at Bull Run River near Multnomah Falls, Oreg., South Fork Bull Run River near Bull Run, Oreg., North Fork Bull Run River near Multnomah Falls, Oreg., and at Fir Creek near Brightwood, Oregon, in cooperation with the city of Portland, Oreg., to provide some information needed to define the effects of activities in the basin. ### Willamette Subregion 1. Suspended-sediment data are being collected on a monthly basis from Tualatin River at West Linn, Oreg., and at Willamette River at Portland, Oreg., as a part of NASQAN. #### Oregon-Washington Coastal Subregion - 1. Suspended-sediment data are being collected on a monthly basis at Rogue River near Agress, Oreg., Umpqua River near Elkton, Oreg., Siuslaw River near Mapleton, Oreg., Alsea River near Tidewater, Oreg., Nehalam River near Foss, Oreg., Chehalis River at Porter, Wash., Willapa River near Willapa, Wash., and at Queets River near Clearwater, Wash., as a part of NASQAN. - 2. Suspended-sediment data are being collected at North Fork Quinault River near Amanda Park, Wash., as part of the National Hydrologic Benchmark Network. - 3. Suspended-sediment, bedload, and particle-size data are being collected at Soleduck River at mouth near La Push, Wash., Bogachiel River near La Push, Wash., Calawah River at mouth near Forks, Wash., and at Dickey River near Mora, Wash., in cooperation with the U.S. Corps of Engineers, Seattle District. - 4. Suspended-sediment data are being collected on a daily basis by an automatic sampler at Elliott Creek near Copper, Oreg., in cooperation with the U.S. Forest Service. - 5. Suspended-sediment data are being collected on a daily basis by automatic samplers at Rogue River below Prospect, Oreg., at South Fork Rogue River, south of Prospect, Oreg., and at Rogue River at McCloud, Oreg., in cooperation with the U.S. Corps of Engineers. - 6. Suspended-sediment data are being collected on a periodic basis at Big Butte Creek near McCloud, Oreg., at Elk Creek near Trail, Oreg., and Rogue River at Dodge Bridge, Oreg. # Puget Sound Subregion - 1. Suspended-sediment data are being collected on a periodic basis at Elwha River at McDonald Bridge near Port Angeles, Wash., Skagit River near Mount Vernon, Wash., Snohomish River near Monroe, Wash., and at Puyallup River at Puyallup, Wash., as a part of NASQAN. - 2. Suspended-sediment data are being collected on a daily basis at four sites in May Creek drainage. - 3. Suspended-sediment data are being collected during selected storm-runoff periods at three sites in the Bellevue Urban Study area in cooperation with the City of Bellevue, Wash. # Oregon Closed Basins Subregion 1. Suspended-sediment data are being collected on a monthly basis at Donner und Blitzen River near Frenchglen, Oreg., as a part of NASQAN. ### Special Studies During 1979, suspended and bedload-transport data were collected in the Snake and Clearwater Rivers in the vicinity of Lewiston, Idaho. Suspended-sediment data are being collected on a daily basis in the Rock Creek drainage near Twin Falls, Idaho, in the Marsh Creek drainage near InKam, Idaho, and in the Cedar Draw drainage near Filer, Idaho. For additional information about Geological Survey activities within this region, contact the following offices: District Chief, WRD U.S. Geological Survey Box 036 Federal Building, Room 365 550 West Fort Street Boise, ID 83724 District Chief, WRD U.S. Geological Survey 830 Northeast Holladay Street Portland, OR 97232 District Chief, WRD U.S. Geological Survey P.O. Box 1125 J. C. O'Mahoney Federal Center Room 5017 2120 Capitol Avenue Cheyenne, WY 82001 District Chief, WRD U.S. Geological Survey 301 South Park Avenue Federal Building, Room 428 Drawer 10076 Helena, MT 59601 District Chief, WRD U.S. Geological Survey 1201 Pacific Avenue, Suite 600 Tacoma, WA 98402 #### PACIFIC
NORTHWEST REGION ### SOIL CONSERVATION SERVICE Studies of erosion and sediment yields were made in the following watersheds: #### a. Public Law 566 | Major Drainage | Watershed | Stream | County | <u>State</u> | |----------------|----------------|--------------|--------|--------------| | Columbia River | East Wenatchee | Wenatchee R. | Chelan | WA | Sediment yield estimates were made to the watershed mouth with and without proposed works of improvement. Proposed works include a diversion system with a pipe entering directly into the river. Terraces and other land treatment practices were evaluated on the sediment yield calculations. Little Salmon Brundage Goose Crk Valley ID # b. River Basin Investigation | Major Basin | Basin Reported | State | |-------------|------------------------------|-------| | Columbia | Middle and Lower Snake River | ID | An inventory of erosion and sedimentation conditions was begun on the middle and lower Snake River Basins. This study will develop sediment delivery ratios by land capability unit and land use and identify conservation practices that will reduce erosion and sediment yield from cropland, rangeland, and forest and recreation lands. This data will be used in a linear programming model to predict future erosion rates for different combinations of conservation practices. #### c. Non-point Pollution Study | Area | Counties | State | |---------------|--|-------| | North Central | Wasco, Sherman,
Gilliam, Morrow, Umatilla | OR | Two watershed areas are being evaluated as a sample to extrapolate to the five county area. ### Special Study Sediment deposition within the Missouri Flats Watershed, Whitman County, Washington was measured for comparison with the suspended land sediment station located at the mouth of the watershed. This was done jointly with SEA personnel. ### PACIFIC NORTHWEST REGION # Water and Power Resources Service A degradation study and report for Grand Coulee Third Powerplant was prepared that included an analysis of the riverbed and the bank surface stability and recommendations for remedial actions to protect the riverbed and right bank during future peaking operations. Visits were made to the Vicksburg District Office of the Corps of Engineers to discuss river stabilization methods to be employed on the Columbia River downstream from Grand Coulee Dam and to the Grand Coulee Project Office with the study group to examine the 9.7 km (6 mi) reach of the Columbia River below the dam. A sediment study was prepared on sediment discharges of the Similkameer and Okanogan Rivers. The sediment rating curve derived therein gave an estimated diversion at the Cordell Pumping Plant Site of 203 tonnes (244 tons) and deposition of 107 tonnes (118 tons) of sediment per irrigation season would occur in a settling basin 122 m (400 ft) by 8.5 m (28 ft) by 3.3 m (10 ft) deep. A meeting was held to discuss the design for model studies of a below-streambed filter for excluding sediments from the irrigation waters. If a filter was used instead of a settling basin 0.15 m (0.5 ft) deep of 50 mm particles this would probably protect a filter placed below it from erosive forces. A scour study for the Similkameen River Siphon crossing was prepared. Using surveyed cross sections on the Okanogan and Similkameen Rivers a water surface profile for the 100-year flood of 1,250 m 3 /s (44,000 ft 3 /s) was computed. The hydraulics were then used to estimate a scour depth at the siphon of 3.3 m (10 ft). A field inspection of the sand problems that the Tualatin Valley Irrigation District is experiencing at the Spring Hill Pumping Plant on the Tualatin River was made and bed material samples were collected above, at, and below the pumping plant. The short-range solution to the problem is removal of the rock weir across the channel in front of the plant and relocating it downstream. The long-range solution includes three alternatives that will require feasibility studies. ### CALIFORNIA REGION ## CORPS OF ENGINEERS #### South Pacific Division # Los Angeles District Reservoir sedimentation Data Summary Sheets (ENG Form 1787) for twelve basins are completed. These basins are: Big Tujunga, Pacoima and Santa Anita Flood Control Basins and Bailey Canyon, Beatty, Big Dalton, Carter Englewild, Gordon, Harrow, Little Dalton, and Sierra Madre Villa Debris Basins. #### Sacramento District Routine samples of lake outflows were collected and analyzed for suspended sediment of Black Butte, Pine Flat, Kaweah, Success and Isabella Lakes. Samples for total and suspended sediment were collected at numerous sites on the Sacramento River. Daily samples for total sediment were collected on Cottonwood Creek during periods of high flow. #### San Francisco District Sedimentation activities during 1979 consisted of obtaining data on sediment transport and turbidity in connection with water resources projects being studied, currently authorized, under construction or in operation. These activities are summarized below: ### Sedimentation Studies for Water Resources Projects 1. There are six cooperative sediment sampling stations currently in operation in the San Francisco District. The long term sediment sampling station on the Eel River near Scotia was added to the cooperative program when funding for the station was dropped from the State of California budget. Data from this station will be used in the ongoing Eel River Basin Study. Data from the other five stations will be used to evaluate the effects of the Coyote Dam-Lake Mendocino and Warm Springs Dam-Lake Sonoma Projects on the sedimentation characteristics of Dry Creek and the Russian River and to evaluate the sediment transport characteristics of Wildcat Creek and Corte Madera Creek. The data gathered on Wildcat Creek and Corte Madera Creek will be used to develop maintenance requirements associated with the authorized flood control projects on these streams. - 2. A program designed to monitor the turbidity of inflow to and released from Lake Mendocino has been in operation since March 1973. Measurements are made biweekly by reservoir operations personnel under the guidance of the U. S. Geological Survey (USGS). The data are then published in the USGS Water Supply Papers. - 3. The turbidity monitoring program being conducted for the Warm Springs Dam-Lake Sonoma Project was continued in 1979. Water quality samples taken four times a year at four stations above the damsite are analyzed for turbidity to augment the turbidity data being gathered at the cooperative sediment sampling station, Dry Creek near Geyserville. # CALIFORNIA REGION # GEOLOGICAL SURVEY # Klamath - Northern California Coastal Subregion - 1. Lumbering and sawmill operations at the preriphery of Redwoods National Park, Calif., may load the streams entering the park with sediment and unwanted nutrients. A study is being made to determine the present rates of sediment transport, the chemical quality, and the level of nutrients of the streams at the periphery and within the park, and to provide an overall appraisal of water resources in the park. Two data releases covering the period September 1, 1973 through September 30, 1975, have thus far been published. The study will aid the National Park Service in developing and protecting the water resources and ecological system in the park. Work is being done in cooperation with the National Park Service. - 2. The Grass Valley Creek project is a continuing total-load data-collection program in cooperation with the California Department of Water Resources. The study was begun in 1976 to determine the amount of sediment contributed by Grass Valley Creek to the Trinity River below Lewiston Dam. # Sacramento Subregion - 1. A report on the trap efficiency of Highland Creek Reservoir near Kelseyville, Calif., is in preparation. This study was made in cooperation with the U.S. Soil Conservation Service. - 2. The Cottonwood Creek project is a continuing total-load data-collection program for the U.S. Corps of Engineers. Sediment data are being collected to determine sediment discharge at two dam sites and at a site near the mouth of Cottonwood Creek. - 3. The Sacramento River Bank Stabilization Project is a data-collection program for the U.S. Corps of Engineers. The purpose of the study is to determine sediment sources and sinks and modes of transport for the Sacramento River and major tributaries of the Sacramento. During 1979, total-load data were collected at 13 sites and suspended-load data were collected at one site. Bed-material samples and cross-section surveys were obtained at 37 additional sites to provide data for a HEC-6 sediment-transport model in preparation by the U.S. Corps of Engineers. In addition, one data set was obtained for the Bend Study, a program designed to provide velocity-vector data as at river bend for the U.S. Corps of Engineers. - 4. The Delta Turbidity Project is a continuing data-collection program in cooperation with the California Department of Water Resources. The purpose of the project is to determine suspended-sediment discharge and turbidity for the Sacramento and San Joaquin Rivers near their mouths. - 5. The Peripheral Canal Sediment Project is designed to provide sediment-transport information in the vicinity of the proposed Peripheral Canal Diversion site near Hood, Calif. In 1979, periodic data were obtained to determine the vertical and lateral variability in velocity, suspended-sediment concentration, and percentage of sand in suspension. The study was made in cooperation with the California Department of Water Resources. # San Francisco Bay Subregion - 1. A report on sediment transported by streams tributary to San Francisco Bay, Calif., is in preparation. Short-term sediment discharge records were used to estimate annual sediment discharge during the period 1909-66. - 2. A combination scientific and land-use planning report of Napa and Sonoma Counties in the San
Francisco Bay, Calif., region is being prepared as a culmination of geomorphic studies begun in 1971. The report is based on a four-step procedure that defines the relations among terrain properties, land use activities, and erosional problems. The four steps are: (1) identification of land use activities, (2) collation of the critical physical factors that control land-surface stability, (3) mapping of erosional and depositional features, and (4) production of a matrix relating land-use activities to erosional and depositional province disturbance potential. Study is part of the USGS-HUD San Francisco Bay, Calif., Regional Study. - 3. The Cull Canyon Project is a data-collection program to determine major sources of sediment upstream from Cull Canyon Reservoir. The study is being made in cooperation with the Alameda County Flood Control and Water Conservation District. - 4. The Lake Temescal Project is designed to determine sediment yield from various upper-basin sources and major tributaries upstream from Lake Temescal. The study is being made in cooperation with the East Bay regional Park District. # Central California Coastal Subregion A study to determine the effect of the Marble Cone Fire (August 1977), near Big Sur, Calif., on sedimentation in Los Padres Reservoir near Carmel Valley, Calif., is underway. Reservoir surveys were made in November 1977 and September 1978. Surveys will be continued on an annual or biannual basis to monitor future changes in storage capacity. This study was made in cooperation with the Monterey Peninsula Water Management District and the U.S. Forest Service. # Southern California Coastal Subregion 1. The project, "Effects of river modifications and control structures in the Santa Clara River Basin, Ventura and Los Angeles counties, California," is in progress. The study will document the effects of rivercontrol structures and of sand-and-gravel mining on streamflow, phreatophyte growth, channel morphology, and sediment transport in the Santa Clara River basin. Sediment delivery to the shoreline and sediment size, quantity, and relation to beach stability will also be examined. 2. An assessment of the impacts of off-road-vehicle use in the Canada de Los Alamos basin has been completed and is published as follows: Knott, J. M., 1980, Reconnaissance Assessment of Erosion and Sedimentation in the Canada de Los Alamos Basin, Los Angeles and Ventura Countries, California: Menlo Park, California, U.S. Geological Survey Water-Supply Paper 2061 3. A study to estimate long-term total sediment discharge in the Santa Clara River basin has been completed. The study includes estimates of sediment discharge under both natural and actual (reservoir development) conditions. A final report is published as follows: Williams, R. P., 1979, Sediment Discharge in the Santa Clara River Basin, Ventura and Los Angeles Counties, California: Menlo Park, California, U.S. Geological Survey Water-Resources Inv. 79-78, 51 p. For additional information about Geological Survey activities within this region, contact the following office: District Chief, WRD U.S. Geological Survey 855 Oak Grove Avenue Menlo Park, CA 94025 #### CALIFORNIA REGION ### SOIL CONSERVATION SERVICE 1. Studies of sediment damages and determination of sediment yields were made in the following watersheds: ### a. Public Law 566 | Major Drainage | Watershed | Stream | County(s) | <u>State</u> | |------------------|----------------|-----------|--------------|--------------| | Tulare Subregion | Tehachapi | Tehachapi | Kern | CA | | Suisun Bay | Lower Pine Crk | Pine Crk | Contra Costa | CA | #### Non-Point Pollution Studies Twenty-eight mini-reports (four for each of seven Pilot Study Areas) and a "Recommended Plan of Best Management Practices, Agricultural Sediment, Central Valley Region, California, 1979," report were published as basic data for a "208" water quality management plan developed by the State of California. The pilot study areas are: | Pilot Study Area | County | State | |--|------------|-------| | Red Bank Crk | Tehama | CA | | Buckeye-Dunnigan Crk | Yolo | CA | | Morlar Flats | Fresno | CA | | Willow Crk | Lassen | CA | | Georgetown, Camino-Fruitridge | EL Dorado | CA | | Citrus Cove | Fresno | CA | | Spanish Grant District and
Crow Crk | Stanislaus | CA | ### Special Study The Highland Creek Sediment Study in Lake County, California is being discontinued. The purpose of the study was to compare predicted sediment yield using the USLE to measured sediment deposition in two small ponds. Observations made in late 1979, indicated that removal of cover by mechanical means had ceased and cover conditions were excellent. Land use data was brought up to date on the six reservoirs that are included in the National Sediment Survey of Selected Reservoirs. #### CALIFORNIA REGION # Water and Power Resources Service The 5-, 10-, 50-, and 100-year flood peaks for two areas near inlet portal and one area at outlet portal for the Santa Clara Tunnel, San Felipe Division, were estimated. Water surface profiles and scour estimates of 1.5 m (5.0 ft) for the channel at outlet portal were also estimated. Water surface profile and scour estimates were prepared for relocation of Petroleum Creek Siphon and O&M Bridge on the Tehama-Colusa Canal. Scour estimates at both points are 1.5 m (5.0 ft) as determined by averaging results from scour depths using Blench's, Lacey's, Mean Water Depth, and the Navajo Indian Irrigation Project Scour vs. unit discharge methods. A rough draft was reviewed of the Sediment Discharge Analysis of Appendix B to the Trinity River Basin Fish and Wildlife Management Program prepared by Frederiksen, Kamine, and Associates, Inc. of Sacramento, California. A flow duration, sand discharge rating curve procedure was recommended as a check or the method for estimating sand discharge budgets. Check computations for the Grass Valley Creek sediment yield showed 0.35 tonne/km² (3,380 tons/mi²) per year based on data from near Fawn Lodge. A suspended sediment rating curve and a total sediment rating curve were developed and used in conjunction with a flow duration curve in the analysis. The Trinity River Basin Fish and Wildlife Comprehensive Action Program Draft Report by VTN Consolidated, Inc. on Fish and Wildlife Management options was reviewed. This report presented many proposals involving channelization, removal of vegetation, construction of groins, placement of large boulders in the channel, removal of channel constrictions, construction of more pools and riffles, addition of gravels, and removal of sand from the Trinity River Channel. All of these proposals on the mainstem and tributaries were not evaluated from a sediment transport, morphologic, or stability approach which will be needed for proper design. A field trip was made to the Trinity River Basin in California to collect data for a sediment transport study. Data were collected at 10 locations in a $8.0~\rm km$ (5 mi) study reach for discharges $8.5~\rm m^3/s$ (300 ft³/s) and 17.0 m³/s (600 ft³/s) which included flow measurements, water surface elevations, suspended sediment samples, bed material samples, water temperature, and bedload measurement. The bedload was measured using a Helley-Smith hand sampler; suspended samples were collected using a DH-48; and bed materials were sampled using a clam-shell sampler. A sediment transport study is being conducted as part of a task force program to eliminate sand from the Trinity River which has damaged the fish habitat. The sediment deposition problem being experienced at Twitchell Dam of the Santa Maria Project was reviewed, and it was pointed out that solutions may involve raising the outlet works intake or changing the operation of the reservoir. #### ALASKA REGION ## CORPS OF ENGINEERS #### North Pacific Division #### Alaska District The ongoing sediment transport study for the Tanana River near Fairbanks was continued for 1979. The results of this study are contained in the U.S.G.S. open file report, "Sediment Transport in the Tanana River, in the vicinity of Fairbanks, Alaska." Work was also initiated in 1979 to collect sediment data associated with the Bradley Lake Hydroelectric Project. This data and all other sediment data collected through the Cooperative Stream Gaging Program will be reported in the U.S.G.S. publication, Water Resources Data for Alaska. # ALASKA REGION # GEOLOGICAL SURVEY # Arctic Slope Subregion 1. Suspended-sediment data are being collected on a periodic basis at the Kuparuk River near Deadhorse, Alaska, as part of the National Stream Quality Accounting Network (NASQAN). Suspended-sediment data are being collected infrequently at Colville River near Nooiksut, Alaska, as part of NASQAN. # Northwest Alaska Subregion 1. Suspended-sediment data are being collected on a periodic basis at Kobuk River near Kiana, Alaska, as part of NASQAN. # Yukon Subregion - 1. A cooperative study with U.S. Corps of Engineers to collect and evaluate sediment-transport and river hydraulic data in the Tanana River near Fairbanks, Alaska, was continued in 1979. Suspended-sediment and bedload data are being collected in the Tanana River at Fairbanks, Alaska, and at Tanana River near the North Pole, Alaska. The Corps of Engineers will use these data in the design and operation of engineering structures on the Tanana River and the regulation of the quarrying of gravel from the river in the vicinity of Fairbanks, Alaska. - Report: Burrows, R. L., Parks, B., Emmett, W. W., 1977-78, Sediment Transport in the Tanana River in the Vicinity of Fairbanks, Alaska, 1979; U.S. Geol. Survey, open-file report 79-1539, 37 p. - Report in Preparation: Burrows, R. L., 1979, Cross-section, Velocity, and bed-load data at two sites on the Tanana River near Fairbanks, Alaska, U.S. Geol. Survey, open-file report. - 2. In cooperation with the Alaska Department of Natural Resources, a study was continued
in 1979 to evaluate the geohydrology of the Delta-Clearwater area in relation to the agricultural development in this area. Suspended-sediment data were collected at Clearwater Creek near Delta Junction, Alaska. - 3. Suspended-sediment data are being collected on a periodic basis at the Yukon River at Pilot Station, Alaska, and on an infrequent basis at Yukon River at Eagle, Alaska, as a part of NASQAN. - 4. Suspended-sediment data are being collected periodically at the Fortymile River near Steele Creek, Alaska. - 5. Suspended-sediment data are being collected periodically at the Tanana River at Nenana, Alaska, as part of NASQAN. # Southwest Subregion 1. Suspended-sediment data are being collected on a periodic basis at Kuskokwim River at Crooked Creek, Alaska, as a part of NASQAN. # South Central Alaska Region - 1. The cooperative program with the U.S. Army Corps of Engineers to evaluate the proposed Watana and Devil's Canyon hydroelectric power sites was continued through 1979. Suspended-sediment data are being collected on a periodic basis at Susitna River near Denali, Alaska, and at Susitna River near Gold Creek, Alaska. - 2. The cooperative program with the U.S. Forest Service was continued through 1979. Suspended-sediment data are being collected on a periodic basis at Dick Creek near Cordova, Alaska, and at West Fork Olsen Bay Creek near Cordova, Alaska. These data will be used to define the water quality on Forest Service lands. - 3. A periodic suspended-sediment data co.lection program was initiated in October, in cooperation with the U.S. Army Corps of Engineers, on Katchamak Creek (entering Bradley Lake) near Homer, Alaska, and Bradley River (Bradley Lake outlet) near Homer, Alaska. There data are in support of a hydroelectric power study by the Corps and will be used in evaluating reservoir storage capacity and structure design. - 4. A cooperative study was initiated with the U.S. Fish and Wildlife Service to describe the channel morphology, hydrology, sediment transport, and water quality of the Kenai River between Skilak Lake and the mouth. Daily suspended-sediment samples were collected from the Kenai River at Soldotna, Alaska, from August 29 through December 5, 1979. - 5. Suspended-sediment data are being collected on a periodic basis at Talkeetna River near Talkeetna, Alaska, as part of the National Hydrologic Benchmark Network. - 6. Suspended-sediment data are being collected on a periodic basis at Susitna River at Susitna Station, Alaska, and at Copper River near Chitina, Alaska, as a part of NASQAN. - 7. Suspended-sediment data are being collected on a miscellaneous basis at the following sites: Chuitna River near Tyonek, Alaska Skwentna River near Skwentna, Alaska # Southeast Alaska Subregion 1. As part of the cooperative program with the U.S. Forest Service, suspended-sediment data are being collected on a periodic basis at the following sites: Kalinin Creek near Sitka, Alaska Old Tom Creek near Kasaan, Alaska Big Creek near Point Baker, Alaska Perkins Creek near Ketchikan, Alaska Rocky Pass Creek near Kake, Alaska Zarembo Creek near Wrangell, Alaska Zarembo Creek near Point Baker, Alaska Navy Creek Outlet near Myers Chuck, Alaska Municipal Watershed Creek near Petersburg, Alaska Stephens Creek near Angoon, Alaska Nicholas Creek near Angoon, Alaska East Bradfield Creek near Wrangell, Alaska Greens Creek near Juneau, Alaska - 2. A cooperative study with the Alaska Department of Environmental Conservation on the hydrology and water quality of the Keta River basin near Ketchikan was continued in 1979. Suspended-sediment data are being collected at Keta River near Ketchikan, Alaska, and at White Creek near Ketchikan, Alaska. - 3. Suspended-sediment data are being collected on a periodic basis at the Stikine River near Wrangell, Alaska, and at Skagway River at Skagway, Alaska, as a part of NASQAN. - 4. Suspended-sediment data are being collected on a miscellaneous basis at Whipple Creek near Ward Cove, Alaska. For additional information about Geological Survey activities within this region, contact the following office: District Chief, WRD U.S. Geological Survey Skyline Building 218 East Street Anchorage, AK 99501 # HAWAII REGION # GEOLOGICAL SURVEY # Hawaii Subregion - 1. Monthly suspended-sediment data collection was discontinued at Wailuku River at Piihonua, Hawaii. The station was relocated 4 miles downstream as a part of the National Stream Quality Accounting Network (NASQAN). - 2. Suspended-sediment data are being collected on a monthly basis at Honolii Stream near Papaikou, Hawaii, as a part of the National Hydrologic Benchmark Network. - 3. Suspended-sediment data are being collected on a daily basis at one site in the Wailuku River basin, Hawaii, in cooperation with the U.S. Corps of Engineers. An automatic sampler was installed at the sampling site in Hilo. Data collection was disrupted in November 1979 during a tropical storm when record high water destroyed the gaging station. # Maui Subregion 1. Suspended-sediment data are being collected on a monthly basis at Kahakuloa Stream near Honokohau, Hawaii, as a part of NASQAN. # Molokai Subregion 1. Suspended-sediment data are being collected on a monthly basis at Halawa Stream near Halawa, Hawaii, as a part of NASQAN. # Oahu Subregion - Suspended-sediment data are being collected at the following sites: - (a) Waikele and Kalihi Streams, Hawaii, as a part of NASQAN. - (b) Kipapa and Kalihi forest reserves, Hawaii, in cooperation with the U.S. Forest Service. - (c) Kamooalii Stream near Kaneohe, Hawaii, in cooperation with the U.S. Corps of Engineers. - (d) Moanalua Valley in cooperation with the State of Hawaii, Department of Land and Natural Resources. ### Kauai Subregion 1. Suspended-sediment data are being collected on a monthly basis at Waimea River at Waimea, Hawaii, as a part of NASQAN. For additional information about Geological Survey activities within this region, contact the following office: District Chief, WRD U.S. Geological Survey P.O. Box 50166 300 Ala Moana Boulevard, Room 6110 Honolulu, HI 96850 ### CARIBBEAN REGION # GEOLOGICAL SURVEY # Puerto Rico Subregion - 1. Suspended-sediment data are being collected on a bi-monthly basis at 48 sites in cooperation with the Puerto Rico Environmental Quality Board. - 2. Suspended-sediment data are being collected on a monthly basis at the following sites as a part of NASQAN: Río de la Plata at Toa Alta, P.R. Río Grande de Manatí near Manatí, P.R. Río Grande de Añasco near San Sebastian, P.R. Río Grande de Patillas near Patillas, P.R. Río Fajardo near Fajardo, P.R. Río Cerrillos near Ponce, P.R. - 3. Suspended-sediment are being collected on a daily basis at Río Tanamá near Utuado, P.R., in cooperation with the Puerto Rico Environmental Quality Board. - 4. Suspended-sediment are being collected on a daily basis at Río Cerrillos near Ponce, P.R., in cooperation with the U.S. Corps of Engineers. For additional information about Geological Survey activities within this region, contact the following office: District Chief, WRD U.S. Geological Survey P.O. Box 34168, Building 652 Ft. Buchanan, PR 00934 #### SOIL CONSERVATION SERVICE - 1. Reservoir Sedimentation Survey - a. A sedimentation survey was conducted in November 1979, on Loiza Lake (Carraizo). Sediment accumulations have not yet been computed. ### Water and Power Resources Service Estimates of sediment deposition behind Guajataca Dam were made for existing and 2079 conditions. The estimated yield rate, using a yield vs. drainage area relationship developed for Northern and Central Puerto Rico from reservoir resurveys was 1,570 m /km² (3.29 acre-feet/mi²) per year. The estimated existing and 2079 deposition was 2,900 acre-feet and 8,600 acre-feet, respectively. ### FOREIGN ACTIVITIES # Water and Power Resources Service A letter from Mr. M. S. Pattihal of India inquired about standard particle sizes of sediment samples collected during sediment surveys in reservoirs. References were made to the AGU classification published by Mr. E. W. Lane in 1947, which has been adopted in sedimentation investigations in the United States. Feasibility Design Data for Miramar Dam and Brito Entrance Channel Headwork Structures in Nicaragua were reviewed and changes in the report were recommended as follows: 1. The sediment density should be changed to 1.36 t/m^3 (84.8 lb/ft³); 2. For feasibility designs a sediment yield of 459 t/km^2 (1,310 tons/mi²) per year for the Brito River Basin should be used; 3. The estimated trap efficiency for Miramar Reservoir should be 45 percent according to 3 the Brune Procedure; 4. The 100-year volume of sediment is $4.65 \times 10^{6} \text{ m}^3$ (3,700 acre-feet). This gives a depth of sediment at the dam of 3.1 m (10.3 ft) or to an elevation of 10.1 m (33.3 ft); and 5. A stability as well as a sediment transport study are needed for the canal which connects Lake Nicaragua with Miramar Reservoir. A presentation to a group of Agricultural Engineers from India included a series of slides showing the techniques used by the Water and Power Resources Service for excluding the coarser sand size material at diversion structures to canals. Water surface profiles and degradation estimates were made downstream of Batu Damsite, Kuala Lumpur Flood Mitigation Project in Malaysia. An estimated degradation of 0.3 m (1.0 ft) downstream of the dam is considered small; therefore, no tailwater study based on degraded conditions is required. A representative of the Water and Power Resources Service attended the United States - Pakistan Binational Symposium in Lahore, Pakistan. The symposium on the Mechanics of Alluvial Channels sponsored by the National Science Foundation consisted of presentations of many technical papers on many aspects of the data collection program on canals in Pakistan and Panel Discussions by participants on the present and future program in Pakistan. A field trip was made to the Mangla
Dam and Tarbela Dam Projects to observe sediment and erosion problems especially at Tarbela Dam on the Indaus River. LABORATORY AND OTHER RESEARCH ACTIVITIES ## CORPS OF ENGINEERS ### Coastal Engineering Research Center DATA COLLECTION OF LITTORAL MATERIALS AND FORCES (LEO). The Littoral Environment Observation (LEO) program is a cooperative program carried out among Corps of Engineers District Offices, CERC, representative state agencies and volunteer observers. The present program involves the States of California, Michigan, Texas, Florida, Maryland, Oregon, Ohio, Georgia, Wisconsin, Washington, North Carolina, South Carolina, Pennsylvania, Massachusetts, and New York. In addition, LEO sites established under the Section 54 SEAP Program include the states of Washington, Alaska, Hawaii, Pennsylvania, California, Florida, Louisiana, Oregon, South Carolina, North Carolina, Ohio, Michigan and Wisconsin. The parameters measured daily are: breaker height, period, direction, type; longshore current velocities; wind speed and direction; foreshore slope; rip current spacing; beach cusp spacing and monthly sand samples. Weekly profile measurements are made at the sites in New York. The LEO data is collected, collated and summarized for participating Corps Districts, state agencies and other volunteers. These data summaries show the climatology of surf, nearshore currents, coastal winds, beach geometry and sediment characteristics. NUMERICAL MODELING OF COASTAL SYSTEMS. This study was initiated in 1976 to investigate the feasibility of developing a numerical model that would predict the response of a shoreline to changes in wave energy acting on it. Initial conclusions are that an approximate model suitable for use in planning studies can be developed that will provide estimates of the effects of various coastal structures on adjacent shorelines. A detailed literature survey of publications relating to mathematical prediction of shoreline evolution was published in 1977. (MR 77-10, "Mathematical Modeling of Shoreline Evolution" by B. LeMehaute and M. Soldate.) Current efforts are being directed toward the development of a numerical computer model based on the equations of longshore sediment transport and the mass balance equation for the sediment. A paper describing the mathematical model was published in 1979 (M. Perlin, "Predicting Beach Planforms in the Lee of a Breakwater," Coastal Structures 79, proceedings published by the American Society of Civil Engineers, 1979). Several contract reports will be published in 1980 and 1981. The eventual product will be a computer program that will permit preconstruction estimates of the effects of proposed coastal structures, the interaction among several coastal structures along a shoreline and a method of estimating the damages attributable to the construction of a given navigation project. WEIR JETTY ORIENTATION AND ELEVATION. A three phase study to investigate the functional and hydraulic behavior of weir jetty systems was initiated in late 1976. The research study includes two sets of laboratory experiments and a prototype data collection program. A series of movable-bed laboratory tests will seek to quantify the distribution of sediment transport across a weir section for various wave conditions. A second series of tests using tracer material in a fixed bed model will attempt to determine relative volumes of sediment carried over the weir section and around the jetty and monitor the response of the updrift shoreline of a number of weir jetty systems to changes in wave direction. The prototype data collection program will measure the distribution of sediment transported across the weir sections of currently existing systems. Expected output from this study will permit designers to use the empirical data to evaluate proposed weir jetty system designs and to establish OPTIMUM weir crest elevation, orientation and length. PROTOTYPE EXPERIMENTAL GROIN, POINT MUGU, CALIFORNIA. The experimental and data collection phase of the study was completed 30 June 1976. All components of the permeable groin were removed by January 1977. The study is currently in the data analysis phase. The final hydrographic survey and sediment samples were obtained in May 1976. Approximately 500 sand samples have been analyzed to determine mean particle size distribution and other statistical parameters. These parameters are being studied to determine their relationship to the longshore energy transport, foreshore beach slope and beach firmness. This information will be included in the report on the functional performance of the experimental groin due to be published in 1980. EVALUATION OF SHORE PROTECTION STRUCTURES. Analysis of the data from the North Carolina Beaches and the Texas Coast Inlet Study is currently in progress, the former under contract and the latter in-house. A CETA relating sea-level rise to erosion rates was completed and published in May 1979. The final draft of a report entitled "Guidelines for the Design of Weir Jetty Sand By-passing System" has been completed and is being reviewed. Monitoring programs have been initiated at Lakeview Park, OH (Offshore Breakwaters), Murrels Inlet, SC (Weir Jetty System), and Little River Inlet, SC (Weir Jetty System). Monitoring plans will be developed for Tybee Island, GA (A proposal groin with weir section) and Presque Isle, PA (Series of Detached Breakwaters). Data sheets for evaluating low cost shore protection in the field are being developed to result in a loose leaf notebook on the structural characteristics and performance of various low cost shore protection schemes. SEDIMENTATION IN HIGH TIDE RANGE AREAS. Objectives of this study are to develop methods to predict the degree of shoaling that might be expected in a prototype harbor basin in Alaskan waters or other high tide range areas, and to develop a means of minimizing shoaling. Emphasis in 1979 was on report writing. Two reports were completed: - 1. Everts, Craig H. "A Method to Forecast Sedimentation Rates Resulting From the Settlement of Suspended Solids Within Enclosed Harbors", CERC publication expected in 1980. - 2. Everts, Craig H., "A Method to Predict the Stable Geometry of a Channel Connecting an Enclosed Harbor and Navigable Waters", CERC publication expected in 1980. and one was prepared for presentation to the 17th Coastal Engineering Conference: Everts, Craig H., "Design of Enclosed Harbors to Reduce Sedimentation", to be published in Conference proceedings. CURRITUCK SAND BYPASS TEST. The split-hull dredge CURRITUCK has the capability to excavate sediment from shallow coastal inlet entrance channels and transfer that sediment to shallow nearshore areas adjacent to the inlets. The purposes of the CURRITUCK study were to monitor the movement of dredged material placed in the nearshore zone; to determine its response to littoral processes; and to evaluate the shallow water placement technique for beach restoration application. Phase I of the study was a 1976 field effort to monitor the movement of 35,000 yd³ (27,000m³) of sand placed as a single mound in minimum water depths of 8 feet near New River Inlet, NC. The major finding was that most of the sand moved rapidly landward into the surf zone. The success was incomplete, though, in that most of the dumped sand, once it reached the surf zone, was carried in an alongshore direction rather than onshore to restore the adjacent beach. The net volume of sand in the total littoral system, however, was increased. Following completion of Phase I, a Phase II field operation was initiated at the same field site during the summer of 1978 to examine the movement of sand placed in several mounds at different water depths. If a timely shoreward movement of sand continued to result with the deeper water placement technique, the cost efficiency of the disposal operation could be significantly increased. The twelve-month Phase II field study was conducted during the summer and fall of 1978 and the winter and spring of 1979. A total of $53,000~\text{yd}^3$ of sand was placed as three separate mounds in water depths of 8 ft, 10 ft, and 12 ft. Time-sequence profile data (CRAB surveys), sediment samples and wave and current date were collected. An examination of the data set indicates that the shallowest mound responded similarily to that of Phase I. Although sand movement occurred on the deeper-water mounds, the transport effects were much less. Analysis of data from the twelve-month field effort has been done and it is anticipated the report will be prepared in 1980. An initial report on Phase I was published in 1977(ASCE Sediment '77, "Nearshore Disposal: Onshore Sediment Transport," by R.K. Schwartz and F.R. Musialowski) and a more extensive final report is being published by CERC. An interim report on Phase IV was finalized in May 1979. EVOLUATION). Long-term changes in the water elevation on the Great Lakes are cyclic, but unpredictable. As the weather varies there are periods of rising water levels which last for several years followed by similar periods of falling levels. After reaching a 115-year record low in 1964, the annual mean surface elevation of Lake Michigan rose steadily to an 86-year record high in 1973. Beach profile sites initially established by the Lake Survey (USCEC) in 1967 on the east shore of Lake Michigan were resurveyed in 1969, 1971, 1975, and 1976 to gain insight into beach and nearshore bathymetric changes which accompanied this long term rise in lake levels. Comparison of short-term profile changes (days to months) with the net change over a number of years, indicated that storm and seasonal effects were overshadowed by the gradual, cumulative adjustment of the profile. Between 1967 and 1971 the annual mean elevation of Lake Michigan rose 0.5 meters. In the restricted area where profiles dated back in 1967, most of the inner three longshore bars also rose 0.5 meters in elevation and migrated 26 meters
landward. The shoreline retreated an average of only 13 meters during this period. Roughly one half of this retreat was attributable to simple submergence as the lake rose; the other half represented recession due to actual erosion. A report summarizing bar characteristics and profile changes between 1967 and 1971 was published, (TR-76-1), "Observations of Barred Coastal Profiles Under the Influence of Rising Water Levels, Eastern Lake Michigan, 1967-71," by E.B. Hands. In a cooperative program with NOAA the profile sites were resurveyed in 1975. Results showed that the rate of shore retreat remain well above the historic average even though the water level had reached its peak two years earlier. A presentation on the effect of submergence on shore erosion rates was made before the 2d International Symposium on Land Subsidence, December 1976. ("Some Data Points on Eroison and Flooding for Subsiding Coastal Region," by E.B. Hands). The study was resurveyed in 1976 to test, among other things, if recession was still continuing. At most stations the recession had slowed and some accretion had isolated the formerly receding dune face from continued wave erosion. The net erosion measured over the three years since the water levels peaked had caused the shore to recede to a position in good agreement with that which had been predicted in CERC TR 76-1 as necessary to bring the profile back in equilibrium. Erosive recession now accounted for 80% of the total shore retreat. A presentation on the impact of coastal subsidence was made at the ASCE Sediments Symposium (November 1977) based on the 1967 to 1975 profile measurements together with data on changes in historic shoreline position elsewhere around Lake Michigan. ("Implications of Submergence for Coastal Engineers," E.B. Hands). In 1978 two CERC reprints based on this work unit were distributed (reprints 78-7 and 78-11). A report was prepared summarizing all shoreline changes from 1967 to 1976 and recommending a simple procedure for estimating future shore retreat under similar situations. In 1979 the aformentioned report received CERC, NCD, and non-Corps review; and was revised and edited for CERC publication. A final report on this work unit was prepared summarizing not just nearshore but offshore bathymetric changes. Offshore desposition balanced nearshore erosion. The effects of the two processes was to shift the entire active profile inland and upward. The outer depth of profile adjustment was related to local wave climate. Geographic variations in the depth of adjustment were calculated using WES hindcast wave statistics. The final report concludes with a method for predicting the ultimate profile adjustment to any change in mean lake level and for all sandy reaches on the U.S. side of the Great Lakes. #### BEACH FILL SEDIMENT CRITERIA - 1. <u>Guidelines for the Design of Beach Fills</u>. Guidance for fill specification, prediction of fill performance, borrow source and beach sampling, and granulometric description of sediments are provided by (1) CERC TM 60 "Techniques in Evaluating Suitability of Borrow Material for Beach Nourishment" by James, (2) CERC TP 77-6 "Review of Design Elements for Beachfill Evaluation" by Hobson and, (3) CERC CETA 79-7 "Meeting and Use of Phi Grade Scale" by Hobson. - 2. Monitoring Beach Fill Performance. The first field monitoring study to test proposed beachfill models was completed at Imperial Beach, CA, and analysis of those data is nearing completion. Monitoring of the fill project at Surfside/Sunset Beach, CA was begun and a third monitoring site will be selected soon. These long-term projects will provide data for field validation and modification, if necessary, of the Renourishment and Fill Factor models presented in the Shore Protection Manual. - 3. Evaluation of Potential Nearshore Borrow Sources. Offshore sand bodies may become a important future source for beach fill sediment. Ebb tidal delta complexes are commonly found along the East Coast and one such delta at New River, NC, was core sampled and surveyed to generally assess its fill potential. Results from this study and from additional studies to be carried out at other "typical" sand bodies will provide a basis for generally evaluating the fill potential of these kinds of sand resources. - 4. <u>Handling Loss Experiments</u>. Three experiments were conducted in North Carolina and New York to evaluate modifications to sediment texture caused by dredging and handling operations. Results from these experiments reported by R.D. Hobson at three engineering conference were that winnowing losses generally improved the predicted performance of dredged sediments as beach fill, and that a mathematical model shows promise which estimates potential handling losses by comparing textural attributes of sedimentary materials. - 5. Other Ongoing Studies. Core sampling studies across the active profile are providing the depth component of beach sediment textural variability for use in improving beach sampling guidelines. Also, the analysis of sediments core-sampled from a sand trap feature at Channel Islands, CA, will provide data to estimate the winnowing function of the renourishment beach fill model, to document the textural filling history of the sand trap, and will serve as a basis for evaluating the relative merits of core sampling versus surface sampling of nearshore sediments. COASTAL SEDIMENTS. Analyses and interpretation of seismic records and sediment cores from the Atlantic Coast, Gulf Coast and Great Lakes continued through 1979. In addition 300 trackline miles of seismic reflection and side-scan sonar data were collected off the coast of southern California from Oceanside Harbor to the Mexico border. Data is now being analyzed for the purpose of selecting core sites for cores to be collected in the summer of 1980. - 1. Reports published during the report period together with major conclusions and applications follow: - a. Meisburger, E.P., "Reconnaissance Geology of the Inner Continental Shelf, Cape Fear Region, North Carolina", T.P. 79-3, U.S. Army Corps of Engineers, Coastal Engineering Research Center, Ft. Belvoir, Va., Sept. 1979. This report contains data on the surficial and shallow subsurface sediments and rocks which are applicable to the planning, design and construction of engineering works on the inner shelf and to studies of sediments sources and movement in the coastal and inner shelf zones. - b. Meisburger, E.P., Williams, S.J. and Prins, D.A., "Sand Resources of Southern Lake Michigan", M.P. 79-3, U.S. Army Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, VA, July 1979. This report contains information concerning the general location and configuration of sand deposits off the eastern shore of Lake Michigan and their suitability for use in beach restoration projects. It can be utilized to determine the location and general character of sand deposits for planning beach restoration projects. - c. Williams, S.J., Prins, D.A. and Meisburger, E.P., "Sediment Distribution, Sand Resources and Geologic Character of the Inner Continental Shelf off Galveston County, Texas", M.P. 79-4, U.S. Army Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., July 1979. This report contains data on the location and general character of sand deposits on the inner shelf and their suitability for use in restoration and nourishment of local beaches. In addition information is given on the shallow stratigraphic framework of the inner shelf and the character of surficial and subsurface geologic units. The study can be used for the planning, design and construction of beach restoration projects and the development of engineering works in or affecting inner shelf waters. - d. Field, Michael, E., "Sediments, Shallow Subbottom Structure, and Sand Resources of the Inner Continental Shelf, Central Delmarva Peninsula", T.P. 79-2, U.S. Army Corps of Engineers, Coastal Engineer Research Center, Fort Belvoir, Va., June 1979. This report contains information on the shallow geologic framework of the inner shelf and the location and general character of sand deposits usable for beach restoration and nourishment on the adjacent coast. It is applicable to planning and design of beach restoration projects and engineering works on the inner shelf. - e. William, S.J., "Geologic Effects of Ocean Dumping on the New York Bight Inner Shelf", Reprint 79-1, from Palmer, H.D. and Gross, M.G. ed. "Ocean Dumping and Marine Pollution," Dowden, Hutchinson and Ross, Inc., Stroudsburg, Penn., 1979. - f. Field, M.E., Meisburger, E.P., Stanley, E.A. and William, S.J., "Upper Quaternary Peat Deposits on the Atlantic Inner Shelf of the United States", Reprint 79-7, from Bulletin of the Geological Society of America, Vol.90, pp. 618-628, July, 1979. - 2. The following reports are in draft form and being reviewed for publication: - a. Sand Resources and Regional Geology off the South Shore of Lake Erie Conneaut, Ohio to Erie, Pennsylvania. - b. Sand Resources off the South Shore of Lake Erie, Conneaut, Ohio to Toledo, Ohio. - c. Regional Geology of the Lake Floor of Lake Erie from Conneaut, Ohio to Toledo, Ohio. - d. Data Collection Methods for Sand Inventory Type Surveys. - e. Sand Resources of the Cape May Region, New Jersey. - 3. The following in-house reports were in work prior to the end of 1979: - a. Sand Resources of the Egg Harbor Barnegat Area, New Jersey. - b. Sand Resources and Regional Geology of Long Island Sound. - 4. The following papers completed in 1979 have been accepted for publication by journals and will be published in 1980: - a. Meisburger, E.P., "A Cretaceous Tertiary Depositional Sequence in the Submerged Coastal Plain off North Carolina", Southeastern Geology, in press. - b. Meisburger, E.P., Williams, S.J., and Prins, D.A., "An Apparatus for Cutting Core Liners". Journal of Sedimentary Petrology, in press. STORM EROSION STUDIES. The purpose of
this study is to develop methods for predicting storm-induced beach changes. During the first phase of the study (to be completed in FY 80), measured beach changes will be empirically related to storm parameters. Available data include storm change surveys conducted by this study between November 1975 and March 1978 and similar data collected under CERC's Beach Profiling Program between 1962 and 1977. Attempts were made to isolate storm effects by surveying just before and just after major storms. Some of the best data obtained were collected during the winter of 1977-1978 when three major northest storms occured. Data are collected at three locations: Long Beach Island and Ludlam Island, New Jersey, and Bodie Island, North Carolina (near CERC's Field Research Facility). Dramatic changes occured during these storms with frequent lowland flooding and extensive dune erosion. A paper discussing the best monitored storm, which occured 19 December 1977, was published in the January 1979 issue of Shore and Beach. During the second phase of the study, to begin in FY 80, a numerical model of nearshore sand movement will be developed, calibrated, and verified using data collected at CERC's FRF. This is a major effort aimed at understanding and predicting the physical processes which caused storm erosion. BEACH PROFILE STUDIES. The objectives of these studies are to observe the response of beaches to waves and tides of specific intensity and duration and to develop predictive techniques for estimating seasonal and storm-induced beach changes. During the 1979 calendar year emphasis continued on the preparation of locality reports summarizing data collected since 1962. The report "Beach Changes at Westhampton Beach, New York, 1962-73" by A.E. DeWall was published as CERC MR 79-5. This report documents the temporal and spatial changes along 20 profile lines at Westhampton Beach. These data show that shoreline erosion rates of 2 to 3 meters per year within and updrift of a large groin field were reversed after groin construction, while shoreline erosion immediately downdrift of the groin field increased. Profile lines updrift of the groin field accreted at a rate of 1 meter per year, as measured at the MSL shoreline. Profile lines with the groin field accreted at a rate of 3 meters per year, while a profile line downdrift eroded at a rate of 28 meters per year. A final draft report "Beach and Inlet Changes at Ludlam Beach, New Jersey," by C.H. Everts, A.E. DeWall, and M.T. Czerniak, was submitted for CERC publication. Survey data collected along 20 profile lines indicate a net shoreline erosion rate of 1.6 meters per year. A final draft report "Beach Changes at Atlantic City, New Jersey, 1962-1973," by D.P. McCann was submitted for CERC publication. This report documents profile changes along the northeastern half of Absecon Island and includes the effects of two beach nourishment projects. The net shoreline change along 7 profile lines was an accretion of 0.73 meters per year. Beach fill placed on the northeastern end of the island effectively nourished downdrift beaches for up to 5 years. A final draft report "Effect of Structures and Lake Level of Bluff and Shore Erosion in Berrien County, Michigan," by W.A. Birkemeier was submitted for CERC publication. This report documents bluff recession rates averaging 3.8 meters per year and shoreline erosion rates averaging 3.1 meters per year along the eastern shore of Lake Michigan between 1970 and 1974. A final draft report "Beach Profile Analysis System" by M.V. Fleming and A.E. DeWall documents a package of computer programs for editing, analyzing and displaying beach profile data. In a cooperative study with the Navy Civil Engineering Laboratory, an inventory of available repetitive nearshore profile surveys was made to determine and ultimately predict, the magnitude and location of maximum sandlevel fluctuation that occurs over less than a 2-year interval. A total of 33 data sets (1,049 profiles) representing eight coastal localities was used in the analysis. The zone of maximum sand level fluctuation was found to extend from the berm to a median depth that is approximated by the annual extreme wave height (conditions exceeded for 12 hours per year). At the most exposed of the sites - Duck, North Carolina - a maximum sand level change of 4.0 meters was observed 90 meters seaward of the average shoreline position. LIMITING WATER DEPTH TO SAND BEACH EROSION BY WAVES. A review of available laboratory measurements has resulted in a paper by Robert Hallermeire, "Criteria for Sand Motion Initiation by Water Waves," presently being considered for ASCE publication. The new calculation procedure for predicting sand motion corrects and simplifies the Shields criterion from steady flow in certain respects. Further research still to be reported, has found that the calculated maximum water depth for sand motion is directly related to a certain seaward limit of profile modification in the available data base of laboratory tests on profile development towards equilibrium. WAVE-SEDIMENT INTERACTION STUDIES IN A WATER TUNNEL. For a CERC-sponsored study, Karl Lofquist of the National Bureau of Standards has developed an apparatus for measuring wave energy loss due to natural sand beds. The sinusoidal-flow water tunnel has been partitioned into two channels, one with smooth rigid walls and the other with a horizontal sand bed; measurements of differential pressure between the two channels are analyzed to determine the stree coefficient due to the sand bed through the flow cycle. Lofquist will present first results from the ongoing experimental program in March 1980, at the 17th International Conference in Coastal Engineering in Sydney, Australia. LONGSHORE TRANSPORT. A report is being written summarizing fifteen experiments relating wave conditions to longshore transport rate performed in the Shore Processes Test Basin, at generator angles of 0, 10, 20, and 30 degrees. Measurements include hourly values of wave breaker angle, wave height, and longshore current, and four-hourly values of transport rate. The data show considerable variability in all measured quantities that does not appear to have been reported in previous tests, probably because data were not previously measured so systematically. Initial results are similar to past laboratory tests. SUSPENDED SEDIMENT - COMPARISON OF CONCENTRATION MEASUREMENTS OBTAINED WITH THREE FIELD-PROVEN METHODS. Experiments were conducted in the Large Wave Tank at CERC during September 1979 to permit comparison of suspended sediment concentrations measured with 3 devices: an in situ bulk sampler, developed by Timothy Kana at the University of South Carolina; a 3mHz acoustic sensor, developed by John Proni at the Atlantic Oceanographical and Meterological laboratories, NOAA; and a pump sampler, similar to that used in the field by John Fairchild of CERC. The tests had unbroken waves up to 1.5-meter high in 4 meter water depth over fine and medium quartz sand beds. A report being written will compare the ratios of sediment concentration at several elevations determined using the three devices. LITTORAL TRANSPORT TESTING PROCEDURES. The purpose of this work unit is to improve the understanding and operation of coastal engineering laboratory experiments and models. During 1979 preliminary work on a manual for the design and operation of movable coastal engineering laboratory experiments was stated. # CORPS OF ENGINEERS ### The Hydrologic Engineering Center Work at the Hydrologic Engineering Center (HEC) continued to focus on improvements to the mathematical model HEC-6, "Scour and Deposition in Rivers and Reservoirs." The two major accomplishments were: - 1. Development of the capability to simulate gravel mining operation. The program was modified to recognize removal of user specified volumes of material from the stream bed. The volumes are specified as rates of removal at given locations for given durations. This volumetric change is included with the calculated changes due to material entering the reach from upstream, and changes in transport capacity and bed material gradation to calculate net changes in transport rate, bed elevation, and bed material gradation. - 2. A graphics display package was developed for the program. This package allows the user to view plots of cross-sections, bed profiles, and changes in bed profiles due to scour and depostion, and bed material grain size distributions. Additional work was done to develop an explicit coupling between a two-dimensional hydrodynamic model (RMA-2) and a two-dimensional sediment transport model (STUDH). The objective of the work was to develop capability for simulating horizontal flow systems, such as occur in some estuaries, in which the scour or deposition of bed sediments modifies the bed topography enough to significantly change the flow field. ### CORPS OF ENGINEERS Waterways Experiment Station # Title of Study: Definition of Cause of Navigation Channel Shoaling # Conducted by: U.S. Army Engineer Waterways Experiment Station ### Conducted for: Office, Chief of Engineers ## Summary of Accomplishments: The Definition of Cause of Navigation Channel Shoaling study was a portion of the Improvement of Operations and Maintenance Techniques (IOMT) program during FY 78 and was transferred to the Coastal Engineering program for FY 79. It is funded by the Office, Chief of Engineers. The objective of this research is to develop a coherent approach for the solution of estuarine navigation channel shoaling problems. This will be accomplished by classifying estuaring shoaling problems and showing how these problems should be solved, detailing step-by-step procedures. Areas requiring further research will be identified. Thus far, the major area of investigation has been literature surveys to isolate available information on the processes causing significant shoaling in navigation channels and ongoing
research. A detailed review of pertinent literature on 43 Corps projects was also initiated to determine characteristics and magnitude of dredging at these sites. The following have been defined as subtasks of this study: - 1. Evaluation and extent of shoaling problem--nationwide. - Survey and evaluation of shoaling volume determination. - 3. Hydraulic research on causes of navigation shoaling. - 4. Research on prediction of sediment transport, deposition, erosion, and resuspension. - 5. Research on techniques to reduce shoaling cost. - 6. Data management. The objective of each of these subtasks has been formulated. Information derived from these subtasks would be used to generate an instructional report which would describe how to approach and solve navigation channel sedimentation problems. Thus, during FY 78 (our first year), we assembled the available information in a manner which will eventually allow it to be applied to reduce maintenance dredging. During FY 79, a detailed outline of a report was prepared on the six subtasks of the project, field studies were formulated for various Corps projects, areas where research is needed were identified, all literature reviews previously completed were updated, and the planning phase for an instructional report for field offices to use in solving shoaling problems was initiated. In the future, a report describing the state of knowledge of shoaling processes incorporating information from reports of the six study subtasks will be prepared. A research plan addressing needs identified in the report will be formulated. A report will be published describing how to approach and solve navigation channel sedimentation problems using existing field data. Results will be used to revise EM 1110-2-1607, Tidal Hydraulics, and contribute to a new EM on Channel Design. # Title of Study: Effect of Depth and Width on Dredging Frequency ### Conducted by: U.S. Army Engineer Waterways Experiment Station ### Conducted for: Office, Chief of Engineers ### Summary of Accomplishments: The Effect of Depth and Width on Dredging Frequency study is a portion of the Improvement of Operations and Maintenance Techniques (IOMT) program, funded by the Office, Chief of Engineers. The objective of the project is to evaluate the effectiveness of advance maintenance dredging in reducing frequency and costs in coastal and inland channel and harbor maintenance and to establish guidelines necessary for governing this practice. Thus far, the major area of investigation has been literature and Corps of Engineers districts surveys and the evaluation of advance maintenance dredging projects. An empirical technique based on historical dredging records has been developed to predict the effect of depth and width on dredging frequency and volume. Specific projects have been evaluated by detailed analysis of hydrographic surveys to determire the effect of advance maintenance on both frequency and amount of dredging required. A trend analysis of a large number of dredging projects using historical dredging data has been conducted to investigate the effect of channel enlargement on shoaling rates. Accomplishments during Calendar year 1979 include the following: - 1. A report (Report 2) describing the methods now being used to predict the effect of deepened conditions on shoaling in a dredged navigation channel and presenting a rational, empirical approach to the problem based on historical dredging and shoaling data was in the final stages of publication. - 2. Evaluation of historical dredging data for specific sites in the Galveston, Charleston, Portland, and Seattle Districts has been conducted. Preparation of a draft report was underway. - 3. A study to attempt to classify several project according to how they have behave historically with deepening is underway. Future work will include continued evaluation of existing advance maintenance dredging projects. The final objective of the study is to publish a series of technical reports which (1) describe current advance maintenance criteria and identify previous and current projects; (2) describe an empirical technique, based on historical dredging records, to predict the effect of depth and width on dredging frequency and volume; (3) evaluated the shoaling results from existing advance maintenance projects; and (4) classify Corps' dredging projects with regard to advance maintenance effectiveness. # Title of Study: Offshore Dredging Systems # Conducted by: U.S. Army Engineer Waterways Experiment Station ### Conducted for: Office, Chief of Engineers ### Summary of Accomplishments: The Offshore Dredging Systems project is a portion of the Improvement of Operations and Maintenance Techniques (IOMT) program, funded by the Office, Chief of Engineers. The objective of the project is to develop new techniques, procedures, and equipment that will open new supply sources of beach nourishment materials and permit economic exploitation of these resources with a minimum disturbance of ecosystems. Accomplishments during Calendar Year 1979 include development of criteria for the selection and engineering development of nourishment systems suitable for the example projects defined under this work unit. Future efforts will include the initiation of contracts to perform nourishment system engineering development. ## Title of Study: Eductor Systems for Sandtrap Bypassing ## Conducted by: U.S. Army Engineer Waterways Experiment Station ### Conducted for: Office, Chief of Engineers ## Summary of Accomplishments: The purpose of this study is to develop effective systems for bypassing sand at tidal inlets and other obstructions to littoral transport, including dredged channels, jetties with and without weir sections and deposition basins, and breakwaters. Laboratory and field tests were required for development and evaluation of equipment and operating techniques. A short series of laboratory tests was conducted with various fluidizer configurations. These tests were inconclusive and continuation was not considered due to the expiration of project funding. Report preparation continued during Calendar Year 1979. The instruction manual to assist Corps districts in planning bypassing projects using eductor systems was completed in Calendar Year 1979 and will be published in Calendar Year 1980. #### Title of Study: Section 32 Program, Streambank Erosion Control (The Streambank Erosion Control and Demonstration Act of 1974-Public Law 93-251, Section 32, as amended by Public Law 94-587, Section 155 and 161). ### Conducted by: U.S. Army Engineer Waterways Experiment Station #### Conducted for: Office, Chief of Engineers #### Summary of Accomplishments: The legislatively specified objectives of the "Section 32 Program" consist of (1) an evaluation of the extent of streambank erosion on navigable rivers and their tributaries; (2) development of new methods and techniques for bank protection, reseach on soil stability, and identification of the causes of erosion; (3) a report to the Congress on the results of such studies and recommendations of the Secretary of the Army on means for the prevention and correction of streambank erosion; and (4) demonstration projects, including bank protection works. Three flumes are being used to conduct channel flow tests, wave tests and innovative protection tests. Model tests on several streambank protection types have been continued and additional results published in a fourth brief research report. The tenth field inspection of existing bank protection was made and results of the sixth were published and distribution to OCE, Division, and Districts. During CY 79 construction of a 1:20-scale tow and channel for testing the effects of navigation on bank protection was completed. Tests were made to evaluate the effects of rapid drawdown on various protection techniques. Demonstrative and comparative testing of several protection techniques including a concept used in Australia were conducted in the alluvial channel flow model flume. Significant results obtained in shear stress tests indicated high sensitivity to several factors. Analyses and reporting of geologic and geomorphic investigations of specific sites gave emphasis to the need for such studies in designing effective bank protection. Results of tests on panels, membranes, and spray-on materials were published for field use and several specific schemes were installed on a streambank at WES. #### Work in Progress: Hydraulic research will be continued to evaluate the effectiveness of various streambank protection methods and materials to withstand wave attack, flow, rapid drawdown, and navigation effects. Field inspection and monitoring of existing and Section 32 Program—constructed demonstration sites of streambank protection will be continued and reported. Work will continue on developing a procedure for streambank stability analysis which includes laboratory measurements of erosion rate and strength properties of undisturbed soils. A laboratory test flume will be completed and calibrated. Analysis of waterborne geophysical data will be concluded. Draft reports will be prepared on waterborne geophysical applications, results of Yazoo Basin studies, and a summary of findings. Test items installed on a creek at WES will be monitored. Seven test items will be installed and evaluated on the Big Black River. Physical testing and evaluation of experimental items used on streambank erosion test sites will be conducted in the laboratory. ### Title of Study: Predictive Models of Sediment Movement ### Conducted by: U.S. Army Engineer Waterways Experiment Station ## Conducted for: Office, Chief of Engineers #### Summary of Accomplishments: Under the research project, Improvement of Operational and Maintenance Techniques, two major advances were made in numerical sediment transport modeling. The HEC-6 computer code was enhanced to automatically attenuate the flood wave, to automatically modify cross sections by
simulating overbank fills and/or in channel dike fields, and by printing out additional parameters. Development of a new computer code was initiated. It will calculate unsteady, sediment transport in a two-dimensional flow field. The horizontal plane is being treated first; later the vertical plane will be included. Experimental work on the deposition of clay was initiated in the 335 foot long flume. Commercial Kaolinite will be studied, first, in this nonrecirculating facility. Work was initiated on revising the CE manual on sedimentation. This project is designed for a five-year effort during which CE expertise in sedimentation will be collected and documented along with work of other government agencies, universities, and the private sector. ## Title of Study: Characterization of the Suspended-Sediment Regime and Bed-Material Gradation of the Mississippi River Basin. ### Conducted by: U.S. Army Engineer District, New Orleans ### Summary of Accomplishments: A report on this effort is scheduled for publication in late FY 80. Appendixes B through F of this report contain characterizations of the suspended-sediment regime and bed-material gradations of the following regions: Missouri, Upper Mississippi, Ohio, Tennessee, Arkansas-White-Red, and Lower Mississippi. The introduction to each appendix includes narrative material describing the physiography, geology, climatology, hydrology, vegetation, exploration and settlement, and land-use development of the region. Sections are also included that discuss the origin of sediments in each region, cultural influences on the suspended-sediment and bed-material loads, the history of suspended-sediment and bed-material sample collection, and long-term trends in the suspended-sediment regime and bed-material gradation. The effort is part of Study Area IV, Sedimentation, of the Lower Mississippi Valley Division P-1 Potomology Program. #### CORPS OF ENGINEERS Federal Inter-Agency Sedimentation Project St. Anthony Falls Hydraulic Laboratory University of Minnesota Minneapolis, Minnesota Annual project report for Calendar Year 1978 is described below. Laboratory Research, Work is Progress - Testing full size bedload samplers in the modified large indoor flume at the St. Anthony Falls Hydraulic Laboratory was continued through 1979. In cooperation with David Hubbell and Herbert Stevens the group has now tested six different styles of Helley-Smith bedload samplers, through a range of flow depths and velocities and with both 6.5mm and 2mm bed material. The D-77 sediment sampler discussed last year was modified in accordance with results of field tests. To reduce drag, stock was removed from the lower front region, then the sampler was rebalanced by removing stock from the downstream end of the casting. The new sampler will be shipped complete with a permanent container, a lifting tool, a special wrench, and operating instructions. The DH-75Q sediment sampler was redesigned to accommodate a greater variety of bottles and to improve stability. The changes involve a redesigned stopper and moving the wading rod attachment closer to the nozzle of the sampler. The DH-75 samplers are lightweight units designed for use in sub-freezing temperatures. Production of the RP-77, low-power peristaltic pump designed by the project, was started this year. The pump was primarily designed for the PS-69 and CS-77 pumping samplers, but will be used on other development projects. In its present form the pump may be powered from a 36-volt battery but a 12-volt model will be available soon. At the request of participating agencies, the group built, tested, and is improving a hand-operated clam-shell bed-material sampler suggested by James Culbertson. Plans for the coming year include development of a bag-type sampler and a density cell for automatic measurement of sediment concentration. Equipment Supply - Supply, repair, and calibration of a variety of sediment samplers and analyzers was continued. A catalog and detailed equipment manuals are available upon request. During 1979, sales and inventory were as follows: | | | | | Inven- | |------------|----------------------------|-------|--------|--------| | | | Sold | Sold | tory | | | | since | during | Dec. | | Instrument | | 1940 | 1979 | 1979 | | DH-48 | Hand sampler | 2910 | 353 | 122 | | DH-75P | Hand sampler | 99 | 7 | 0 | | DH-75Q | Hand sampler | 108 | 19 | 16 | | DH-59 | Hand-line sediment sampler | 1131 | 139 | 30 | | DH-76 | Hand-line sediment sampler | 235 | 130 | 0 | | D-49 | Depth-integrating sampler | 900 | 0 | 0 | | D-74 | Depth-integrating sampler | 275 | 77 | 29 | | D-74AL | Depth-integrating sampler | 106 | 5 | 23 | | P-61 | Point-integrating sampler | 218 | 13 | 2 | | P-63 | Point-integrating sampler | 39 | 2 | 5 | | P-72 | Point-integrating sampler | 30 | 6 | 10 | | BMH-53 | Bed-material hand sampler | 325 | 42 | 17 | | BMH-60 | Bed-material hand sampler | 235 | 37 | 8 | | BM-54 | Bed-material sampler | 179 | 6 | 22 | | SA | Particle-size analyzer | 85 | 2 | 0 | | PS-67 | Pumping sampler | 42 | 0 | 0 | | PS-69 | Pumping sampler | 320 | 22 | 24 | | CS-77 | Chickasha pumping sampler | 35 | 19 | 4 | | SS-72 | Sample splitter | 33 | 1 | 3 | | BP-76 | Power supply | 112 | 23 | 12 | #### FEDERAL HIGHWAY ADMINISTRATION The Federal Highway Administration (FHWA) concentrated its activities on five major areas: control of culvert outlet erosion, control of local scour around bridge piers, control of stream instability at highway crossings, control of sediment produced by highway construction, and control of highway water quality. Major efforts were carried out by staff and contract research, and by the various studies in the Highway Planning and Research Program (HP&R) and in the National Cooperative Highway Research Program (NCHRP). <u>Control of Culvert Outlet Erosion</u> - The objectives of these studies are to investigate the various flow conditions and the forces involved at the outlet area, the material necessary to resist the erosion, and the special designs of energy dissipators and stilling basins to control the erosion. - A. Sponsored by FHWA, the U.S. Geological Survey Hydroscience Center at Bay St. Louis, Mississippi, conducted the energy dissipator study titled, "Investigation of Rigid Boundry Basins in Flared Outlets from Circular Culverts." This study yielded basin drag coefficients for serrated roughness elements in flared transition sections at culvert outlets. FHWA will incorporate the research results into its Hydraulic Engineering Circular No. 14. - B. The University of Akron completed the study, sponsored under the H7&R program by the Ohio Department of Transportation (ODOT), on "Field and Laboratory Evaluation of Energy Dissipators for Culvert and Storm Drain Outlets." This study is directed toward two dissipator concepts that can be precast for culvert installations that do not require field concrete work. One is the modular basin which can be precast in components and assembled in the field by a maintenance crew; the other is the concrete pipe roughness ring which can also be precast and bolted into regular culvert sections. Another important aspect for this study is the evaluation of the ODOT procedures for providing channel protection for culvert outlets that do not require dissipators. The evaluation focuses on the so-called "Cincinnati Method" for designing rip-rap protection and will involve some 400 field sites. Draft final reports for these aspects of the study were submitted in 1979. The final reports will be published in 1980. - C. Colorado State University is conducting a study, sponsored by FHWA, to investigate scour at culvert outlets in various bed materials. The study includes four bed materials; a uniform sand, a uniform gravel, a sand-gravel mixture, and a sand-silt-clay mixture. The study includes tests with various culvert diameters ranging from 4 to 15 inches to test the adequacy of modeling assumptions in developing design guidelines for much larger field installations. Most of the original tests were completed in 1979. The study will be modified for additional tests to determine the effects of tailwater and to strengthen the relationship for part full culvert flow. <u>Control of Local Scour Around Bridge Piers</u> - The objectives of these studies are to investigate the mechanics of this dynamic process, the methods of accurate prediction of its magnitude, the adequate means of controlling its damaging effect to bridge piers, and the stream-related hazards to highways and bridges. - A. The contract study on the Study of Scour Around Bridge Piers was completed by West Virginia University. The objectives of this study were to collect parameters which influence scour depth around bridge piers on rivers with noncohesive soils, and to test existing methods and/or to provide an improved method for predicting the scour depth. The researchers experimented with instrumentation and monitored three bridge sites in the mid-continent--Shreveport (Louisiana), Homochitto (Mississippi), and Richmond (Texas)--for approximately 5 years. The portable, truck-mounted scour monitor was found very helpful as backup to the fixed monitors which had been used previously. The final report titled "Scour Around Bridge Piers," FHWA-RD-79-103, is being printed; it will be available through NTIS. - B. The University of Iowa completed a FHWA study on Scour Around Bridge Piers at High Froude Numbers. This study is a selective investigation to determine trends of scour under flow conditions that exceed the conditions of most of the previous tests. The investigation included scour in three sizes of cohesionless bed materials at Froude Numbers that range from 0.5 to 1.5 and at depth to pier diameter ratios that range from 0.25 to 1.0. The final report titled "Scour Around Circular Bridge Piers at High Froude Numbers," FHWA-RD-79-104, was published. It is available through NTIS. - C. Tye Engineering Inc. started a study, sponsored by
FHWA, to deduce scourdata from the Hydrologic Survey team records in Louisiana. The Hydrologic Survey team in Louisiana routinely monitors stream bed cross sections at approximately 90 bridge sites. Their records provide a valuable source of field data for scour around bridge piers. The study was completed. The final report titled "Scour Around Bridge Piers Field Data from Louisiana Files," FHWA-RD-79-105, is being printed; it will be available through NTIS. - D. The USGS continued the FHWA study on "Roughness Coefficients in Vegetated Flood Plains." The study took advantage of data collected by completed HP&R studies in the Gulf Coast States of Louisiana, Mississippi, and Alabama. Detailed data will be used to field validate methods of roughness coefficient estimation which have been developed theoretically and only laboratory tested. The study will strive to attain quantitative methods that are relatively simple to apply and result in accurate estimates; at a minimum it will provide comparative methods that will make present estimates more consistent. Control of Stream Instability at Highway Crossings - The objectives of these studies are to evaluate the significance of natural stream adjustments on the structural integrity of highway crossings, to provide techniques for resolving the impact of these changes, and to provide guidelines for measures to mitigate stream instability at highway stream crossings. The U.S. Geological Survey completed a research study for FHWA titled, "Countermeasures for Hydraulic Problems at Bridges." Guidelines were developed to assist design, construction, and maintenance engineers in selecting measures that can be used to reduce bridge losses attributable to scour and bank erosion. These guidelines are based on case histories of 224 bridge sites in the United States and Canada, on interviews with bridge engineers in 34 States, and on a survey of published work on countermeasures. Each case history, published in volume two of the final report, includes data on bridge, geomorphic, and flow factors; a chronological account of relevant events at the site; and an evaluation of hydraulic problems and countermeasures. Performance ratings are given for rigid and flexible pavement, flow control measures (spurs, dikes, spur dikes, jack fields, retards and check dams), and measures incorporated into the bridge design. Streams are classified for engineering purposes into five major types, each having characteristics of lateral stability and behavior that need to be taken into account in the design of bridges and countermeasures. The final reports titled "Countermeasures for Hydraulic Problems at Bridges, Vol. 1 Analysis and Assessment, and Vol. 2 Case Histories of Sites 1-283," FHWA-RD-78-162 and 163, were published. They are available through NTIS: PB 297132/AS and PB 297685/AS. In addition to the two volume final report, a slide-tape presentation which depicts the major aspects of the research is available from FHWA. The countermeasures project brought to light that stream alteration work for highway crossings has been curtailed in many regions and prohibited in a few. This is unfortunate because well conceived and constructed channel alterations of limited extent are often both environmentally and economically advantageous over other more extensive countermeasures. A modification to the original study was made to document numerous channel changes done by highway agencies to show why they were successful or caused problems. This study will result in a separate report that can aid highway engineers in utilizing their experience in stream engineering to provide stream crossings that are environmentally sound and hydraulically efficient. - B. A FHWA contract titled "Methods for Assessment of Stream-Related Hazards to Highways and Bridges" was completed by Colorado State University. The study resulted in a systematic evaluation approach for determination of hydraulical conditions at a stream crossing, giving consideration to the entire stream environment including its geology, geomorphology and land use on the flood plain. By using this approach, the hydraulic or bridge engineer is less likely to overlook a hydraulic problem and complete his site evaluation with greater ease and confidence. The research report will be published in 1980. - C. Tye Engineering of Fairfax, Virginia, completed an FHWA study titled "Debris Problems in the River Environment." This study shows that waterborne debris accumulation is a recurring problem in many regions of the United States, and that the potential for debris hazards can be reduced by using the proper crossing design parameters. The study provides a survey of highway related debris problems and describes the measures presently taken by highway agencies to cope with debris hazards. The research report titled "Debris Problems in the River Environment," FHWA-RD-79-62, was published and is available through NTIS. D. Sutron Corporation of Rosslyn, Virginia, continued the FHWA research study on "Stream Channel Degradation and Aggradation: Causes and Consequences to Bridges." The severity of degradation and aggradation nationwide and the factors associated with these processes were documented in an interim report which will be published in 1980. The final report will provide the best available methods for determining the extent of the stream grade change given the onsite and watershed conditions. <u>Control of Sediment Produced by Highway Construction</u> - This problem consists of two stages: during construction and just after construction. - A. It is important that during the construction of highways, the sediment produced by roadway excavation and embankment construction must be controlled so it will not pollute the natural streams. Sponsored by the Pennsylvania Department of Transportation, the Pennsylvania State University and the U.S. Geological Survey completed the cooperative research study titled "Prediction of Sediment Flow from Proposed Highway Construction Sites." This study capitalizes on the extensive work of others by utilizing modified Universal Soils Loss Equation which has incorporated a factor for surface runoff. The study produced a computer program that can be accessed from any of the State's district offices and allows the engineer to try numerous sediment control methods mathematically before attempting to use any measures in the field. The final report was being prepared. - B. The U.S. Geological Survey Hawaii District, through the sponsorship of Hawaii Department of Transportation, continued its study on Rainfall—Runoff and Rainfall—Sedimentation Discharge Relations in Hawaiian—type Watersheds. The objective of this study is to determine the effects of highway construction on the rainfall—runoff and rainfall—sedimentation discharge relations of a watershed in Moanalua Valley, Oahu, considering all significant basin characteristics. The results obtained will be used as a basis for deriving similar relations for other basins in Hawaii. Data collection and analysis were continued in 1979. The draft final report was being prepared. - The Utah State University, under the National Cooperative Highway Research С. Program administered by the Transportation Research Board, completed a 2-year study on Erosion Control During Highway Construction in CY 1977. The objective is to develop more effective techniques and materials to control erosion during highway construction activities. It consists of three major parts: to assess the effectiveness of methods presently being used throughout the United States, to develop a manual of recommended techniques and design criteria for the control of erosion, and to identify research needs. An experimental research study was also conducted in 1978 in the Utah Water Research Laboratory using a rainfall simulator and test bed to determine the validity of the Wischmeier's water-caused erosion equation on steep slopes, and to test the effectiveness of selected erosion control products. The final report consists of three volumes: Volume I - a summary of the research, Volume II - an erosion control manual, and Volume III - bibliography. Volumes I and II were revised and will be published in 1980. - D. Another NCHRP study which synthesized existing information on "Design of Sedimentation Basins" was completed by W. O. Ree of Stillwater, Oklahoma. The final report will be published soon. - The USGS, district office at Harrisburg, Pennsylvania, completed a research project titled, "Field Evaluation of Erosion Control Measures used in Highway Construction" under the HP&R program. The object of this study is to evaluate different types of erosion and sediment control measures to determine the ability of each measure to prohibit sediment from entering a stream system, and to determine if sediment concentrations and discharges return to their preconstruction levels once the construction has ended. The study area consists of five Sediment ponds built on and off streams, small rock dams, seeding, mulching, and erosion control measures used before the issuance of erosion-control guidelines were compared with the use of sediment and discharge measurements. Sediment load and turbidity were shown to be much higher in the drainage basin protected by the onstream ponds than that protected by offstream ponds. The final report will be published soon. - F. The Virginia Highway Research Council began work on "Efficiency of Erosion Control Practices" for the Virginia Department of Highways and Transportation (VDHT) under the HP&R program. Current VDHT erosion and sediment control practices will be evaluated. Optimum erosion and sediment control will be determined using the highest practical design and construction procedures and maintenance of control technology. - G. A case study under the HP&R program was begun by South Carolina Department of Highways to determine the "Effects of Highway Construction on Stream Turbidity and
Suspended Solids." Turbidity and suspended solids will be monitored upstream and downstream of a highway project before, during, and after construction. These data will be evaluated with construction schedules and practices. - H. It is equally important that upon completion of highway construction, immediate and adequate protection against erosion be provided for slopes and other roadside areas affected by grading. In most regions of the country this has been accomplished with the establishment of proper management of vegetative cover. In 1979, 17 States were conducting studies designed to improve vegetation establishment techniques and subsequent management practices. The participating States were Alaska, Alabama, California, Georgia, Hawaii, Indiana, Louisiana, Maryland, Massachusetts, Minnesota, Montana, New Jersey, Rhode Island, Texas, Washington, West Virginia, and Wyoming. <u>Control of Highway Water Quality</u> - The objectives of these studies are to monitor the highway water pollution parameters and to devise cost effective means to control them. A. To help States to measure their local highway water pollution parameters, FHWA updated a monitoring manual which provides simplified field procedures for the water quality tests and hydraulic measurements. Besides total suspended solids (non-filterable residue), the tests cover turbidity, pH, temperature, electrical conductance, dissolved oxygen, settleable matter, and dissolved solids (filterable residue). Rainfall and streamflow measurements are also included. Bellinger, W. Y., and Bergendahl, B. S., "Highway Water Monitoring Manual," report FHWA-DP-43-2, Federal Highway Administration, Region 15, Arlington, Virginia, January 1979. B. For the development of erosion and sediment control plans in the location, design, and construction of a highway, FHWA published a manual. It is a compilation of the erosion and sediment control measures which have beer successfully used by Region 15 of FHWA. The measures covered include silt fences, brush barriers, diversion channels, sediment traps, check dams, slope drains, and temporary berms. A section on water quality monitoring is also included. Richards, D. L., and Middleton, L. M., "Best Management Practices for Erosion and Sediment Control," report FHWA-HD-15-1, Federal Highway Administration, Region 15, Arlington, Virginia, December 1978. - C. The University of Arkansas completed the HP&R study on "The Effects of a Channel Relocation Project on the Ecosystem of Little Sugar Creek, Benton County, Arkansas" for the Arkansas State Highway and Transportation Department. This highway construction associated research evaluated the effects on aquatic populations, water quality, and other plant and animal communities. The final report will be published soon. - D. The California Department of Transportation continued the HP&R study on "Long Range Effects on Aquatic Ecosystems from Adjacent Highway Construction." This study investigates the effects on the aquatic environment from channel alterations resulting from highway construction on perennial streams and evaluates selected mitigation techniques employed to minimize these impacts. - E. The Pensylvania State University, sponsored by the Pennsylvania Department of Transportation, started the HP&R study on "The Impact of Stream Relocation on Fish Populations Bull Creek." This research will study fish populations, bottom fauna, and water quality in Bull Creek before, during, and after stream relocation for construction of the Allegheny Valley Expressway. If more information is desired about these research studies, inquiries should be addressed to the sponsoring agencies. ## GEOLOGICAL SURVEY PROJECT TITLE: A Study of Measurement and Analysis of Sediment Loads in Streams WRD PROJECT NO: NR 39-081 LOCATION: Topical Research PROJECT CHIEF: Skinner, John V. HEADQUARTERS OFFICE: Minneapolis MN PROBLEM: Knowledge of factors governing the movement and deposition of sediment in streams and reservoirs is of major importance to agencies involved in development of water and land resources of the nation. A knowledge of the sediment discharge of streams is essential to the efficient design and operation of projects for the storage and use of streamflow. Movement of sediment also affects aquatic life and plays a role in the transport of certain types of chemical pollutants. Complicity of sediment phenomenon are such that comprehensive investigations are essential to support accurate conclusions. OBJECTIVE: To seek solutions to problems related to equipment and methods for collecting and analyzing sediment samples, problems investigated are of common concern to two or more federal agencies. The project functions as (1) a center for the development of new sampling equipment for both manual and automatic operation (2) a center for procurement, testing, and calibration of sampling equipment for sale to federal agencies and (3) a focal point for review of new techniques and establishment of standard equipment and methods. APPROACH: A knowledge of hydraulic requirements for accurate sediment sampling is combined with a knowledge of machine shop techniques, casting techniques, electric circuit theory to design new and improved samplers. Plans and specifications are prepared to allow equipment to be fabricated under contract. Technical reports that explain equipment and operating procedures are prepared and distributed to all interested agencies. New equipment is developed and tested under real and simulated field conditions. PROGRESS AND RESULTS: Completed checkout of all hydraulic and instrumentation facilities for full scale calibration of bedload samplers. Six different styles of Helley-Smith bedload samplers were tested with 6.5mm bed material and through a range of flow depths and velocities. A second test with 2mm sand was partially completed. A new depth integrating sampler, termed the D-77, was designed and after field testing final production modifications were completed. Tests verified that calibration of individual D-77 samplers will not be required. To facilitate point sampling of deep rivers, a new valve was designed for bag-type samplers. Established hydraulic design criteria for automatic syringe-type samplers and completed construction of sample conditioner for automatic sensor. PLANS NEXT YEAR: Continue to support the bedload calibration tests. Complete development of the bag-type sampler, publish report on tests of automatic samplers, and write report on the Autopipette. ## COMPLETED REPORTS: February 1979 Operating Instructions D-77 Suspended Sediment Sampler March 1979 Instructions for Peristaltic Pump, RP-77 CR097 Estuarine Intertidal Environments Project Title: Hydrology of Estuarine Intertidal Environments WRD Project No.: CR74-097 Location: Topical Research Project Chief: Glenn, Jerry L. Headquarters Office: Lakewood, Co. Problem: Estuaries are subject to natural and artificial stresses that combine to threaten their continued utility to man. Many estuaries are filling with sediments from external (rivers and the ocean) and internal (shore erosion and biological production) sources. As a result, navigation often is difficult or impeded, maintenance of navigational channels is costly and continually necessary, and the value of recreational and commercial fisheries is diminishing. Estuarine intertidal and supratidal environments are particularly subject to man-induced stresses which directly alter valuable nursery and feeding grounds for many desirable forms of estuarine life. Objective: (1) to establish and to evaluate qualitatively and quantitatively the sources of sediments in estuaries, with initial emphasis on the intraestuarine (intertidal and supratidal) source(s); (2) to characterize the nature and composition of sediments in, from, and beneath intraestuarine sources as an aid to understanding erosional, transportational, and depositional phenomena; (3) to document changes in intraestuarine sources as a result of man-induced stresses and to relate the changes to causative factors; (4) to provide data for making more intelligent predictions of the effects of nature and man in estuaries. Approach: Aerial photographs and hydrographic and topographic data will be combined with field observations and samples in a reconnaissance survey of sedimentologic, geomorphic, and biologic attributes of intraestuarine sources. The stratigraphy of source areas will be investigated to aid in reconstructing the course of events that produced the present environments and in predicting the future course of events. Detailed field studies of modern sediment erosion, transport, and deposition in selected source areas will follow the stratigraphic phase and will be accompanied by laboratory determinations of the nature and composition of surface, subsurface, and suspended sediments. Progress and Results - 1978: Time and space variations in nutrient and sediment concentrations were determined at proposed transport station cross sections in the Potomac Estuary. Temporal variations were generally predictable and relatable to tidal changes. Cross sectional (lateral) variations were large at Piney Point, minimal at Quantico, and variable to poorly defined at Alexandria. Longitudinal variations in nutrient concentrations between Alexandria and Quantico reflect input from sources near Alexandria and dilution and exchange reactions during transport. Progress and Results - 1979: The natural and anthropogenic development of eutrophication and sedimentation problems in the Potomac Estuary has been determined from (1) analyses of core sediments, (2) results from an acoustic subbottom survey, and (3) measurements of estuarine morphology. Sites and rates of sediment deposition have been determined from ²¹⁰Pb analyses. Major deposition sites (deposition rates from 1 to 5 cm/yr) include the riverine and upper estuarine parts of the main Potomac and the marginal embayments in the riverine part; slow
deposition (<0.5 cm/yr) characterizes much of the lower estuarine part of the Potomac and the lower ends of adjacent marginal embayments. There is little evidence of changing deposition rates at most sites during the last 100 years, which suggests that deposition may be due mostly to changing natural conditions. The development of eutrophic conditions has been inferred from analyses of nutrientsconcentrations of core sediments. Although it appears that some nutrient species began to increase in prehistoric times, the rate of increase accelerated during the last 100 or so years, presumably as a result of increased anthropogenic inputs. ## Completed Reports: Glenn, J.L., 1979, Variations in nutrient and sediment concentrations in the Potomac Estuary: Abstract, Program for the Southeastern Section of the Geological Society of America, 28th Annual Meeting, Volume 11, No.4, p.180. Glenn, Jerry L., 1979, Temporal and spatial variations in nutrient and sediment concentrations in the Potomac estuary <u>in</u> Seminar on Water Quality in the Tidal Potomac River, December 1978, Bennett, James P. (ed.): U.S. Geological Survey Open-File Report 79-1588, p.12-13. CR098 Sediment Transport Phenomena Project Title: Measurement and Prediction of Sediment Transport Phenomena WRD Project No.: CR74-098 Location: Topical Research Project Chief: Hubbell, David W. Headquarters Office: Lakewood, Co. Problem: In alluvial streams, for every different hydrologic condition, the bed configuration, sediment transport, and hydraulic characteristics mutually change to achieve a quasi-equilibrium. The changes affect the ability of the stream to convey given quantities of water, accommodate navigation, transport and dilute solid and solute wastes, support aquatic biota, and perform similar functions. As yet, no positive means exists for predicting definitely the condition various variables, particularly bed configuration, will achieve for a given set of hydrologic conditions. As a result, optimum utilization and management of a waterway usually cannot be assured and, often, modifications designed to enhance the utility of a waterway are ineffective or have adverse effects. Objective: To provide information for predicting sedimentation phenomena in alluvial stream so as to facilitate the successful utilization and management of such streams and waterways, particularly information on the formation and alteration of bed forms and on the factors, including bedload and bed-material load transport, that affect bed forms. Approach: Initially, existing data will be analyzed to relate bed form characteristics and hydraulic and sedimentologic variables, and a bedload sampler will be developed to provide accurate measurements of bedload transport. Later, additional data will be obtained at selected sites by measuring bed form characteristics with acoustic instruments, including side-scan sonar; determining transport rates with bedload samplers; and defining other pertinent variables. Tracer techniques may be applied. Finally, data will be analyzed to define criteria for predicting bed forms and to provide a better understanding of sediment transport. Both sand-bed and gravel-bed streams will be studied. Results last year: Data from bedload sampler calibration runs made in the calibration facility at St. Anthony Falls Hydraulic Laboratory with 6.5 mm bed material were analyzed to determine the sampling efficiencies of different versions of the Helley-Smith sampler. Comparisons of the means of sampled and measured rates showed that standard versions of the sampler had efficiencies well over 100 percent and versions with very low nozzle expansions had efficiencies less than 100 percent. This method of comparison to determine sampling efficiency is commonly used, however, it is valid only if the individual samples and the corresponding actual bedload transport rates at the time of sampling are related linearly. Plans for next year: Previous and newly acquired calibration data will be analyzed in an effort to compute a sampling efficiency for each sampled rate. Such an anlysis will show whether or not the comparison of means is a valid procedure for determining the sampling efficiency of any particular sampler and if the efficiency varies with the transport rate or other factors. ### Completed Reports: Stevens, H.H., Jr., 1979, Computation of total sediment discharge by the modified Einstein procedure on an HP-67 or HP-97 calculator: U.S. Geological Survey Water Resources Division Bulletin, Oct.-Dec. 1978 and Jan.-June 1979, pp.35-41. CR186 Bedload Samplers Project Title: Bedload Samplers for Sediment in Streams: Develop- ment and Calibration WRD Project No: CR75-186 Location: Topical Research Project Chief: Hubbell, David W. Headquarters Office: Lakewood, Co. Problem: Virtually all physical processes involving the removal of mineral resources from the earth's surface or from underground disturb the soil mantle, which, in turn, results in changes in surface erosional patterns. Mining resources for energy development very likely will result generally in increased erosion and delivery of sediment to existing stream channels. Much of the sediment will be transported in channels as bedload. Currently, there are no existing samplers that are completely satisfactory for measuring bedload transport. Measurements of this kind are essential for assessing the effects of changes in the occurrence and movement of sediment on channel geometry, water quality, and stream ecology. Objective: To develop an acceptable sampler(s) for measuring the discharge of sediment particles that range in size from about 2 to 64 millimeters and are transported in streams as bedload, so as to permit the effects of energy development, particularly surface and subsurface mining activities, on streams to be monitored. Approach: Initially, laboratory facilities capable of prototype testing of a variety of bedload samplers will be designed and constructed. Following this phase, existing promising samplers will be calibrated to define their efficiencies in sampling different particle sizes under various conditions. Then, as necessary, existing samplers will be modified and/or new samplers will be developed and subsequently calibrated and extensively tested. Based on laboratory results, the most satisfactory samplers will be recommended for use. Results last year: Three runs with different flow conditions were completed in the St. Anthony Falls Hydraulic Laboratory bedload sampler calibration facility using bed material having a median diameter of 6.5 mm. In one of the runs, six different configurations of the Helley-Smith bedload sampler were tested, and in two other later runs data were obtained on the performance of the two standard versions of the Helley-Smith sampler and on the BTMA (Arnhem) sampler and a half-scale version of the VUV sampler. Hydraulic and sediment transport data associated with each flow condition also was obtained. Preparation for runs with the next bed material involved sieving 400 tons of sand twice to produce material with a mean diameter of 2.1 mm. Plans for next year: Calibration studies will continue using 2.1 mm bed material. At least four runs will be made with this material to evaluate six versions of the Helley-Smith sampler. Coarser bed material will be prepared for future runs. #### CR75-187 Bedload Transport Research WRD Project No: CR75-187 Project Chief: Emmett, William W. Headquarters Office: Lakewood, Colorado Field Location: Topical Research Problem: Of all processes operating in river channels, and especially of those of practical concern to engineers and others interested in river channel behavior, perhaps the least knowledge is available regarding the hydraulic and mechanics of bedload transport. Before continuing advances in river channel behavior can be made, some understanding of the behavior of bedload sediment must be made. Objective: (1) Define spatial and temporal variations in bedload transport rate for a single stage of flow; (2) define change in average magnitude of transport rate over a range in hydraulics of flow; (3) define change in average magnitude of transport rate over a range in channel geometry; and (4) analyze the data to evaluate the applicability of available bedload equations, suggest new coefficients for the existing equations, or propose new relations for predicting rates of bedload transport. Approach: To use the conveyor-belt bedload-transport facility on the East Fork River near Pinedale, Wyoming, as a control to evaluate variability factors in bedload transport and to field calibrate the Helley-Smith bedload sampler; to use the calibrated Helley-Smith sampler in the systematic collection of bedload samples, along with the concurrent measurements of streamflow hydraulics, from a variety of sandand gravel-bed streams, and, within the laws of general physics, stochastically develop empirical relations of bedload transport and interpret the physical significance of the developed relations. FY-1978 Progress: Field calibration of the sediment-trapping characteristics of the Helley-Smith bedload sampler have been completed. Continuation of data analysis and interpretation of information gathered at the conveyor-belt bedload-trap facility and at additional sites through the use of the Helley-Smith bedload sampler. Analysis underway to facilitate transfer of information from site-specific field areas to areal application and with application to watershed and channel flow/sediment modeling concepts. FY-1979 Progress: Initiated at the conveyer-belt bedload-trap research facility a tracer study utilizing fluorescent particles to evaluate (1) residence time of sediment, (2) average speed of particles, (3) depth of bed material involved in transport, (4) dispersion of bed material, (5) short-term channel changes accompanying sediment transport, (6) influence of availability of sediment on transport rate, and other related aspects of
sediment transport. Qualitative results are known, and quantitative information is pending completion of detailed laboratory analysis of collected samples and computer manipulation of data. FY-1980 Plans: Use image analyzer to determine particle sizes and concentration of fluorescent particles in (1) samples collected describing the stationary environment and (2) samples collected describing the material in transport. Use this information to refine a field procedure for an additional year of data collection as generalized above. Use the Helley-Smith bedload sampler at a variety of rivers to enlarge the data base necessary to extrapolate the specific information of the East Fork River tracer study to a universal application. ### Completed Reports: - Emmett, W.W. and Seitz, H.R., 1973 (1974), Suspended and bedload sediment transport in the Snake and Clearwater Rivers in the vicinity of Lewiston, Idaho March 1972 through June 1973: U.S. Geological Survey Basic-Data Report, 78 p. - , 1974, Suspended and bedload sediment transport in the Snake and Clearwater Rivers in the vicinity of Lewiston, Idaho July 1973 through July 1974: U.S. Geological Survey Basic-Data Report, 76 p. - Emmett, W.W., 1974, Channel aggradation in western United States as indicated by observations at Vigil Network sites: Zeitschrift fur Geomorphologie, Suppl. v.21, p.52-62. - _____, 1974, Channel changes: Geological Society of America, Geology, v.2, no. 6, p.271-272. - _____, 1974, Channel aggradation in western United States: Abstract, Proceedings, Twelfth Annual Engineering Geology and Soils Engineering Symposium, p.273. - _____, 1974, Hydrologic environment of the upper Salmon River area, Idaho: Abstract, Transactions American Geophysical Union, v.55, no.2, p.77. - , 1975, The channels and waters of the upper Salmon River area, Idaho: U.S. Geological Survey Professional Paper 870-A, 116 p. - Leopold, L.B., and Emmett, W.W., 1976, Bedload measurements, East Fork River, Wyoming: Proceedings, National Academy of Sciences, v.73, no.4, pp.1000-1004. - Emmett, W.W., 1976, Bedload transport in two large, gravel-bed rivers, Idaho and Washington: Proceedings, Third Federal Interagency Sedimentation Conference, pp.4-101 to 4-114. - Druffel, L., Emmett, W.W., Schneider, V.R., and Skinner, J.V., 1976, Laboratory hydraulic calibration of the Helley-Smith bedload sediment sampler: U.S. Geological Survey Open-File Rept. 76-752, 63 p. - Mahoney, H.A., and others, 1976, Data for calibrating unsteady-flow sediment-transport models, East Fork River, Wyoming, 1975: U.S. Geological Survey Open-File Rept. 76-22, 293 p. - Leopold, L.B. and Emmett, W.W., 1977, 1976 Bedload measurements, East Fork River, Wyoming: Proceedings, National Academy of Sciences, v.74, no. 7, pp.2644-2648. - Emmett, W.W. and Leopold, L.B., 1977, A comparison of observed sediment-transport rates with rates computed using existing formulas: <u>In</u> Geomorphology in Arid Regions (D.O. Doehring, Ed.), Proceedings, 8th Annual Geomorphology Symposium, State University of New York, Binghamton NY, Sept. 23-24, 1977, pp.187-188. - Emmett, W.W., 1978, "Overland Flow" In Hillsope Hydrology (M.J. Kirkby, Ed.), John Wiley and Sons, pp.145-176. - Emmett, W.W., Burrows, R.L., and Parks, Bruce, 1978, Sediment transport in the Tanana River in the vicinity of Fairbanks, Alaska, 1977: U.S. Geological Survey Open-File Rept.78-290, 28p. - Emmett, W.W., and Thomas, W.A., 1978, Scour and deposition in Lower Granite Reservoir, Snake and Clearwater Rivers near Lewiston, Idaho, U.S.A.: Journal of Hydraulic Research, v.16, no.,4, pp.327-345. - Emmett, W.W., 1979, A field calibration of the sediment trapping characteristics of the Helley-Smith bedload sampler: U.S. Geological Survey Open-File Rept. 79-411, 96 p. - gram with abstracts, 32nd Annual Meeting, Rocky Mountain Section, Geological Society of America, v.11, no.6, p.271. - Burrows, R.L., Parks, Bruce, and Emmett, W.W., 1979, Sediment transport in the Tanana River in the vicinity of Fairbanks, Alaska, 1977-78: U.S. Geological Survey Open-File Rept. 79-1539, 37 p. - Emmett, W.W., 1980, A field calibration of the sediment trapping characteristics of the Helley-Smith bedload sampler: U.S. Geological Survey Professional Paper 1139. CR102 Sediment Movement in Rivers Project Title: Sediment Movement and Channel Changes in Rivers WRD Project No.: CR75-102 Location: Topical Research Project Chief: Meade, Robert H. Headquarters Office: Lakewood, Co. Problem: Sediment moves through river systems in response to specific events and changing conditions in drainage basins. These events and conditions are both natural (floods, climate changes) and artificially-induced (accelerated erosion, reservoirs, diversions, channelizations). The response often takes place over periods measurable in decades or longer. The morphology of the river channels changes as sediment moves through the system. Objective: To assess: (1) changes in river sediment loads over periods of decades or longer, and the factors (natural and artificial) that cause the changes; (2) rates at which rivers change their courses, shapes, and other morphologic features, both in their natural state and in response to artificial influences; (3) effects of infrequent catastrophic events or large-scale human influences on the "equilibrium" sediment movement and channel morphology in rivers; (4) sources, pathways, and sinks of sediment in rivers. Approach: Basically a historical approach, using available records and making some first-hand field studies. Records will include sediment-load data previously collected by USGS and other agencies; changes in channel morphology will be interpreted by comparing old and new maps plus available aerial photographs of selected rivers in the Upper Missouri basin. Field studies will include repeated surveys of selected channels and tracer studies of sediment movement. Progress and Results for 1978 and 1979: The effects of the flood of May 1978 on Powder River (the largest since 1923) were documented in a 90-km reach in southeast Montana. Channel changes in the reach included two avulsive cutoffs and significant lateral bank erosion (up to 65 m at one monumented cross section). An average thickness of 10-15 cm of new overbank sediment was deposited on a 500-m width of the flood plain. The amount of sediment carried into the upper end of the 90-km reach during the flood was 10 percent greater than the amount carried out the lower end. The amount of sediment newly deposited on the flood plain was nearly twice the amount eroded from the channel. While the net effect of the flood on the channel was erosion, the net effect on the valley was aggradation. In the East Fork River of western Wyoming, movement of fluorescent particles and changes in bed elevation during the 1979 snowmelt runoff event showed that bed material moved downriver in fairly discrete slugs. The bed material (median diameters 1.0-1.5 mm) is stored during low-water seasons in areas of the channel whose centers are about 500 m (25-30 channel widths) apart. Preliminary results suggest that the mean distance between centers of storage corresponds to the mean annual distance of bedload transport. Because the bed material moves in separate slugs rather than in a continuous blanket, the relations between water discharge and bedload transport are not uniform but vary markedly from one part of the river to another. ## Completed Reports: Nordin, C.F., Meade, R.H., and others, 1979, Particle size of sediments collected from the bed of the Amazon River and its tributaries in May and June 1977: U.S. Geological Survey Open-File Report 79-329, 23 p. Meade, R.H., and others, 1979, Suspended-sediment and velocity data, Amazon River and its tributaries, June-July 1976 and May-June 1977: U.S. Geological Survey Open-File Report 79-515, 42 p. Meade, R.H., and others, 1979, Sediment loads in the Amazon River: Nature, v.278, pp.161-163. Curtis, W.F., Meade, R.H., and others, 1979, Non-uniform vertical distribution of fine sediment in the Amazon River: Nature, v.280, pp.381-383. Meade, R.H., Nordin, C.F., and Curtis, W.F., 1979, Sediment in Rio Amazonas and some of its principal tributaries during the high-water seasons of 1976 and 1977: Associacao Brasileira de Hidrologia e Recursos Hidricos, Simposio Brasileiro de Hidrologia, Third, "Hidrologia da Amazonia," Anais, v.2, pp.472-485. Nordin, C.F., Meade, R.H., and others, 1980, Size distribution of Amazon River bed sediment--No appreciable change in downstream direction: Submitted to Nature. Meade, R.H., 1980, Man's influence on the discharge of fresh water, dissolved material, and sediment by rivers to the Atlantic Coastal Zone of the United States, in Burton, J.D., Ed., River Inputs to Ocean Systems: United Nations Educational, Social & Cultural Organization (in press). Meade, R.H., 1980, The absence of steady state between soil erosion, sediment transport in rivers, and the delivery of river sediment to the oceans, <u>In Burton</u>, J.D., Ed., River Inputs to Ocean Systems: United Nations Educational, Social & Cultural Organization (in press). Meade, R.H., 1980, Sources, sinks and storage of river sediment in the Atlantic drainage of the United States: Submitted to Journal of Geology. Project Title: Rehabilitation Potential of Energy Lands Project No: CR75-104 Project Chief: Shown, Lynn M. Headquarters Office: Lakewood, Colorado Field Location : Topical Research Problem: Hydrologic information with respect to rehabilitation potential, including erosion and sediment yields, is needed by local, State, and Federal governments and energy companies prior to decisions on leasing and mining of coal and oil shale. The information is needed on a timely basis; thus, reconnaissance techniques must be used to obtain much of the necessary data. The two facets of the problem are (1) definition of the conditions as they exist prior to mining, and (2) assessment of the potential for rehabilitation of
land-water systems after mining. Objectives: The objectives of this project related to erosion and sedimentation are to develop, refine, and apply reconnaissance techniques that will provide data to define baseline conditions and rehabilitation potential. Data collected include reservoir sediment yields, hillslope and exposure effects on erosion, slope changes in reconstructed topography, and channel erosion and aggradation. Approach: The reconnaissance techniques used to characterize drainage basins include (1) relation of percent bare ground to runoff and sediment yield, (2) estimates of sediment yield using drainage basin and channel characteristics and reservoir sediment surveys, and (3) hill—slope and channel erosion and sedimentation monitoring by surveys of monumented transects. Progress and Results: Sediment surveys of three stock ponds and channelgeometry measurements at 20 cross sections were completed in the Coal Creek, Oklahoma, Energy Minerals Resource Inventory and Analysis - a BLM program (EMRIA) basin that is being modeled. Vegetation maps were completed for the Coal Creek basin and for the Prairie Dog Creek, Montana EMRIA basin. Sampling and analyses were done to define soil-moisture relations for 11 soils in the Yellow Creek EMRIA basin in Alabama. Infiltration and soil detachability measurements were made with a portable rainfall simulating infiltrometer at the Bisti West and Ah-shi-sle-pah Wash EMRIA basins in cooperation with the New Mexico WRD District. Three comprehensive reports demonstrating hydrologic methodology data analyses, and information useful for determining impacts of surface mining and reclamation were prepared. These reports were requested by the Office of Surface Mining Reclamation and Enforcement (OSM) and were done for potential mine sites in southeastern Montana, south-central Wyoming, and northwestern New Mexico. The last two runoff/erosion plots in the Piceance basin, Colorado were abandoned owing to encroaching development on Oil Shale Tract Cb. Channel cross sections on Corral Gulch were resurveyed twice where flows occur resulting from dewatering of aquifers of Oil Shale Tract Ca. The complete network of channel cross sections and slope erosion transects in the Piceance basin were resurveyed. FY1980 Plans: Several types of data will be collected in the Yellow Creek and Bear Creek, Alabama basins, which are to be modeled. Data collection will include mapping and measurement of vegetation, additional soil moisture and bulk density samplings, sediment surveys of two or three ponds downstream of mined areas, channel geometry measurements, and reconnaissance of the hydrology of Warrior Coalfield. A report will be prepared for OSM on the hydrologic effects of surface mining and reclamation for a potential mine site in the Yellow Creek basin. Sediment surveys are planned for several stock ponds in the Prairie Dog Creek, Montana basin. Erosion monitoring will be continued in the Piceance basin. ### Completed Reports: - Ringen, B. H., Shown, L. M., Hadley, R. F., and Hinkley, T. K., 1979, Effect on sediment yield and water quality of a nonrehabilitated surface mine in north-central Wyoming: U.S. Geological Survey Water Resources Investigations 79-47, 23 p. - U.S. Department of the Interior, Geological Survey, 1978, Moisture relations in soils, vegetation, and sediment yields, in Resource and Potential Reclamation Evaluation—Hanging Woman Creek Study Area: Bureau of Land Management EMRIA Report No. 12, 1977, 309 p. PROJECT TITLE: Sediment Movement and Hillslope Morphology WRD PROJECT NO.: CR 4661-105 LOCATION: Worldwide PROJECT CHIEF: Garnett P. Williams HEADQUARTERS OFFICE: Lakewood, CO PROBLEM: Installation of a dam on a river traps the sediment load and alters the pattern of the water discharge. The channel downstream reacts to these imposed changes, sometimes drastically. OBJECTIVE: To determine how a channel is likely to change downstream from a dam. APPROACH: Analysis is being made of aerial photographs and resurveyed cross sections of river channels below some 44 damsites. Features of special interest are changes in mean bed elevation, channel width, vegetation, channel sinuosity and pattern. Records of water discharge, for the pre-dam and post-dam periods, show the change in flow. **PROGRESS** AND RESULTS: All resurveyed cross-section data have been obtained mostly from the Corps of Engineers. Aerial photos are being ordered. Analysis of cross sections is under way but is not sufficiently advanced to show any results. COMPLETED REPORTS, 1978-1979 (Including related studies): Williams, G. P., 1978, Hydraulic geometry of river cross sections -- theory of minimum variance; U.S. Geol. Survey Prof. Paper 1029, 47 p. , 1978, The case of the shrinking channels -- The North Platte and Platte Rivers in Nebraska: U.S. Geological Survey Circular 781, 48 p. , 1978, Bankfull discharge of rivers: Water Resources Research, Vol. 14, No. 6; p. 1141-1154. , 1978, Historical perspective of the Platte Rivers in Nebraska and Colorado IN Graul, W.D., and Bissell, S.J., (tech. coord.), Lowland river and stream habitat in Colorado: A symposium (Greeley, Colorado, (October 4-5, 1978): Colorado Chap. Wildlife Soc. and Colorado Audubon Council, p. 11-41. Rhodes, D. D., and Williams, G. P. (eds.), 1979, Adjustments of the flurial system (Proc. 10th Annual Binghamton Geomorphology Symposium); Dubuque, Iowa, Kendall/Hunt, 372 p. ## Forest Geomorphology, Pacific Coast WRD Project No.: WR74-089 Field Location: Forested steeplands of the Pacific Coast Project Chief: Janda, Richard J. Headquarters Office: Menlo Park, California <u>Problem</u>: The rock types, topographic and tectonic settings, climates, and landuses in the geologically youthful mountains of the Pacific Coast are conducive to exceptionally rapid mass wasting and fluvial erosion. Types and rates of geomorphic processes are strongly influenced by living and dead vegetation and therefore readily modified by natural or management-related vegetation disturbance. Considerable public interest is focused on developing timber harvesting practices that will have minimal impact on water quality and aquatic habitat. Unfortunately, quantative knowledge of (1) hillslope erosion processes contributing to stream sediment loads, and (2) the influence of vegetation on both hillslope and channel processes is meager. Objective: Study the manner in which different hillslope erosion processes influence stream sediment transport relationships and total sediment yield from small and intermediate sized forested basins. Study the ways in which living and dead vegetation influence erosion, transport, and deposition of sediment in forested environments. Approach: Compile available stream sediment discharge data and attempt to relate various sediment discharge characteristics to basin parameters including dominant hillslope erosion processes, landuse, climate, and size. Study time-sequential aerial photographs to determine types and frequency of erosion processes. Map erosional landforms and monitor changes in landforms through repeated surveys of monumented cross sections, stake arrays, and bore holes. Collect auxiliary sediment discharge data for small basins where hillslope and channel processes are being intensively studied. FY 1978 Progress: Analysis of landslide movement data suggested that complex slump-earthflow movement had to be monitored in much greater detail in order to assess the role of that process in contributing to stream sediment discharge. Thus, observations on two complex streamside landslides were expanded to include more frequent surveys of stake arrays, more detailed monitoring of toe erosion, determination of fluvial sediment transports in axial gully systems, installation on continuously recording strain gages, and determination of internal deformation through the use of a bore hole-accessed inclinometer. Continued surveying of 55 monumented channel cross sections together with determination of sediment discharge at seven gaging stations along Redwood Creek indicated that the head water reaches were experiencing scour and a reduction in suspended sediment discharge per unit area (SSD/A) relative to downstream areas; downstream reaches experienced local aggradation and SSD/A remained high. Comparison of suspended-sediment transport curves (SSTCs) for streams draining different types of erosional terrane suggests that streams draining areas sculpted primarily by persistent slump earthflow movement have SSTCs with gentler slopes than SSTCs for streams draining areas sculpted primarily by episodic debris slides. Storm and landuse-accelerated erosion causes upward shifting of SSTCs with either no significant change in slope or a slight reduction in slope particularly at high water discharge. Progress for FY 1979: Analysis of intensively monitored complex streamside landslides indicate that movement occurs primarily during pulses of rapid movement separated by periods of slow persistent movement. Initiation and acceleration of movement occur in immediate response to specific rain storms, but amounts and rates of movement during specific pulses are not simply related to rainfall input, antecedent moisture, or ground water levels. Late season pulses seem disproportionately large relative to early season pulses associated with comparable hydrologic conditions. Movement persists after major erosion-causing storms and rapidly refills in-channel and near-channel sediment storage areas along streams on and adjacent to this type of landslide. Thus, high sediment transport associated with low and moderate water discharge in complex landslide terrane can be accounted for by the consistent availability of readily erodible sediment in and adjacent to stream channels. Twelve of nineteen gaging stations in northwestern California with five or more consecutive years of daily suspended-sediment discharge records have mean annual SSD/A's larger than 1000
t/km²; the range in mean annual SSD/A for these nineteen stations is 162 to 3000 t/km². No definitive relation exists between SSD/A and drainage area for these streams. However, when the data are adjusted for differences in geology, a roughly linear relationship with a positive slope is suggested. In geologically youthful mountains, unlike low relief agricultural areas in the Central and Eastern United States, a positive correlation between SSD/A and drainage area is not unrealistic because high sediment producing landslide areas tend to be concentrated along deeply incised higher order stream channels. In this wet environment SSD/A is positively correlated with precipitation because increasing soil moisture and ground water levels result in increased susceptibility to mass failure. <u>Plans for FY 1980</u>: Continue to study how the timing, amount, and type of hillslope erosion influences suspended sediment transport curves. Continue to study the variability and total sediment yield and sediment transport characteristics of small streams draining unharvested forested drainage basins. Continue geomorphic monitoring in the drainage basins of Redwood Creek (California) and Bull Run (Oregon). #### Completed Reports: Harden, D. R., Janda, R. J., Nolan, K. M., 1978, Mass movement and storms in the drainage basin of Redwood Creek, Humboldt County, California--a progress report: U.S. Geol. Survey open-file report 78-486, 161 pp. - Janda, R. J., 1978, Summary of watershed conditions in the vicinity of Redwood National Park: U.S. Geol. Survey open-file report 78-25, 82 pp. - Janda, R. J., 1979, Summary of regional geology in relation to geomorphic form and process <u>in</u> A guidebook for a field trip to observe natural and management-related erosion in Franciscan terrane of Northern California for Cordilleran Section of the Geological Society of America, p. II-1 II-17. - Janda, R. J. and Nolan, K. M., 1979, Stream sediment discharge in Northwestern California in A guidebook for a field trip to observe natural and management-related erosion in Franciscan terrane of Northern California for Cordilleran Section of the Geological Society of America, p. IV-1 IV-27. - Janda, R. J. and Nolan, K. M., 1979, Road log for day I <u>in</u> A guidebook for a field trip to observe natural and management-related erosion in Franciscan terrane of Northern California for Cordilleran Section of the Geological Society of America, p. VIII-1 VIII-26. - Nolan, K. M. and Janda, R. J., 1979, Recent history of the main channel of Redwood Creek in A guidebook for a field trip to observe natural and management-related erosion in Franciscan terrane of Northern California for Cordilleran Section of the Geological Society of America, p. X-1 X-16. - Nolan, K. M. and Janda, R. J., 1979, Recent history of the surface morphology of two earthflows adjacent to Redwood Creek in A guidebook for a field trip to observe natural and management-related erosion in Franciscan terrane of Northern California for Cordilleran Section of the Geological Society of America, p. XI-1 XI-10. - Nolan, K. M., 1979, Graphic and tabular summaries of changes in stream-channel cross sections between 1976 and 1978 for Redwood Creek and selected tributaries, Humboldt County, and Mill Creek, Del Norte County, California: U.S. Geol. Survey open-file report 79-1637, 38 pp. - Janda, R. J. and Nolan, K. M., 1979, Geomorphic controls on the form of suspended-sediment transport curves <u>in</u> Abstracts with Programs, Rocky Mountain Section of the Geological Society of America, Vol. 11, No. 6, p. 275. - Janda, R. J., Nolan, K. M., and Stephens, T. A., 1979, Styles and rates of landslide movement in slump-earthflow-sculpted terrane, Northwestern California in Abstracts with Programs, Cordilleran Section of the Geological Society of America, Vol. 12, No. 3, p. 113. Project Title: Arctic Stream Processes WRD Project No.: WR-4761-138 Location: Alaska Project Chief: Scott, Kevin M. Headquarters Office: Menlo Park, CA Problem: Arctic streams have been contradictorily described as highly unstable, with high rates of bank erosion, and unusually stable, with low rates of bank erosion relative to streams of similar size elsewhere. In general, little is known of the behavior of arctic streams. Objective: 1) To describe the character and rates of bed and bank processes in arctic streams; to indicate what factors influence variation in rates of erosion and sedimentation—in short, to supply the information needed for engineering design and impact assessment concerning stream behavior in the Arctic. 2) To compile a specifically annotated bibliography of arctic stream processes. Because many papers dealing with arctic stream processes did so incidentally to other studies, author abstracts and the usual bibliographic compilations are of little use. Progress and Results: 1) Data collected from 1976-77 provide the basic description of how, when, and under what conditions streams in the Arctic erode their banks. Data collected in 1979 are partially analyzed and indicate how sediment transport varies with thermal regime and type of bed and bank material in a group of streams. 2) The bibliography was completed and has just been released as WSP 2065. # Completed Reports (1978-79): Scott, K. M., 1978, Effects of permafrost on stream channel behavior in arctic Alaska: U.S. Geological Survey Professional Paper 1068, 19 p. Scott, K. M., 1979, Arctic stream processes--an annotated bibliography: U.S. Geological Survey Water-Supply Paper 2065, 78 p. Project Title: COUNTERMEASURES FOR HYDRAULIC PROBLEMS AT BRIDGES WRD Project No.: WR 153 Location: National Project chief: Brice, J. C. Headquarters office: Menlo Park, CA Problem: Damage to bridges by streams amounts to a large dollar loss each year in the U.S., and experience has shown that this damage can be reduced by the use of countermeasures. Information is needed for selection of the most effective countermeasure to be used in a particular situation. Objective: To provide guidelines to assist design, maintenance, and construction engineers in selecting measures to reduce bridge losses attributable to scour and bank erosion. Approach: To document and analyze bridge sites where hydraulic problems have occurred and countermeasures have been employed; and to interview bridge engineers regarding the effectiveness of countermeasures that have been used. Progress and results: Case histories have been prepared for 224 bridge sites in the U.S. and Canada and bridge engineers in 34 states have been interviewed. Problems at piers occurred at '70 sites and problems at abutments, at 80 sites. Problems are attributed to lock scour at 50 sites, to general scour at 55 sites, and to lateral stream erosion at 105 sites. Performance ratings are given for rigid and flexible revetment, for flow-control measures (spurs, dikes, spur dikes, check dams, jack fields), and for measures incorporated into the bridge. Streams are classified for engineering purposes into five major types, each having characteristics of lateral stability and behavior that need to be taken into account in the design of bridges and countermeasures. Hydraulic analysis has been carried out for flood conditions at 60 bridges, for which values of flow, bridge, and geomorphic factors are tabulated. ## Completed reports: Brice, J. C., Blodgett, J. C., and Others, 1978, Countermeasures for hydraulic problems at bridges; Vol. 1, Analysis and assessment, 184 p; Vol. 2, Case histories for sites 1-283, 542 p.: Federal Highway Administration Report No. FHWA-RD-78-162. Project Title: STABILITY OF STREAM CHANNELS ALTERED FOR BRIDGE OR HIGHWAY CONSTRUCTION WRD Project No.: WR 153 Location: National Project chief: Brice, J. C. Headquarters office: Menlo Park, CA Problem: In the construction of bridges and highways, relocation or other alteration of stream channels is commonly desirable in order to avoid crossings, to improve stream alinement at bridges or culverts, or to accommodate a proposed road location. Because of regulations by various governmental agencies, most state hydraulic engineers are now hesitant to recommend any alteration of natural channels, even where minor changes would result in substantial savings in cost or increase in safety. However, there is little published documentation of the actual effects of past channel relocations on channel stability. Objective: To provide information on the consequence of past channel alterations, for use in decisions regarding future alterations. Approach: To prepare case histories of sites where channel alterations have been made sufficiently long ago (usually no less than 15 yr) that the effects of alteration on channel stability can be evaluated; and to isolate the dominant factors that have been associated with stability or instability of the altered channel and adjacent reaches of the natural channel. Progress and results: Plans, maps, aerial photographs, and flow data have been collected for 109 sites where channel alterations have been made. Case histories have been prepared for 55 of these sites. Completed reports: none ## DEPARTMENT OF THE INTERIOR--OFFICE OF SURFACE MINING ## Dredging Demonstration Project The Department of the Interior's Office of Surface Mining recently awarded a grant to a Missouri dredging company. The purpose of the grant was to enable a demonstration of successful sediment removal. The sediment was removed from a Peabody Coal Company pond near Macon, Missouri. This removal was the first time that amphibious equipment was successfully used for such an operation. The hydraulic power auger and submerged pump, the Mud Cat Model SP-810 hydraulic dredge, easily removed 1154 cu yd of sediment and pumped a slurry concentration of 237 g/l to a disposal area 1000 feet away. This equipment was economically and scientifically more efficient than land-based equipment. The dragline cost was \$5.00 per cu yd, dredge cost was \$1.00 per cu yd, and the
front-end loader was \$15.70 per cu yd, under optimum conditions. Operator experience with the dredge was an important factor in achieving the desired results. OSM hopes to assist in a variety of similar projects in the future. ## DOI/OSM Sedimentation Ponds Rules 30 CFR 816.42, 816.46 816.42 ### and 816.46 The Department of Interior's Office of Surface Mining issued final regulations in March 1977, for control of sediment in discharges from areas of surface coal mining and reclamation activities. These rules established specific limitations called "effluent limitations" on the total suspended solids (TSS), iron and maganese content of the discharges from the mining area. They also required that all runoff be passed through sedimentation ponds and established design criteria for these ponds. The TSS standards were almost identical to those published by U.S. Environmental Protection Agency (E.P.A.) in 1977, OSM regulations were based on the best available technical information. However six months later, two contracted studies contradicted the rules of the two agencies. These studies claimed that discharges from ponds might not be able to meet the TSS effluent limitations during precipitation events. A petition was filed with the department and published in the Federal Register requesting the immediate suspension of the regulations. OSM suspended some of its regulations. E.P.A. followed a similiar procedure and late last year amended its regulations to grant an exemption from compliance with the effluent limitations during rainfall events to operations whose facilities are designed, constructed and maintained to treat or contain a 10 year-24 hour precipitation event or snowmelt of equivalent size. E.P.A. expects to publish its final regulations this fall, based on a Nation wide study of representative sedimentation ponds. OSM suspended its regulations last year and is presently considering several options which of course, would follow the required procedures including the public participation. #### The options are: Options A would readopt its present regulations which fulfill the requirement of the Act but do not agree with the studies. Option B would adopt a rainfall exemption modified either to increase or decrease the size of the precipitation event to which 'exemption is keyed (presently 10year-24hour) but would adopt the effluent limitations. Option C is identical to Option B except that the sedimentation pond design criteria would be modified to reflect the findings of the two studies. Option D would readopt the effluent limitations and would delete design criteria concerned with the size of sedimentation ponds. Option E and Option F are variations of ones mentioned above. Option G which is the most feasible option, would readopt the current effluent limitations and apply them only to base flow and would adopt a rainfall event effluent limitation to be based on EPA field data. # SCIENCE AND EDUCATION ADMINISTRATION--AGRICULTURAL RESEARCH ## ARIZONA Research activities at the Southwest Rangeland Watershed Research Center in Tucson, Arizona include the following: - 1. Procedures were developed to predict channel morphology for small streams and to relate channel morphology to sediment yield. Sensitivity analysis showed the response or adjustment of stream channels due to changes in discharge or channel characteristics which might result from changing land use. The procedures provide a basis, from hydraulics of open channel flow and a simple erosion equation, to quantitatively evaluate the relationships between channel morphology and sediment yield. - 2. Rainfall simulators were used to study soil detachment by raindrop impact. Simulator data are being used to relate detachment rate to soil erodibility, vegetative cover, development of erosion pavement, and rainfall intensity. - 3. Experimental procedures have been developed to evaluate a forward scattering laser apparatus used to determine the particle size distribution of soils and sediments in stream flow. Work is continuing to compare results with those from hydrometer and pipette analysis. - 4. Work on the USDA-SEA nonpoint source pollution modeling effort, under the direction of W. G. Knisel, Jr., has continued. The field-scalε erosion and sediment yield model has been developed and tested for a variety of conditions. Documentation including model development, users manual, and supporting information has been prepared for a USDA Conservation Research Report. Efforts are continuing to refine and improve the field-scale model and to develop a more comprehensive basin-scale model. - 5. Runoff/sediment concentration samples were collected from a number of small experimental watersheds including eight watersheds on the Sarta Rita Experimental Range. These samples are being used to evaluate a brush conversion-rotation grazing experiment and to determine the influence of these practices on runoff and sediment yield. - 6. Data from small experimental watersheds are being used to evaluate factors in the Universal Soil Loss Equation under semiarid rangeland conditions. Research is continuing to develop procedures to represent the influence of erosion or desert pavement on the C-factor. For additional information contact Dr. Kenneth G. Renard, Research Leader, Southwest Rangeland Watershed Research Center, 442 East Seventh Street, Tucson, Arizona 85705. U.S. Department of Agriculture Science & Education Administration-Agricultural Research ## GEORGIA Research activities at the Southeast Watershed Research Laboratory include the following: - 1. Hydrologic, sediment, and chemical transport studies are underway on small mixed use, agricultural watersheds in the Southern Coastal Plain. Five years of continuously monitored data are available from one 6.5 mi² drainage area (Watershed K) and ½ years data on three other continuously monitored drainages ranging from 6 to 8.5 mi². Rainfall, streamflow, and shallow alluvial groundwater stages are monitored on a continuous basis (5 min. to 1 hour) and streamflow is sampled automatically (1 to 3 samples/day). Suspended sediment concentration in streamflow is determined as well as a range of water quality parameters. - 2. Sediment delivery from a 6.5 mi² watershed (K), for the 2-year period 1975-1976 was estimated to be 5% of the estimated gross soil movement (based on USLE) from within the watershed. Sediment delivery ratios varied with season, with maximums occurring December-February, and minimums occurring June-August. Multiple regression relationships were developed for predicting seasonal SDR values based on season, runoff amount, and rainfall-runoff-season interactions. - 3. Suspended sediment yields moving in streamflow from Watershed K, for the three-year period 1975-1977, averaged 385 kg/ha/yr. - 4. Seven small cropped study areas (≈ 1 to 4 acres each) are being instrumented for evaluation of alternate cultural and residue management practices on sediment production from agricultural areas. Suspended sediment loads will be determined under both conventional and minimum tillage and under varied residue management (biomass production) schemes. For additional information, contact: Loris E. Asmussen, Director Southeast Watershed Research Laboratory USDA-SEA-AR P. O. Box 946 Tifton, GA 31794 #### IDAHO Research at the Northwest Watershed Research Center, Boise, Idaho includes the following: - A major storm with rain on snow and frozen soil January 11, 1979, produced the third highest peak runoff of record at the Reynolds Creek Outlet station. Sediment yield from this one storm produced about 50 percent of the yearly sediment discharge at the station. Sediment yields ranged from 33 to 84 percent of average in 1979 as a result of below normal precipitation and runoff. - 2. The Pacific Southwest Inter-Agency Committee (PSIAC) procedure for predicting sediment yield was modified and used in this study to compare with predicted soil loss by the Universal Soil Loss Equation (USLE). Results showed that predicted PSIAC sediment yields were about 70 percent of predicted USLE soil loss on a watershed basis and that average predicted PSIAC sediment yields were within 15 percent of measured yields. - 3. Watershed management on the Boise Front near Boise, Idaho, reduced 1978-79 sediment transport in Cottonwood Creek to about 10 percent of 1939-40 amounts. This dramatic reduction in sediment transport resulted from effective fire suppression, contour trenching, seeding, grazing management, and closing of critical areas to ORV use. For additional information contact C. W. Johnson, Suite 116, Patti Plaza, 1175 South Orchard, Boise, Idaho 83705. #### INDIANA Activities at Lafayette, Indiana include the following: - 1. Runoff and soil loss from farm fields and watersheds are the result of so many complex variables that complicated models must be used in their estimation. Many erosion and runoff models in use today require estimates from single storm events rather than long term average values now available. In a study just completed data used to derive the Universal Soil Loss Equation along with data collected since 1965 were used to evaluate erosivity factors for single storms. Results showed rainfall factors which included both rate and volume were best. Lumped erosivity factors that included rainfall volume, rainfall intensity, and runoff volume were better estimators of erosion than the presently used rainfall energy intensity value. Erosivity factors having separate terms for rainfall and runoff erosivity were even better. - 2. In results obtained using the USDA rainulator in August, 1979 on a long term (18 year) experiment in continuous corn at Wooster, Ohio, soil loss was 9.5 tons per acre for a plow, disk harrow (conventional) system, 8.3 tons per acre for plow plant and 0.36 tons per acre for no-till. This is a 26 fold difference between no-till and conventional. The effectiveness of plow planting in controlling erosion was
expected to be great early in the season and much less in August as these results show. - 3. Data collected from field plots with mulch and grass strips under simulated rainfall used to show that the transport relationships in CREAMS (a model for Chemicals, Runoff, and Erosion from Agricultural Management Systems) accurately describe particle segregation during deposition by overland flow entering strips of corn stalks and grass. - 4. Of six stream flow sediment transport equations evaluated, the Yalin equation gave the best results for transport of sand, coal, and soil aggregates for slopes and discharge rates characteristic of overland flow on farm fields. The equations were tested without calibration using parameters recommended in the literature. A manuscript describing the results is under review. - 5. The prototype of the new rainfall simulator performed well in a field environment. Rainfall characteristics are much improved over those of the current simulator. Some components proved too heavy to be easily handled and have been redesigned and rebuilt for further field testing. - 6. A contract for the National Soil Erosion Laboratory on the Purdue campus was let on December 5, 1979 to Goepel and Demars, General Contractors of Indianapolis, IN. Construction will begin March 4, 1980 with completion expected in the summer of 1981. Purdue University was awarded the contract for inspection services. The laboratory will house eight scientists and about 15 support staff. For additional information contact W.C. Moldenhauer (SEA, Agronomy Department, Life Science Building) or G.R. Foster (SEA, Agricultural Engineering Building) Purdue University, West Lafayette, Indiana 47907. #### IOWA Research activities at the North Central Watershed Research Center, Columbia, Missouri, include: - l. Continued measurement of soil losses and affecting variables from four field-size watersheds, and several subwatersheds, near Treynor, Iowa. Measured soil losses, 1964-79, were compared with soil losses computed from the depletion of Cesium 137 radioisotope in the soil profile and with surveyed landform changes, 1969-78 on a representative subarea, 75×840 ft. - 2. The migration of eroding headscarps, along with profile and crossection changes, was monitored on four gullies and two channel systems in southwest Iowa. Instrumentation to define the mode of failure of streambanks after passage of headscarps was continued at two locations. For additional information contact Carroll R. Amerman, Watershed Research Unit, 207 Business Loop 70 East, Columbia, Missouri 65201. ### Minnesota Current research at the St. Anthony Falls Hydraulic Laboratory, Minneapolis, Minnesota, is on the local scour caused by a cantilevered spillway or culvert pipe discharging onto a bed of cohesionless sand. Variables partly investigated are bed material size (d_{50} = 0.5, 1, 2, 4, and 8 mm), standard deviation of bed material size (1.2, 1.4, and 1.6), effect of pipe elevation relative to the tailwater elevation (-2, -1, 0, 1, 2, 4, and 8 pipe diameters), and effect of pipe slope. The temperature is maintained constant at 20° C. Dimensionless discharges $Q/\sqrt{gD^5}$ are 0.5, 1, 2, 3, 4, and 5. (Q is the discharge, g is the acceleration due to gravity, and D the pipe diameter.) The flow is interrupted and the scour hole is measured at 10, 31.6, 100, 316, 1000, 3162, and 10000 minutes after the beginning of each test. Because the apparatus would otherwise have been idle for lack of a technician, one scour test was allowed to continue to see if it reached a limit. Sediment was still being carried from the scour hole after 14-1/4 months. Current work is on data analysis of the 77 test series and nearly 525 scour holes. Analyses made so far show that the scour hole contours, expressed as a percentage of the maximum depth of scour, can be reduced to a single set of elliptical contours for all 6 discharges, all 7 scour periods, all 5 sizes and 2 gradations of bed material, and the 7 pipe heights for which data have been analyzed if suitable normalizing parameters are chosen. These analyses were limited to those data where the discharges were insufficient to cause "beaching," i.e., excessively widen the surface of the scour hole. The normalizing parameters have been described mathematically. The developed relationships will be checked against the original data to see how well the mathematical model represents the data. An analytical method has been developed that predicts the asympototic dimensions of the scour hole, that is the scour hole dimensions at infinite time. A paper describing this method has been submitted to the American Society of Civil Engineers Hydraulics Division Journal. To obtain the maximum disturbed dimensions of the scour hole, tests are continuing in which the bed material suspended in the plume of the jet is removed. For additional information contact Fred W. Blaisdell, Research Leader, SEA-AR, USDA, St. Anthony Falls Hydraulic Laboratory, Third Avenue SE at Mississippi River, Minneapolis, Minnesota 55414. #### MINNESOTA The following research is being conducted at the North Central Soil Conservation Research Laboratory at Morris, Minnesota. - 1. Hydrological, soil, and water quality conditions were monitored and data collected for three years on a forested watershed, and for five years on an agricultural watershed. Two of the five years resulted in no runoff events on the agricultural watershed because of drought conditions. This watershed was closed out in the fall of 1979 and data is currently being analyzed. - 2. Cropped buffer strips on a 4 percent slope reduced runoff and total solids transported from a feedlot by 67 and 79 percent, respectively. TN and TP were reduced by an average of 84 and 79 percent, respectively. NH4-N and PO4-N were similarly reduced but average NO3-N in the runoff increased because some NO3-N was gained from two cropping treatments, sorghum-sudangrass and oat buffer strips. During two years of rainulator tests, the number of coliform organisms in the runoff water was reduced after runoff passed through the vegetated buffer strips. Buffer strip lengths of 36 m appear to be sufficient to reduce to acceptable levels concentrations of both nutrients and microorganisms in feedlot runoff from summer rainstorms on feedlot areas of the size tested. - 3. A feedlot evaluation computer model was developed to provide a uniform, systematic method for evaluating the potential pollution hazard posed by open feedlots anywhere in the state of Minnesota. The purpose of the method is to provide a reasonably uniform and equitable means of dispensing public funds for pollution abatement based on the severity of the problem posed by each individual feedlot. The model has been adopted for use in Minnesota by the ASCS, Soil Conservation Service, Soil and Water Conservation Board and the Minnesota Pollution Control Agency. - 4. Soil-particle detachment and transport largely depends on the particle-size distribution, density, and degree of aggregation of the matrix soil. Particles in the silt-size range erode more easily than clay or sand-size particles. Eroded material can generally be classified into two main-size categories, depending upon the matrix soil textural classification. Density of soil aggregates averages only about two-thirds or less that of primary particles and varies inversely with the amount of silt in a soil. Sediment particle size is also affected by the percentage of land slope, percent vegetative cover, and type of tillage. Soils which initially are more than 50 percent sand or clay usually produce sediment with particles larger than 50 μm in size. High clay content soil produces much sediment with particles larger than 1000 μm . Soils that are initially more than 35 percent silt usually produce sediment in the silt size range from 2 to 50 m, with most particles ranging in size from 20 to 35 μm . - 5. A microrelief profilimeter has been built and tested to automatically scan points on a 1 cm x 5 cm grid spacing to measure soil surface elevation. The platform holding the pins is microprocessor controlled and is capable of measuring over 300 surface elevations in less than one minute with a vertical resolution of 1 mm over a 25 cm range. The entire apparatus is light enough to be handled in the field by two persons. It is also battery operated for remote use, and the data are recorded on magnetic cassettes for easy output on a computer controlled plotter. A rainfall simulator-infiltrometer has also been built and tested. simulator consists of four modules which cover an area of 24 ft2. The rain is applied continuously through a series of needles rather than spray nozzles. The simulator allows for a wide range of intensities, from near zero to approximately 20 cm/hr. Irop size can also be controlled using air pressure to more closely simulate actual conditions. The entire unit is mounted on a pickup-towed trailer and, as such, can be used at remote field sites. - 6. A rainulator was used to apply known amounts of rainfall energy on 8 plots, 13.3 feet (4.1 m) by 35 feet (10.7 m) on which a history of wheel traffic had been established. Standard runoff collection procedures were modified to separate erosion and runoff in the wheel track from that occurring in the non-tracked area. The wheel tracks, while comprising only 22 percent of the total plot area, produced 33 percent of the runoff and 50 percent of the soil loss originating in the plot. The soil surface sealed more rapidly and soil loss rates equilibrated in less time in the wheel tracks than in the non-tracked area. Detailed aggregate analyses of the matrix soil and sediment indicated that, while the wheel tracks contained larger aggregates, these aggregates were less water stable than those in the non-tracked area. Wheel traffic increased the bulk density and decreased the porosity of the surface soil to a depth of about 12 inches (30
cm.) - 7. Soil loss was estimated by townships using the USLE for 38 counties in Minnesota for a variety of farming systems. Factors were derived using soils information derived from the SCS Conservation Needs Inventory, crop information derived from SRS Agricultural Statistics, land use information from the Land Management Information Center, and other necessary information from SCS sources. It was found that existing soil erosion exceeded the tolerable limit on over 70 of the 675 townships investigated. The effect of alter- native cropping sequences, engineering practices, and tillage practices was also investigated. It was found that conservation tillage practices alone would control soil erosion on all but 16 townships. Average annual sediment yields were also estimated for 23 watersheds ranging in size from 262 to 386,000 square kilometers. Sediment yields ranged from under 50 kg/ha in the north to over 560 kg/ha in the southeast. Using the erosion and sediment yield data, a simple sediment routing technique was developed to prioritize upland sediment sources on 10 watersheds. It was estimated that from 41 to 68 percent of the basin yields resulted from only 25 percent of the area. This type of information prioritizes sediment producing areas so that initiation of conservation practices can be accomplished in the most effective manner. For additional information contact R. F. Holt, USDA-SEA, Morris, MN 56267. #### **MISSISSIPPI** Research activities at the USDA Sedimentation Laboratory in Oxford, Mississippi include the following: - Research in cooperation with the North Mississippi Experiment Station on no-till and reduced-till systems for cotton, corn, and soybeans is continuing. Use of cultivation for weed control in no-till planted corn without excessive erosion was reported previously. The 2-year average of tests using the same system for soybeans resulted in 3.3 t/a soil loss, which is greater than for corn. However, the results from 2 years are not conclusive. Annual and cropstage C-factors for these no-till and reduced-till systems are being computed for publication and use in the USLE. First year results from no-till cotton showed a yield reduction; however, reduced-till cotton yield was almost as high as from conventional-till cotton. Both no-till and reduced-till cotton yielded as well as conventional-till cotton during the second year of the test. - 2. The rainulator is being used to study the mechanics of erosion for slopes under 3 percent primarily to verify or adjust the factors in the USLE. Studies of slope-length on 0.2 percent slopes resulted in soil loss proportional to slope length to the power of m = 1.2 $\sin\theta^1/^3$ for slopes less than 10 percent. Studies of the effect of slope were made in 1978 but the data have not been fully analyzed. Other factors influencing soil loss on low slopes in these valley and river bottom soils that are intensively farmed include protection from raindrop impact by surface water layers. - 3. Research in cooperation with the SCS on flatland watersheds in the Mississippi Delta is continuing. One pair of watersheds, 38.5 and 46.2 acres, is located on 0.2 percent graded slopes. One watershed is on Sharkey soil, the other on primarily Commerce soil; both are used for cotton production. The sediment yield is being used to verify the UCLE and to compute C-factors for cotton grown on nearly flat slopes. Two more pairs of small watersheds are being used to study the effect of different cotton tillage systems and natural vs. graded slopes on sediment yield. A 640-acre watershed is being used to determine sediment yield from typical Delta flatland watersheds. All of the watershed data are also being used to develop a simple field sediment yield model based on the USLE and sediment delivery ratios. - 4. In cooperation with the Soil Conservation Service, four varieties of willow were planted in 1976 at the toe of eroded banks of a 120-foot wide dredged channel in northern Mississippi. In the first year, 60 percent of the plantings failed due to high water velocities, bank slides, and poor site conditions. The surviving willows are being observed for their long-term effect on stabilizing the stream banks. Additional plantings of willow, river birch, maiden cane rhizomes, and phragmites rhizomes were made in 1978 behind 5000 feet of newly constructed jacks and fences on Hotopha, Johnson and Peters Creeks in Panola County near Oxford, MS. All of the maiden cane rhizomes were lost from one storm on May 5, 1978, a month after planting. Losses of willow, river birch and phragmites of 70, 63 and 50 percent, respectively, were attributed to high water velocities during the May 5 storm and to extremely dry weather that followed. Another vegetative study was implemented in cooperation with the SCS and the Corps of Engineers. Construction on both sides of a 1600-foot reach of Johnson Creek was begun in November, 1978 and completed June 20, 1979. The banks were finished to a 2:1 side slope. Various combinations of rip-rap, cellular blocks and vegetation were installed on 9 treatments along the reach. Measurements are being made to evaluate the hydraulic effects of the treatments and to determine the erosion resistance of the treatments. Also in 1979, various species of shrubs and trees were planted behind about 3000 feet of rip-rap dikes, jacks, and fences on Peters, Johnson and Hotopha Creeks in Panola County. During FY 1980, approximately 1800 feet of additional channel banks on Johnson and Goodwin Creeks are planned for addition to the existing project. These studies, which will be in channel bends, will consist of bank forming on 1:3 slopes with toe protection using various materials and techniques. The bank surface will be planted to various species and types of vegetation. - 5. Instrumentation was installed on a small sediment detention reservoir (pond) to measure, on a storm basis, water and sediment inflow and outflow. Additional instruments are being installed to measure sediment concentrations and water temperatures at selected locations and depths within the water body. Data collection, scheduled to begin in the spring 1980, will provide information on the performance of fine sediments in small impoundments. - 6. Amounts and distribution of sediment deposits in 12 small normally ponded reservoirs were studied and analyzed. In spite of wide variations in reservoir size, shape, and sediment inflow volume, most of the structures trapped over 80% of inflowing sediments. Only one, a very small pond-type structure, mad a lower trap efficiency. Fine sediments, generally less than 8 microns, were fairly evenly distributed throughout most of the reservoirs. Coarse sediments, sand size and larger, were usually concentrated at the upstream end of the reservoirs near the permanent pool elevation. Mean outflow concentrations did not exceed 300 ppm and essentially all outflowing sediments were fine material. This suggests that flow detention times were sufficiently long in all of these structures to permit settling of all but very fine sediment particles. - 7. Collection of rainfall, runoff, and sediment data on a storm basis was continued on two small single cropped (cotton) watersheds in the Bear Creek Basin. Excessive rainfall, 40 inches during the first 6 months of the year, caused flooding of parts of the plots for several weeks in the winter and spring. Particle size analyses of soil samples from the watersheds were completed. Clay content in the top 8 inches of soil ranged from 10 to 35% and the sand content from 30 to 80%. Particle size analyses of selected runoff samples showed that essentially no sand is leaving the watersheds. Clay content in the outflow ranged to 90% of the total sediment which indicates significant enrichment of fine particles as the soil is transported from the watersheds. - 8. A set of 15 sediment samples from oxbow lakes in the Bear Creek Basin was used to evaluate recently developed, commercially available instruments for measuring the particle size and particle size distribution of sediment deposits. Particle size distributions were determined by four different procedures including the Sedigraph at Chickasha, OK, the Microtrac at Tucson, AZ, the Particle Data Analyzer and the conventional pipette procedure at Oxford, MS. While the study is not yet complete, the available data are being analyzed. An additional set of data is expected from a fifth instrument at the U.S. Army Cold Region Research Laboratory, Hanover, NH. - 9. A laboratory test channel was modified to accommodate the hydraulic simulation of in-channel sediment traps similar to those being used by the SCS in channelization projects. Instrumentation has been installed. Testing is not yet complete. As a second effort, field evaluation of these traps has begun on Juniper Branch of Chicod Creek in North Carolina in a cooperative study with the SCS and the USGS. Samples have been obtained from six storms, but analysis of the data is not yet complete. Field data collection is continuing. - 10. A process-oriented mathematical model has been developed describing the thermal, suspended sediment, and dissolved material processes in shallow, stratified impoundments. This model has been verified by data from Lake Chicot in Arkansas. In addition, 3-year data bases of physical, chemical and biological variables have been assembled from Wasp, Three-Mile, and Blue Lakes in Mississippi for further model verification. - 11. In a cooperative study with the Wisconsin Department of Natural Resources sediment samples from 3 Wisconsin lakes, Honey, Redstone, and Black Otter, were analyzed for Cesium 137 content. The location of maximum cesium content in the sediment profiles was used to compute apparent sedimentation rates at various locations in the lakes. Data collected in 1964 and 1979 indicate that apparent sedimentation rates in these lakes vary in both time and locations. From 1954 to 1979
computed average annual rates range from .80 cm/yr at sites in Black Otter and Redstone to a maximum of 2.40 cm/yr at sites in Honey and Redstone. These data are providing a data base for management decisions in the operation of these and other lakes. - 12. Particle size determinations and CS-137 analyses of 58 soil and sediment profiles from southwestern Wisconsin were completed. An additional 6 profiles from Allerton Lake were analyzed for CS-137. These data were collected for the purpose of evaluating the Cesium-137 method for determine soil erosion. Evaluation and interpretation of these data are incomplete. - 13. Field data collection on the Bear Creek, Mississippi project, a cooperative research study with the Vicksburg District, U. S. Army Corps of Engineers, was completed in December, 1979. Large amounts of sediment and water quality data have been accumulated during the last 4 years from this 132 mi² delta watershed with numerous in-stream and off-stream lakes. Results have been reported quarterly and a final and more detailed report is being prepared. Additional study and evaluation of the data is being done as time permits. - 14. Surveys of various components of the Bear Creek aquatic ecosystem were also completed, culminating three years of monthly data collections for major trophic levels. Aquatic life in Bear Creek on all levels has been affected adversely by runoff associated sediments and agricultural chemicals. Monthly collections for plankton showed strong population dependency upon runoff associated nutrients. Benthic production in lakes was usually limited to hardy species, able to cope with the deposited sediment load (up to 7.2 cm/yr). Benthos species diversity was low, indicating heavily stressed community structures. Coliform bacteria counts showed heavy animal and human contamination of the upper portion of the stream system. An aquatic and semi-aquatic plant survey by habitat was also concluded. A one-acre rotenone fish study on Mossy Lake, an off-stream lake, will allow comparisons between in-stream and isolated lakes. Physical and chemical parameters were collected with all samples. Detailed study and analyses of the data remains to be done. - 15. In another cooperative study with the U. S. Army Corps of Engineers the collection of sediment and water quality data was continued in 1979 on Lake Chicot in Arkansas. Sediment and chemical loads entering, within, and leaving the lake were monitored on a daily basis. These data were combined with flow data to compute sediment and chemical budgets for the lake. The data are also being used in the verification of mathematical models for predicting sedimentation processes in reservoirs and impoundments. - 16. Sampling of ecological parameters (benthos, plankton (nanno-and net), chlorophyll, coliform bacteria) and biochemical oxygen demand in Lake Chicot continued on a four-week basis. A subcontractor (University of Arkansas-Monticello) supplied monthly C-14 primary productivity Samples from several trophic levels (mainly fish) were measurements. analyzed for residual pesticides. Measurements of selected water quality and sediment parameters and flow characteristics were taken on a two week basis to aid in the ecological analysis. Accumulated data suggests a definite relationship between primary production and suspended sediments. Benthic organisms appear to be adversely affected in stream delta regions by deposited sediments. Surveys indicate an extreme imbalance of fish species in the lower lake (which has heavy sediment inflow), but preliminary testing results show residual pesticide levels to be low except for fishes four or five years old. project is to continue for another year. - 17. Three years of runoff, sediment, and toxaphene yield data were summarized for a 15.6-ha Sharkey silty clay watershed in the Mississippi Delta and submitted for publication. This report, which includes information on toxaphene distribution coefficients, concentration frequency distributions, disappearance rates, and mode of transport, will be helpful in calibrating or testing chemical transport models. - 18. Research was continued on the washoff of insecticides from plant canopy as functions of rainfall intensity and amount. This study is part of an on-going effort to model the movement of insecticides from plant canopy to soil and the subsequent transport in runoff and sediments. - 19. A 250-ft. test channel with a flow capacity of up to 150 cfs. has been equipped for making river-scale studies of sediment transport with better control of the independent variables than can be maintained in actual rivers. Instruments include continuous sediment load measuring devices, and automated depth and bed profile recorders. All data collected will be sent directly from experiment to computer for analysis concurrent with the experiment. Information obtained will be used in establishing better criteria for stable channel designs. - 20. A 100-ft. flume with an 18 cfs maximum flow capacity has been equipped for experimenting with alluvial channel resistance coefficients in unsteady flows. The experiments in this flume will be entirely controlled by a totally dedicated computer, which will impose a preprogrammed unsteady flow during an experiment, and concurrently acquire and analyze the data from the experiment. Instrumentation includes depth and discharge controls, and a series of water depth, sand depth, discharge, and temperature measuring instruments. - 21. Computer codes have been written to investigate patterns of localized scour around channel transitions. The schemes use known-discharge, finite element techniques and have been used so far to simulate natural backfilling of dredged trenches and flow patterns around confluences of alluvial streams. Results of preliminary validation runs using some available data are satisfactory. - 22. A report on stochastic approaches to suspended-sediment transport was prepared for the ASCE Task Committee on Stochastic Hydraulics. A detailed evaluation of existing stochastic techniques for predicting turbulent dispersion of suspended sediment was carried out. The capabilities of these techniques along with their limitations were examined, and suggestions for their extension to complex cases of practical interest were given. - 23. Hydraulic-similitude modeling of low-drop channel grade control structures is continuing. A low-drop structure is here defined as one in which the physical drop is equal to or less than the upstream approach specific head. Tests were conducted at flows ranging from 2000 to 4000 cfs (prototype) and in all cases an undulating hydraulic jump (stationary wave) developed over the drop and persisted on downstream. One method to destroy the stationary wave and its detrimental effects to the downstream channel is to place a vertical baffle plate or pier in the flow. Model tests are being conducted to determine the geometry of the scour hole developed for different sizes of baffle plates and flow rates. A generalized, hydraulic similitude study is in progress to develop generalized design criteria for low-drop channel grade control structures using the baffle plate. - 24. Evaluation of the distribution and significance of the valley-fill stratigraphic units has continued. Additional wood samples contained within or at the contacts of the valley-fill units have been collected and dated by C analysis. Two dominant modes at circa 10,000 C years Before Present (BP) and at circa 1000 C years BP contain 42% and 46% of the wood samples, respectively. In addition, five samples form a mode at circa 5000 C years BP and four samples have ages greater than 40,000 C years BP. The three youngest modes comprise a frequency distribution which is in agreement with Holocene paleoclimatic interpretation. This apparent paleoclimatic control of the valley-fill stratigraphic units enhances the predictive capabilities of the overall bank stability study. The utility of such capabilities is based upon the previously reported association between bank failure mode and valley-fill stratigraphic unit. - 25. Photogrammetric interpretation of ASCS aerial photographs has been initiated. Channel widths and depths have been measured for Johnson Creek for the years 1937, 1944, 1957 and 1975. Approximately 8 feet of thalweg lowering have occurred in some reaches since 1944 due primarily to headcut migration, and this amount of bed degradation has caused many, if not most, of the present bank instability problems. Channel widths downstream of the headcut on Johnson Creek are highly variable and were not significantly related to channel depth or to longitudinal location. Channel widths and depths are significantly related upstream of the headcut. These results illustrate the disruptive influence of headcuts on "equilibrium" channelized flow conditions, i.e., headcuts are local areas of excessive energy expenditure which have formed at least partly in response to extrinsic conditions. - 26. The interrill erodibilities of seven additional soils were evaluated during 1979, using measurements of soil loss from row sideslopes during simulated rainstorms at four rain intensities. Of the 16 soils studied thus far, erosion rates were the lowest for the well-aggregated, fine-textured soils of the Mississippi Blackland Prairie. Mississippi Delta silty clay and sandy loam soils were also of low erodibility. The silt loams and another sandy loam were moderately to highly erodible. The interrill erodibilities for soils tested in a bare, worked-up condition have differed by a factor of nearly 7 from the least to the most erodible. The size distributions of eroded sediment have been determined for all soils that were tested during erodibility research. Generally, the sediment from the sandy loam soils was sandy loam sized, though slightly coarser than the primary particles of the - soils. The sediment from the silt loam soils was generally considerably coarser
than the primary particles of the soils, though still silt loam sized for all soils except one. However, the sediment from the fine-textured clay and silty clay soils was much coarser in texture than the primary particles of these soils themselves, such that their sediment size distributions were those of sandy clay loams or sandy loams. The sediment from the finest textured soils was almost as coarse as that from the sandy loam soils because so much of it was in the form of large aggregates. Sediment size is a major factor that influences the transportability of eroded sediment, greatly affecting whether it will be transported and how easily it can be trapped by deposition in filter strips or sediment traps. - 27. Research was completed on the effect of furrow slope, runoff rate, and sediment size on the capacity of concentrated flow to transport sediment sizes averaging 77, 151, 302, and 603 µm along crop row furrows. For this coarse sediment, nearly a hundred times more sediment could be transported at 1% than at 0.2% slope, nearly a thousand times more at 2½% than at 0.2%, and much over a thousand times at 5% than at 0.2%. As flow rate doubled, transport capacity generally doubled to tripled. Transport capacity increased as sediment size decreased. These results show that the amount of sediment movement on flatland fields will be greatly affected by the sediment size, by the flow rate as influenced by rain intensity and furrow length, and especially by the slope of the furrow along which the runoff is flowing. - 28. In <u>situ</u> measurements of hydraulic conductivity were completed on Grenada (fragiudalf) soils. The drainage method for computing conductivities was found to be inadequate for soils with genetic pans or impeding layers. The evaporative method using the zero-flux plane as a lower boundary yielded useful data. Significant differences were noted between in <u>situ</u> measured hydraulic conductivities and those obtained from laboratory analyses using the Brooks-Corey relationships. - 29. Construction of supercritical flumes for streamflow/sediment sampling is nearly complete. Nine of fourteen structures are finished with the remaining five in different stages of completion. Installation of instrumentation is underway at the completed sites. The instrumentation/electronics packages being installed include water level recorders for headwater and tailwater depths, a Chickasha pumped sediment sampler, a Dynatrol density cell, a recording raingage, thermistors to measure water, air temperature, and soil temperature. At several sites, ground level raingages are being installed in addition to the regular raingage. A central climatological site in the watershed measures solar radiation, relative humidity, barometric pressure, wind speed and direction, and pan evaporation. The data from most of these sites are transmitted back to a receiving computer at the laboratory by VHF radio telemetry. This gives access to the data on a nearly real time basis. Other data types being collected in the watershed include soil moisture, crop growth data such as canopy height and density, farm pond water levels and channel section profiles. The major use of the data will be testing a comprehensive sediment transport model under development at the laboratory and reported in another note. Several related projects are also using the data including projects on channel stability, modeling of subsurface movement of water, and development of a crop growth module for use with the erosion model. - 30. Several sediment-transport formulas were examined with reference to extensive field and laboratory data. The Yang formula gave the best estimates for streams carrying fine to coarse sands. The Laursen formula worked satisfactorily in small channels carrying silts and very fine sands. The Yalin formula was found adequate to predict capacity of overland flows carrying particles with sizes and densities typical of field situations. - 31. A sediment routing model was developed that incorporates the effect of sediment-size gradation on stream carrying capacity and on bed evolution processes. The model permits simulation of bed armoring and streamwise sorting of bed material. Simulations of field data from Pigeon Roost Creek, Mississippi, East Fork River, Wyoming, and San Luis Valley Canal, Colorado, gave satisfactory results. For additional information contact D.G. DeCoursey at the USDA Sedimentation Laboratory, P.O. Box 1157, Oxford, Mississippi 38655. #### MISSOURI 1. Trap efficiency research by the SEA Watershed Research Unit on three central Missouri reservoirs was continued through 1979. This research included the measurement of inflow and outflow of sediment to determine trap efficiency on a storm basis. To improve the quality of water stored in small reservoirs, a bottom-withdrawal spillway is being studied to see what effect it has on the water quality in and downstream from two reservoirs. This spillway is expected to lower the trap efficiency because it eliminates the "dead" storage below the spillway intake which, in turn, reduces the detention time of storm runoff since density currents are discharged as soon as they reach the lowest point in the reservoir. As an example of the effect this spillway has on water quality, the phosphorus discharged from the spillway was compared to that stored in the reservoir. For one reservoir, the ortho-P discharged was 1.5 times greater than that stored, nitrate-N was 1.4 times greater, and ammonium-N was 1.3 times greater. For the other reservoir, ortho-P was 7.4 times greater, nitrate-N was 1.3 times greater, and ammonium-N was 1.9 times greater in the outflow than that stored in the reservoir. Sediment was likewise greater in the outflow than in the stored water. These trends should reduce the problems of sedimentation and eutrophication in reservoirs equipped with the bottom-withdrawal spillway. For additional information contact Carroll R. Amerman, Watershed Research Unit, 207 Business Loop 70 East, Columbia, Missouri 65201. ### NEBRASKA 1. Resurvey of actively eroding channel headscarps (15-20 ft. high) in 20 sq. mile Dry Creek Basin, Frontier & Lincoln Counties, Nebraska show that some have moved upstream more than 1000 feet since 1951, with appreciable channel filling at the original scarp location. Further study of this well-monumented drainage area is expected to yield considerable information on sediment delivery mechanisms and optimum grade control treatments. For additional information contact Carroll R. Amerman, Watershed Research Unit, 207 Business Loop 70 East, Columbia, Missouri 65201. #### NEBRASKA Research at Lincoln, Nebraska pertinent to research and erosion is conducted on two farms in Stanton County, 100 and 112 miles north of Lincoln. These studies are on Nora and Crofton soils, typical of the lands where undulating topography and slopes are such that terraces cannot be installed and farmed with reasonable effort. Small areas of these lands often contribute major sediment production within a watershed and are of serious continuing concern in the Missouri Valley Loess and Table Land areas. 1. Sediment and water control basins (discontinuous terraces) have been constructed with riser inlets and underground pipe outlets. The basins impound runoff and discharges are controlled through the riser inlets. The basins have selected designs for 2-, 5-, and 10-year frequency storms downslope on each subwatershed drainway. The basins are on terrace spacing and permit parallel row-crop tillage. Runoff in excess of the detention storage and discharge capacity of the underground pipe is discharged as overland flow on the adjacent ridge. Each instrumented basins has a water stage recorder to provide a runoff hydrograph of the discharge through a calibrated riser and an orifice plate. Programmed samplers take discrete samples from the pipe discharges at selected time intervals during runoff. Construction of some basins were completed in 1978 and the balance in the spring of 1979. Despite soil disturbance and loss of residue by construction which reduce infiltration, no runoff event provided more than half-capacity impoundment in any basin. Some basins have had little impoundment with any event to date. Appreciable transported solids have been found only in samples from the initial discharge and prior to impoundment in the basin. Impoundment permits deposition in the basin. These minimal soil losses on runoff compare with losses of up to 20 tons per acre inch of runoff measured from unprotected drainways in these fields prior to installation of the basins. Added protection from crop residues under conservation tillage is expected to decrease both soil movement and runoff. Farmability of the fields have been greatly improved with savings in fuel. Only the backslope of each structure is lost to cultivation and this is offset by the elimination of unneeded waterways. For additional information contact LaVerne E. Stetson, Agricultural Engineering Department, University of Nebraska, Lincoln, NE 68583. #### OHIO REGION #### SCIENCE AND EDUCATION ADMINISTRATION Research Activities at the U. S. Department of Agriculture-SEA-AR in Coshocton, Ohio include the following: - 1. Erosion plots have been established at 2 mine sites in Ohio. They are sited on 4 different uniform slopes ranging from 9 to 30 percent. The plot lengths range from about 12 feet to 290 feet. The lengths of the plots are distributed on these slopes with the shorter plots on the steeper slopes. Nine plots have reclamation treatments of mulch rates and depths of topsoil. Data will be collected for practical use to verify and/or improve erosion models for surface mine planning. - 2. A flow proportional sampler was developed for use on the erosion plots in item 1. The objectives for development included the necessity for the use of readily available materials and rapid assembly, and a minimum of special efforts to install.
The sampler catches all the runoff and diverts the flow on a timed basis. Proportionality is a function of only time. Tests indicate that the sampler is very accurate for the range of flows expected from standard sized plots. - 3. Sediment data have been collected for 2 watersheds that have experienced surface mining. Analysis is underway to determine the impacts of mining on sediment yield. For additional information contact James V. Bonta, U. S. Department of Agriculture-SEA-AR, P. O. Box 478, State Route 621, Coshocton, Ohio 43812. #### OKLAHOMA Research activities at the <u>SOUTHERN PLAINS WATERSHED AND WATER QUALITY</u> LABORATORY, Durant and Chickasha, Oklahoma, include: - An investigation of the effects of varying land uses on amount of runoff and sediment discharges. Amounts of runoff and sediment discharges for 1979 are being computed for watersheds at El Reno and Woodward, Oklahoma. At El Reno, eight watersheds were studied. Four watersheds were in wheat, however, severe heat problems precluded grain harvest and they were grazed out. These four watersheds were moldboard plowed in early June. Two watersheds were seeded to sorghum while the other two remained fallow. Sorghum was harvested in mid July for hay. The four other watersheds remained in native grass and were grazed after June 29. One watershed was burned on March 30. Fertilizer, 50 lbs/ac of N, was applied to two watersheds during early April. Grazing was limited on three of the watersheds to maintain high quality forage. Considerable runoff occurred during the year. At Woodward, Oklahoma, four watersheds were continued in range. Two watersheds remained in grass and were grazed at varying rates throughout the year. The other two watersheds were moldboard plowed in June and planted to wheat in early November. At Bushland, Texas, three graded terraced cropped watersheds and two small grass plots were sampled for runoff, sediment yield and water quality. - 2. An investigation of the techniques of particle size analysis of watershed soils, material in transport from the watershed, and deposited sediments is being conducted. Particle size analysis of suspended sediment samples from two Fort Reno watersheds indicated that fine particles are aggregated under natural conditions. Particles smaller than 25 microns were aggregated in samples from higher flows with righer sediment concentrations. In lower flows with lower concentrations and generally with finer size distributions, only the particles smaller than 10 microns were aggregated. Aggregation appears to be related to sample concentration and/or particle size distribution. A comparison of methods for deposited sediments (D₅₀ = 10 microns or less) is being conducted. - 3. An investigation into the methods and procedures to evaluate and develop sediment yield estimates. An average EI distribution curve from 4 raingages on the cropland watersheds was compared to the EI distribution curve in handbook 537. The curves differed by less than 1% for November-February. The curve was higher than the curve in handbook 537 for March-June and was lower for July-October. Maximum difference between the two curves was 13% at the end of May. The change in distribution lowered the C factor 7.5% on the cotton watersheds and 6% on the wheat watersheds. Annual EI for the 10 year period averaged 205 compared to 240 from handbook 537. The two factors combined resulted in a reduction in estimated erosion of 20% compared to the handbook values. - 4. An investigation of radioactive cesium as a possible tool to distinguish sheet and rill erosion from gully erosion was conducted. The results were inconclusive. The cesium content of the suspended sediment from the gully watershed was higher than that from the watershed where sheet and rill erosion dominates even though the reverse was true for the sampled surface soils on the watersheds. If the method is not useable on small size single source watersheds, it probably would not be suitable on larger watersheds with more diverse and complex erosional processes. - 5. An investigation of 18 empirical, lumped-parameter sediment yield models for watersheds in the Southern Plains is being conducted. Predictions with these are being compared to measured yield data for the larger Southern Plains watersheds. Comparison of these models may indicate a useable model exists and the study would bring to light pertinent, otherwise overlooked, variables. - 6. An investigation of the adoption of a distributed parameter, deterministic watershed sediment yield model for use in the Southern Plains. Reservoir trap efficiencies have been determined on an individual storm basis for a floodwater retarding reservoir having sediment measuring stations on the main inflow channel and the outflow. Trap efficiencies were roughly inversely related to the volume of main channel water inflow and ranged from 100 percent for small inflow events that did not spill to 70 percent for a large flow event. For additional information contact J. Roger McHenry, Director, USDA-SEA-Southern Plains Watershed and Water Quality Lab, P.O. Box 1430, Durant, OK 74701. ### OREGON Research activities at the Columbia Plateau Conservation Research Center, Pendleton, Oregon include the following: - Runoff and soil erosion from a permanent site in a wheat-pea rotation is now in its third season of operation. The site is located nine miles east of the Columbia Plateau Conservation Research Center at an elevation of 2400 feet. Average annual precipitation is approximately 22 inches. The site consists of six plots each 110 X 13.3 feet and associated runoff and sediment sampling equipment and instrumentation. Two of the plots are in permanent fallow, two plots have winter wheat followed by peas or spring wheat and the two remaining plots have peas or spring wheat followed by winter wheat. Tillage and simulated planting operations are made on the fallow plots at the same time they are completed on the plots for the other treatment combinations. Meteorological variables are also recorded continuously at the site. Numerous runoff and erosion events during the 1977-78 and 1979-80 winter seasons. No runoff occurred during the 1978-79 season. Site improvements have been the installation of additional water level recorders on each flume to obtain a better definition of the runoff hydrographs. A shallow seismic survey completed in late summer indicated that one of the important factors in generating surface runoff is the existence of a dense and probably impermeable layer which underlies the site. In addition, variations in seismic velocities in the near surface layer indicate areas of high density and low permeability, which are spatially discontinuous and must also generate surface runoff. Marked color changes, bulk density and texture all three show this layer to occur at 30 to 40 cm. An expanded network of piezometers for monitoring underground flow was installed; the site has been equipped with a standard weather bureau shelter housing a mechanical hygrothermograph and maximum-minimum thermometers. - 2. To monitor wintertime soil erosion in the Pacific Northwest, plots must be instrumented after the last fall operation. Such plots must also be set up for servicing from an all weather road. Thus borders must be installed quickly without trampling and vehicular traffic in farm fields. A prototype border planter was developed to be hand carried into the field, easily assembled in field at the top of the plot, and then pulled toward the edge of the field using a winch on a 3/4 ton pickup. The border planter was made to install vinyl impregnanted canvas into which nylon staves were sewn. These borders are light and sturdy, and can be reused. This prototype border machine performed well in dry soil irrespective of residue amounts present; in wet soil only small amounts of surface residue could be negotiated. A second lighter prototype is to be tested for performance in wet soils with large amounts of residue present. 3. A new and different program of soil erosion research in northeastern Oregon was initiated in September of 1979. Fourteen plots, each 3 X 18 meters were installed using the border planter after fall tillage and planting operations were complete at 5 sites. The sites are located in Wasco, Gilliam, Morrow, Sherman, and Umatilla counties, Oregon. All except in Umatilla County were winter wheat after fallow; winter wheat was planted after wheat at this Umatilla County site. These sites represent the variety of physical and climatic variability found on the Columbia Plateau. Each site is instrumented to continuously record air temperature, soil temperature, relative humidity, and precipitation; each plot is equipped with a holding tank containing a water stage recorder so that runoff amounts and rates can be determined. In addition, a frost tube is located at each site and snow water equivalent on each plot is determined each week. After each runoff event water samples are collected from each holding tank and analyzed for sediment concentration. Numerous runoff and erosion events have been observed this year. The plots are removed in April and re-installed at different sites each fall after fall tillage is completed. Preliminary analysis of this years data indicates that frozen soils and snowmelt were causative factors in 12 out of the 15 observed runoff-erosion events. The vinyl impregnated canvas borders performed as well as or better than sheet metal borders used at the permanent erosion site. For additional information contact John F. Zuzel or R. R. Allmaras, Columbia Plateau Conservation Research Center, USDA-SEA-AR, P. O. Box 370, Pendleton, OR 97801 ## **TEXAS** Research activities at the Grassland, Soil and Water Research Laboratory at Temple, Texas include the following: - 1. A new project, Conservation-Tillage Systems for Dryland Crop Production in the Texas Blackland Prairie, was initiated. A new planter was designed,
fabricated, and tested by operating in oat stubble, sorghum stubble, cotton stubble, and tilled soil while planting forage sorghum, grain sorghum, cotton, and wheat. Three comparison watersheds which had been treated by preparing flattopped wide beds were altered by forming ridged wide beds for 1980 corn production. Controlled traffic was used with all wide-bed field operations. Plant populations, surface residue, flow, and sediment were measured for the watersheds. Control of johnsongrass was a problem without fallow tillage. Development was started on a sweep herbicide incorporator and a between-rows rope type herbicide applicator for weed and grass control in residue covered fields. - 2. The MUSLE was linked to the CREAMS (Chemical Runoff and Erosion from Agricultural Management Systems) hydrology model option 1 for testing. The runoff-sediment model was applied to 57 basins across the U.S. Basin characteristics, land use, and climatic conditions ranged widely. Some of the input data was estimated because SCS is still assembling land use and soils information for a few of the basins. However, the present results are quite encouraging. The R² value obtained by comparing the measured and predicted average annual sediment yields for the 57 basins is 0.83. - 3. A model was conceptualized for simulating upland soil erosion. The dynamic model simultaneously solves equations describing detachment by rainfall, and deposition, reentrainment, and degradation by concentrated flow. It allows a detailed description of topography, soils, vegetative cover, crop reside, and conditions caused by tillage. The model is in the early stages of testing. When the model is fully developed it will be combined with a sediment routing model to form an upland-channel erosion sedimentation model. The upland-channel model will be linked to a hydrology-nutrient-crop growth-tillage model for use in evaluating the effects of management strategies and determining soil loss-crop production relationships. For additional information contact Clarence Richardson, Research Leader, USDA-SEA-AR, Southern Region, P. O. Box 748, Temple, TX 76501 ## WASHINGTON The following research is being conducted by the Land Management and Water Conservation Research Unit at Pullman, Washington: - 1. A portable, photographically recording rill meter is being used to measure soil loss from rills from selected field sites at the end of the erosion season. The purposes of the study are to determine (1) the effect of slope length and steepness on loss, and (2) the variation of soil loss across the climatic belts of eastern Washington and northern Idaho. The results from this study, initiated in 1973, will be used in developing a second generation adaptation to the Pacific Northwest of the Universal Soil Loss Equation. - 2. Runoff plots have been installed on fields in eastern Washington on various crop treatments including conventional, reduced, and no-till seeded winter wheat, and various primary tillages of wheat stubble. The purposes are (1) to determine the effect of crop treatments on (a) runoff, (b) soil loss, and (c) nitrogen and phosphorous in runoff water; (2) determine the effect of slope length on relative magnitudes of sheet and rill erosion; (3) determine the effect of certain conservation practices on runoff and erosion; and (4) determine potential for residue harvesting for biomass conversion processes. Instrumentation includes frost depth meters to determine the effect of crop treatment on frost depth and subsequent runoff and erosion following periods of frozen soil. - 3. A crop management factor evaluation model is being developed for use in the adaptation of the Universal Soil Loss Equation to the Pacific Northwest. The model will consider such factors as surface residue, tillage operations, vegetative cover, and soil moisture content prior to and during the winter erosion season. - 4. A sediment transport and delivery rate study is being conducted on a 27.1 square mile watershed. A PS-69 automatic pump sampler, located near a USGS gaging station, is used to collect suspended sediment samples. Several channel cross sections are measured before and after the erosion season to estimate the amount of channel aggradation or degradation and are used with upland erosion and valley deposition measurements and estimates to calculate delivery ratio. Data from the study are also being used to determine sampling frequency requirements for streams in agricultural watersheds of the Palouse. For additional information, contact Donald K. McCool, USDA, SEA, AR, Agricultural Engineering Department, 219 Smith Engineering Building, Wahington State University, Pullman, WA 99164. #### LABORATORY AND OTHER RESEARCH ACTIVITIES ## Water and Power Resources Service The regular meeting of the Technical Committee to the Subcommittee on Sedimentation at the St. Anthony Falls Hydraulic Laboratury in St. Paul, Minnesota, was attended. In addition to regular business, the committee examined the first set of data on the Bedload-Sampler Calibration Research. A representative of the Water and Power Resources Service attended the Spring Meeting of the American Geophysical Union which was held in Washington, D.C., the week of May 28, 1979. This representative also participated at the meeting of the AGU Committee on Erosion and Sedimentation which was held in conjunction with the AGU Spring Meeting. The Fourth National Hydrotechnical Conference in Vancouver, Canada, was attended. The 2-day technical sessions were highlighted with a 1-day field trip to visit the hydraulic model of the Fraser River in Vancouver, and a river tour of the Lower Fraser River to observe training structures. Exceptional technical papers were presented in the field of sedimentation and river morphology. A series of four lectures on "Water Related Sediment Problems" was presented to participants in the 1979 Water Systems Management Workshop held in Canver, Colorado, November 4-9, 1979. A clay erosion test apparatus was designed to be built and used at the Grand Coulee Project to determine critical shear on 0.028 m 3 (1 ft 3) samples of clay. Undisturbed samples considered representative of varved and massive clays will be taken from the bottom of the Columbia River downstream of the dam. Results of the erosion tests will be used to help determine protective requirements for riverbank stabilization. A 1:48 scale physical model of the combined spillway and outlet basin for Canyon Ferry Dam, Upper Missouri Basin Project, Montana, was used to study backflow of sediment from the river into the basin due to unbalanced flow and turbulence. Procedures for cleaning the basin by flow rather than using heavy equipment were also investigated. A 1:36 scale model of McPhee Dam, spillway and stilling basin, Dolores River Project, Colorado, was used to study scour in the downstream river during spillway flow flipout. A representative attended the regular meeting of the Technical Committee to the Subcommittee on Sedimentation in Knoxville, Tennessee. The meeting was highlighted with a 1-day field trip over the TVA coal strip mine reclamation programs near Knoxville. APPENDIX | | • | | | |---|---|--|--| | | | | | | , | This appendix is a computerized index of available sediment data from the National Water Data Exchange (NAWDEX). NAWDEX is an interagency program to facilitate the exchange of water data and to promote the standardization of water-data handling procedures. The participants in the NAWDEX program are those Federal, State, and local governmental organizations, and private organizations that collect and use water data. NAWDEX maintains a "Master Water Data Index" which is a computerized index of available water data. The index contains information on sites for which water data are available, the location of these sites, the type of site, the data-collection organization, the types of data available, the major water-data parameters for which data are available, the frequency at which these parameters are measured, and the media in which the data are stored. ### NAWDEX Definitions Hydrologic Unit Codes—This an eight-digit numeric code identifying the site's location with reference to the areal definitions shown on the USGS State Hydrologic Unit Maps. The first two digits represent Water Resources Council regions (see Figure 1), the second two digits represent Water Resources Council subregions, the third two digits represent the National Water Data Network accounting units, and the fourth two digits are the cataloging units of the Catalog of Information on Water Data maintained by the Office of Water Data Coordination. Station Name--The station name is assigned by the participating organization for the sites where it conducts water-data collection activities. It may contain both the name and location of the site. State--This two-digit number is assigned to those sites which are physically located within the conterminous United States, Alaska, Hawaii, Puerto Rico, and Okinawa. It bears no relationship to the organization or office that is responsible for the operation of the sites (see Table 1). <u>County</u>--This three-digit number is assigned to those sites which are physically located within a specific county. Census divisions are used, instead of counties, for Alaska (see Table 1). <u>Site Type</u>—This two-character alphabetic code describes the type of water body subject to hydrologic data collection activities at the site, or the type of data collected at the site. | <u>Code</u> | Meaning | |-------------|--| | SW-Stream | A body of water flowing in a natural channel as distinct from a canal. | | CN-Canal | An artificial waterway designed for navigation or
for transporting water for municipal water supply, land irrigation, or drainage. | DR-Drain A small artificial water-course designed to drain swampy areas or irrigated lands. Theoretically it is actually a small canal, but it is referred to as a "drain" in many localities. ES-Estuarine Zone or Estuary The term "estuarine zone" means an environmental system consisting of an estuary and those transitional areas which are consistently influenced or effected by water from an estuary such as, but not limited to, salt marshes, coastal and intertidal areas, bays, harbors, lagoons, onshore water, and channels. The term "estuary" means that part of a river or stream, or other body of water having unimpaired connection with the open sea where the sea water is measurably diluted with fresh water derived from land drainage. The term includes estuary-type areas of the Great Lakes. SS-Specific Source An artificial conduit or other conveyance where pollutants are discharged (from factories, sewage treatment plants, etc.) into a water body or aquifer. OC-Ocean A site located in any of the world's oceans. <u>Drainage Area</u>—is the area of the stream at the specific location of the site, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the site; it includes all closed basins, or noncontributing areas, within the total drainage area. Basin Description—This numeric code may contain up to three digits. It is used to classify conditions in the drainage area of the data collection site. Code "3" (urban) and code "4" (natural) are mutually exclusive; one or the other will always be present but both will never be present for one specific site. | | Code | Meaning | |---|-------------------------|---| | | Regulation
Diversion | The artificial manipulation of the flow of a stream. The taking of significant quantities of water from a stream or other body of water into a canal, pipe, or other conduit. | | 3 | Urban | The situation where streamflow patterns at a site are effected significantly by urban development. The effect is considered to be significant when approximately 20-25 percent or more of the drainage area is covered by a dense road grid (indicating the presence of impermeable surfaces of roads, parking lots, and building roofs). | | 4 | Natural | The opposite of "urban." | OW Begin Year--This four-digit number identifies the calendar year in which the acquisition of water quality data was first begun at a site, regardless of the types of water quality data that were collected. This date will never change even though water quality data collection may be deactivated and reactivated several times during a site's history. OW End Year--This four-digit number identifies the calendar year in which all water quality data collection activity at a site was discontinued. If at a later date the collection of any of the water quality parameters is resumed, the former end date is deleted. Data Collection Frequency Codes—These codes indicate the intervals of time for which records of water data are available. The meaning of the codes sited in the table below are self explanatory except for "continuous." Continuous records are those which are based upon recordings of data at intervals of 4 hours or less (6 or more times in a 24-hour period). Continuous records based upon data automatically recorded by a recording instrument are associated with frequency codes "I" or "J," while continuous records based upon manually recorded observations are associated with codes "C" or "D." Data collected at intervals greater than 4 hours but at least once daily fall under the codes designated as "daily." Data collection intervals that actually fall between those listed below are recorded under the next longer frequency. | Meaning | Code Year-
Round | Code
Seasonal | Code <u>1</u> /
Eliminațed | |--|---------------------|------------------|-------------------------------| | Continuous-Recorder Instrument | I | J | L | | Continuous Nonrecorder | С | D | ${f T}$ | | Daily | 0 | P | 2 | | Weekly | W | X | 3 | | Bi-weekly | F | G | 4 | | Monthly | М | N | 5 | | Bi-monthly | H | K | 6 | | Quarterly | Q | R | 7 | | Semiannual (twice per year) | S | | 8 | | Annual (once per year) | Α | | 9 | | Other Periodic (less often than once per year) Seasonal (no time period specific | B
ed) | Y | | | Data collected at an irregular or unspecified frequency | r
Z | | | | Unique (one-time measurement) | ប | • | | | Eliminated Activity | E | | | ^{1/}The Eliminated Frequency Codes may be used to indicate that the collection of data for a single parameter, or data component, has been discontinued at a site and that data were being collected at the frequency indicated at the time of discontinuance. Organization Code—This code is assigned by the NAWDEX Program Office and is the unique identifier for participating Federal and non-Federal organizations that actively collect and store water data. Non-Federal organizations include State, county, and municipal organizations as well as intergovernmental compacts, private organizations, universities, and any local organizations at other than county or municipal level (see Table 2). Storage Media -- This one-character alphabetic code identifies the type of data storage. | Code | Meaning | |------|---| | P | PublishedIncludes methods of data dissemination such as documents (work sheets, etc.) which may be copied or communicated over the telephone, as well as formal publications. | | С | Computer recognizable formatIncludes data stored in digital form in punched paper tapes, punched cards, magnetic tapes, magnetic disks, etc., that potentially can be transmitted to computer terminals and displayed on cathoderay tube screens, printed out on paper, or copied to another digital recording media. | | М , | MicrofilmIncludes data that has been recorded on microfilm or microfiche. | | D | C and PComputer recognizable format and published. | | E | C and MComputer recognizable format and microform. | | F | C, P, and MComputer recognizable format, published, and microform. | | G | M and PMicroform and published. | Figure 1.--Water Resources Regions of the United States. Table 1.—Code numbers and abbreviations used for States (and other areas) and code numbers used for counties and independent cities | | | STAT | TES AN | D THEIR CODES A | ND A | BBR | EVIATIONS | | | | |-------------------------|---------|--------------|--------|-----------------|--------|------|-------------------|-------|------------------|-------| | Cod | de Abbr | . Code | Abbr. | Co | ode At | bbr. | Code | Abbr. | Code | Abbr. | | Alabama 01 | AL | Hawaii 15 | ні | Massachusetts 2 | 25 N | ΛA | New Mexico 35 | NM | South Daketa 46 | SD | | Alaska 02 | 2 AK | Idaho 16 | ID | Michigan 2 | 26 N | ΜI | New York 36 | NY | Tennessee 47 | TN | | Arizona 04 | A Z | Illinois 17 | IL | Minnesota | 27 N | NN | North Carolina 37 | NC | Texas 48 | TX | | Arkansas 05 | 5 AR | Indiana 18 | IN | Mississippi 2 | 28 N | ИS | North Dakota 38 | ND | Utah 49 | UT | | California 06 | 5 CA | Iowa 19 | IA | Missouri | 29 N | ON | Ohio 39 | OH | Vermont 50 | VT | | Colorado 08 | 3 CO | Kansas 20 | KS | Montana 3 | 30 N | ΤN | Oklahoma 40 | OK | Virginia 51 | VA | | Connecticut 09 | CT CT | Kentucky 21 | KY | Nebraska 3 | 31 N | ΝB | Oregon 41 | OR | Washington 53 | WA | | Delaware 10 |) DE | Louisiana 22 | LA | Nevada 3 | 32 N | ٧V | Pennsylvania 42 | PA | West Virginia 54 | wv | | District of Columbia 11 | DC | Maine 23 | ME | New Hampshire 3 | 33 N | H | Rhode Island 44 | RI | Wisconsin 55 | WI | | Florida 12 | PL FL | Maryland 24 | MD | New Jersey 3 | 34 N | ٧J | South Carolina 45 | SC | Wyoming 56 | WY | | Georgia 13 | GA. | • | | • | | | | | _ | | #### STATES, COUNTIES, AND INDEPENDENT CITIES [States are arranged alphabetically by their symbols; counties (census divisions) and independent cities are in numerical order within each State] | | | | | | | | | | | .,- | | |-------------|----------------------|------------|-----------------------|------------|------------------------|------------|------------------------|------------|----------------------|------------|-----------------------| | | *Alaska | | Con. | | con. | | Con. | (| on. | | Con. | | | | 125 | Tuscaloosa | 115 | Pope | 055 | Napa | 063
065 | Kit Carson
Lake | 021
023 | Collier
Columbia | | | Alabama | 127 | Walker | 117 | Prairie | 057
059 | Nevada
Orange | 067 | La Plata | 025 | Dade | | | County | 129 | Washington | 119 | Pulaski
Randolph | 061 | Placet | 069 | Larimer | 027 | De Soto | | 001 | Autauga | 131
133 | Wilcox
Winston | 121
123 | St. Francis | 063 | Phimas | 071 | Las Animas | 029 | Dixie | | 003
005 | Baldwin
Barbour | 133 | winston | 125 | Saline | 065 | Riverside | 073 | Lincoln | 031 | Duval | | 003 | Bibb | | Arkansas | 127 | Scott | 067 | Sacramento | 075 | Logan | 033 | Escambia | | 009 | Riount | | County | 129 | Searcy | 069 | San Benito | 077 | Mesa | 035 | Flagler | | 011 | Bullock | 001 | Arkansas | 131 | Sebastian | 071 | San Bernardino | 079 | Mineral | 037 | Franklin | | 013 | Butler | 003 | Ashlev | 133 | Sevier | 073 | San Diego |
081 | Moffat | 039 | Gadaden | | 015 | Calhoun | 005 | Baxter | 135 | Sharp | 075 | San Francisco | 083 | Montezuma | 041 | Gilchrist | | 017 | Chambers | 007 | Benton | 137 | Stone | 077 | San Joaquin | 085 | Montrose | 043 | Glades | | 019 | Cherokee | 009 | Boone | 139 | Union | 079 | San Luis Obispo | 087 | Morgan | 045 | Gulf | | 021 | Chilton | 011 | Bradley | 141 | Van Buren | 081 | San Mateo | 089 | Otero | 047 | Hamilton | | 023 | Choctaw | 013 | Calhoun | 143 | Washington | 083 | Santa Barbara | 091 | Ouray | 049 | Hardee | | 025 | Clarke | 015 | Carroli | 145 | White | 085 | Santa Clara | 093 | Park | 051
053 | Hendry | | 027 | Clay | 017 | Chicot | 147 | Woodruff | 087 | Santa Cruz | 095
097 | Phillips
Pitkin | 055 | Hernando
Highlands | | 029 | Claburne | 019 | Clark | 149 | Yell | 089
091 | Shasta
Sierra | 097 | Prowers | 057 | Hillsborough | | 031 | Coffee | 021
023 | Clay | | Arizona | 093 | Siskivou | 101 | Pueblo | 059 | Holmes | | 033
035 | Coloert
Conecuh | 023 | Cleburne
Cleveland | | County | 095 | Solano | 103 | Rio Blanco | 061 | Indian River | | 037 | Conecun | 023 | Columbia | 001 | Apache | 097 | Sonoma | 105 | Rio Grande | 063 | Jackson | | 037 | Covington | 027 | Conway | 001 | Cochise | 099 | Stanislaus | 107 | Routt | 065 | Jefferson | | 041 | Crenshaw | 031 | Craighead | 005 | Coconino | 101 | Sutter | 109 | Saguache | 067 | Lafavette | | 043 | Cullman | 033 | Crawford | 007 | Gila | 103 | Tehama | 111 | San Juan | 069 | Lake | | 045 | Dale | 035 | Crittenden | 009 | Graham | 105 | Trinty | 113 | San Miguel | 071 | Lee | | 047 | Dallas | 037 | Cross | 011 | Greenlee | 107 | Tulare | 115 | Sedgwick | 073 | Leon | | 049 | De Kalb | 039 | Dallas | 013 | Maricopa | 109 | Tuolumne | 117 | Summit | 075 | Levy | | 051 | Elmore | 041 | Desha | 015 | Mohave | 111 | Ventura | 119 | Teller | 077 | Liberty | | 053 | Escambia | 043 | Drew | 017 | Navajo | 113 | Yolo | 121 | Washington | 079 | Madison | | 055 | Etowah | 045 | Faulkner | 019 | Pima | 115 | Yuba | 123 | Weld | 081 | Manatee | | 057 | Fayette | 047 | Franklin | 021 | Pinal | | 0-11- | 125 | Yuma | 083
085 | Marion
Martin | | 059 | Franklin | 049
051 | Fulton | 023 | Santa Cruz | | Colorado
County | | Connecticut | 087 | Martin
Monroe | | 06 l
063 | Geneva
Greene | 051 | Garland
Grant | 025
027 | Yavapai
Yuma | 001 | Adams | | County | 081 | Nassau | | 065 | Hale | 055 | Greene | 027 | 1 UINS | 003 | Alamosa | 001 | Fairfield | 091 | Okaloosa | | 067 | Heary | 057 | Hempstead | | California | 005 | Ampahoe | 003 | Hartford | 093 | Okeechobee | | 069 | Houston | 059 | Hot Spring | | County | 007 | Archuleta | 005 | Litchfield | 095 | Orange | | 071 | Jackson | 061 | Howard | 001 | Alameda | 009 | Baca | 007 | Middlesex | 097 | Osceola | | 073 | Jefferson | 063 | Independence | 003 | Alpine | 011 | Bent | 009 | New Haven | 099 | Palm Beach | | 075 | Lamar | 065 | lzard | 005 | Amador | 013 | Boulder | 011 | New London | 101 | Pasco | | 077 | Lauderdale | 067 | Jackson | 007 | Butte | 015 | Chaffee | 013 | Tolland | 103 | Pinellas | | 079 | Lawrence | 069 | Jefferson | 009 | Calaveras | 017 | Cheyenne | 015 | Windham | 105
107 | Polk
Putnam | | 081
083 | Loc | 071 | Johnson | 011
013 | Colusa
Contra Costa | 019
021 | Clear Creek
Concios | | District of Columbia | 101 | rutnam
St. Johns | | 085 | Limestone
Lowndes | 073
075 | Lafayette
Lawrence | 015 | Del Norte | 023 | Costilla | 001 | Washington | 111 | St. Lucie | | 087 | Macon | 077 | Lee | 017 | El Dorado | 025 | Crowley | | | 113 | Santa Rosa | | 089 | Madison | 079 | Lincoln | 019 | Fresno | 027 | Custer | | Deleware | 115 | Sarasota | | 091 | Marengo | 081 | Little River | 021 | Glenn | 029 | Delta | | County | 117 | Seminole | | 093 | Marion | 083 | Logan | 023 | Humboldt | 031 | Denver | 001 | Kent | 115 | Sumter | | 095 | Marshall | 085 | Lonoke | 025 | Imperial | 033 | Dolores | 003 | New Castle | 121 | Suwannee | | 097 | Mobile | 087 | Madison | 027 | lnyo | 035 | Douglas | 005 | Sussex | 123 | Taylor | | 099 | Monroe | 089 | Marion | 029 | Kern | 037 | Eagle | | | 125 | Union | | 101 | Montgomery | 091 | Miller | 031 | Kings | 039 | Elbert | | Florida | 127 | Volusia | | 103 | Morgan | 093 | Mississippi | 033 | Lake | 041 | El Paso | | County | 12? | Wakulla | | 105 | Perry | 095 | Monroe | 035 | Lassen | 043 | Fremont | 001 | Alachua | 131 | Walton | | 107
109 | Pickens
Pike | 097
099 | Montgomery | 037 | Los Angeles | 045
047 | Garfield | 003 | Baker | 133 | Washington | | 111 | rike
Randolph | 101 | Nevada
Newton | 039
041 | Madera
Masia | 047 | Gilpin
Grand | 005
007 | Bay
Bradford | | Georgie | | 113 | Randoipa
Russell | 103 | Newton
Ouachita | 041 | Marin
Mariposa | 051 | Gunnison | 007 | Brevard | | County | | 115 | St. Clair | 105 | Perry | 045 | Mendocino | 053 | Hinsdale | 011 | Broward | 001 | Appling | | 117 | Shelby | 107 | Phillips | 047 | Merced | 055 | Huerfano | 013 | Calhoug | 00. | A tkinson | | 119 | Sumter | 109 | Pike | 049 | Modoc | 057 | Jackson | 015 | Charlotte | 00: | Bacon | | 121 | Talladega | 111 | Poinsett | 051 | Mono | 059 | Jefferson | 017 | Citrus | 00° | Baker | | 123 | Tallapoosa | 113 | Polk | 053 | Monterey | 061 | Kiowa | 019 | Clay | 000 | Baldwin | | | | | | | | | | | | | | ^{*}At end of State listings. | 0 | o a. | | Cos. | | loa. | | Con. | - | Coa. | | Con. | |--------------------|---------------------|------------|--------------------------|------------|------------------------------|--------------|----------------------------|------------|---------------------------|------------|---------------------------| | 053 | Ellsworth | 021 | Boyle | 205 | Rowan | 009 | Essex | 065 | ingham | 077 | Lake of the Woods | | 055 | Finney | 023 | Bracken | 207 | Russell | 011 | Franklin | 067 | lonia | 079 | Le Sueur | | 0.51 | Ford | 025 | Breathitt | 209 | Scott | 013 | Hampden
Hampshire | 069
071 | losco | 081 | Lincoln | | 059
061 | Franklin
Geary | 027
029 | Breckinridge
Bullitt | 211
213 | Shelby
Simpson | 015
017 | nampanare
Middlesex | 071 | iron
Isabella | 083
085 | Lyon
McLeod | | 063 | Gove | 031 | Butler | 215 | Spencer | 019 | Nantucket | 075 | Jackson | 087 | Mahnomen | | 065 | Graham | 033 | Caldwell | 217 | Taylor | 021 | Norfolk | 077 | Kalamazoo | 089 | Marshall | | 067
069 | Grant
Gray | 035
037 | Calloway | 219
221 | Todd | 023
025 | Plymouth
Suffolk | 079
081 | Kalkaska
Kent | 091 | Martin | | 071 | Greeley | 039 | Campbell
Cartisle | 223 | Trigg
Trimble | 023 | Worcester | 083 | Keweenaw | 093
095 | Meeker
Mille Lac | | 073 | Greenwood | 041 | Carroll | 225 | Union | 02. | | 085 | Lake | 097 | Morrison | | 075 | Hamilton | 043 | Carter | 227 | Warren | | Maryland | 087 | Lapcer | 099 | Mower | | 077
0 79 | Harper
Harvey | 045
047 | Casey
Christian | 229
231 | Washington
Wayne | 001 | County | 089
091 | Leelanau
Lenawee | 101 | Murray | | 061 | Haskail | 049 | Clark | 233 | Webster | 003 | Allegany
Anne Arundel | 093 | Livingston | 103
105 | Nicollet
Nobles | | 063 | Hodgeman | 051 | Clay | 235 | Whitley | 005 | Baltimore | 095 | Luce | 107 | Norman | | 085 | Jackson | 053 | Clinton | 237 | Wolfe | 009 | Calvert | 097 | Mackinac | 109 | Olmsted | | 067
069 | Jefferson
Jewell | 055
057 | Crittenden
Cumberland | 239 | Woodford | 011 | Caroline | 099
101 | Macomb | 111 | Otter Tai' | | 091 | Johnson
Johnson | 059 | Daviess | | Louisiana | 013
015 | Carroli
Cecil | 103 | Manistee
Marquette | 113
115 | Pennington
Pine | | 093 | Keerny | 061 | Edmonson | | County | 017 | Charles | 105 | Mason | 117 | Pipestone | | 095 | Kingman | 063 | Elliott | 001 | Acadia | 019 | Dorchester | 107 | Mecosta | 119 | Polk | | 097
099 | Kiowa
Labette | 065
067 | Estill
Fayette | 003
005 | Allen | 021
023 | Frederick | 109 | Menominee | 121 | Pope | | 101 | Lane | 069 | Fleming | 003 | Ascension Assumption | 015 | Garrett
Harford | 111 | Midland
Missaukee | 123
125 | Ramsey
Red Lake | | 103 | Leavenworth | 071 | Floyd | 009 | Avoyelles | 027 | Howard | 115 | Monroe | 127 | Redwood | | 105 | Lincoln | 073 | Franklin | 011 | Beauregard | 029 | Kent | 117 | Montcalm | 129 | Renville | | 107
109 | Linn
Logan | 075
077 | Fulton
Gallatin | 013
015 | Bienville
Boories | 031
033 | Montgomery | 119 | Montmorency | 131 | Rice | | 111 | Lyon | 079 | Gerrard | 013 | Bossier
Caddo | 035 | Prince Georges Queen Annes | 121
123 | Muskegon
Newaygo | 133
135 | Rock
Roseau | | 113 | McPherson | 081 | Grant | 019 | Calcasieu | 037 | St. Marys | 125 | Oakland | 137 | St. Louis | | 115 | Marion | 083 | Graves | 021 | Caldwell | 039 | Somerset | 127 | Oceana | 139 | Scott | | 117
119 | Marshall
Mende | 085
087 | Grayson
Green | 023
025 | Cameron
Catahoula | 041 | Talbot | 129 | Ogernaw | 141 | Sherburn: | | 121 | Miemi | 069 | Greenup | 023 | Claibourne | 043
045 | Washington
Wicomico | 131
133 | Ontonagon
Osceola | 143
145 | Sibley
Stearns | | 123 | Mitchell | 091 | Hancock | 029 | Concordia | 047 | Worcester | 135 | Oscoda | 147 | Steele | | 125 | Montgomery | 093 | Hardin | 031 | De Soto | | Independent City | 137 | Otsego | 149 | Stevens | | 127
129 | Morris
Morton | 095
097 | Harian
Harrison | 033
035 | East Baton Rouge | 510 | Raltimore City | 139 | Ottawa | 151 | Swift | | 131 | Nemaka | 099 | Hart | 037 | East Carroll East Feliciana | | Maine | 141
143 | Presque Isle
Roscommon | 153
155 | Todd
Traverse | | 133 | Neosho | 101 | Henderson | 039 | Evangetine | | County | 145 | Saginaw | 157 | Wabasha | | 135 | Ness | 103 | Henry | 041 | Franklin | 001 | Androscoggin | 147 | St. Clair | 159 | Wadena | | 137
139 | Norton
Omge | 105
107 |
Hickman
Hopkins | 043
045 | Grant
Iberia | 003
005 | Aroostook
Cumberland | 149
151 | St. Joseph
Sanilac | 161 | Waseca | | 141 | Osborne | 109 | Jackson | 047 | 1berville | 003 | Franklin | 153 | Sanuac
Schoolcraft | 163
165 | Washington
Watonwan | | 143 | Ottawa | 111 | jefferson | 049 | Jackson | 009 | Hancock | 155 | Shiawassee | 167 | Wilkin | | 145
147 | Pawnee
Phillips | 113
115 | Jessamine
Johnson | 051 | Jefferson | 011 | Kennebec | 157 | Tuscola | 169 | Winona - | | 149 | Pottawatomie | 117 | Kenton | 053
055 | Jefferson Davis
Lafavette | 013
015 | Knox
Lincoln | 159
161 | Van Buren
Washtenaw | 171
173 | Wright
Yellow Medicine | | 151 | Pratt | 119 | Knott | 057 | Lafourche | 017 | Oxford | 163 | Wayne | 1/3 | Tenow weatcine | | 153 | Rawlins | 121 | Knox | 059 | La Salle | 019 | Penobscot | 165 | Wexford | | Missouri | | 155
157 | Reno
Republic | 123
125 | Larue
Laurei | 061
063 | Lincoln
Livingston | 021
023 | Piscataquis | | | | County | | 159 | Rice | 127 | Lawrence | 065 | Madison | 025 | Sagadahoc
Somerset | | Minnesota
County | 001
003 | Adair
Andrew | | 161 | Riley | 129 | Lee | 067 | Morehouse | 027 | Waldo | 001 | Aitkin | 905 | Atchison | | 163
165 | Rooks
Rush | 131 | Leslie | 069 | Natchitoches | 029 | Washington | 003 | Anoka | 007 | Audrain | | 167 | Russell | 133
135 | Lètcher
Lewis | 071
073 | Orleans
Ouachita | 031 | York | 005
007 | Becker
Beltrami | 009 | Barry | | 169 | Saline | 137 | Lincoln | 075 | Plaquemines | | Michigan | 009 | Benton | 011
013 | Barton
Bates | | 171 | Scott | 139 | Livingston | 077 | Pointe Coupee | | County | 011 | Big Stone | 015 | Benton | | 173
175 | Sedgwick
Seward | 141
143 | Logan
Lyon | 079
081 | Rapides | 001 | Alcona | 013 | Blue Earth | 017 | Bollinger | | 177 | Shawnee | 145 | McCracken | 063 | Red River
Richland | 003
005 | Alger
Allegan | 015
017 | Brown
Carlton | 019
021 | Boone
Buchanan | | 179 | Sheridan | 147 | McCreary | 085 | Sabine | 007 | Alpena | 019 | Carver | 021 | Butler | | 181
183 | Sherman
Smith | 149 | McLean | 067 | St. Bernard | 009 | Antrim | 021 | Cass | 025 | Caldwell | | 185 | Stafford | 151
153 | Madison
Magoffin | 089
091 | St. Charles
St. Helena | 011
013 | Arenac
Baraga | 023
025 | Chippewa | 027 | Callaway | | 187 | Stanton | 155 | Marion | 093 | St. James | 015 | Barry | 023 | Chisago
Clay | 029
031 | Camden
Cape Girardeau | | 1 89
191 | Stevens
Summer | 157 | Marshall | 095 | St. John The Baptist | 017 | Bay | 029 | Clearwater | 033 | Carroli | | 193 | Thomas | 159
161 | Martin
Mason | 097 | St. Landry | 019 | Benzie | 031 | Cook | 035 | Carter | | 195 | Trego | 163 | Meade | 099
101 | St. Martin
St. Mary | 021
023 | Berrien
Branch | 033
035 | Cottonwood
Crow Wing | 037
039 | Cass | | 197 | Wabounsee | 165 | Menifee | 103 | St. Tammany | 025 | Calhoun | 033 | Dakota | 039 | Cedar
Chariton | | 199 | Wallace | 167 | Mercer | 105 | Tangipahoa | 027 | Cass | 039 | Dodge | 043 | Christian | | 203 | Wichita | 169
171 | Metcalfe
Monroe | 107 | Tensas | 029 | Charlevoix | 041 | Douglas | 045 | Clark | | 205 | Wilton | 173 | Montgomery | 109
111 | Terrebonne
Union | 03 1
03 3 | Cheboygan
Chippewa | 043
045 | Faribault
Fillmore | 047
049 | Clay
Clinton | | 207 | Woodson | 175 | Morgan | 113 | Vermilion | 035 | Clare | 047 | Freeborn | 051 | Cole | | 209 | Wyandotte | 177
179 | Muhlenberg
Nelson | 115 | Vernon | 037 | Clinton | 049 | Goodhue | 053 | Cooper | | | Kentucky | 181 | Nicholas | 117
119 | Washington
Webster | 039 | Crawford
Delta | 051 | Grant | 055 | Crawford | | | County | 183 | Ohio | 121 | West Baton Rouge | 041
043 | Derta
Dickinson | 053
055 | Hennepin
Houston | 057
059 | Dade
Dallas | | 001
003 | Adeig
Allen | 185 | Oldham | 123 | West Carroll | 045 | Eaton | 057 | Hubbard | 061 | Daviess | | 005 | Anderson | 187
189 | Owen
Owaley | 125
127 | West Feliciana
Winn | 047 | Emmet | 059 | lmnti | 063 | De Kalb | | 007 | Bellard | 191 | Pendicton | 127 | WUIN | 049
051 | Genesee
Gladwin | 061
063 | Itasca
Jackson | 065
067 | Dent
Douglas | | 009 | Berren | 193 | Perry | | Massechusetts | 053 | Gogebic | 065 | Kanabec | 069 | Douglas
Dunklin | | 011
013 | Both
Boll | 195
197 | Pike
Poweli | 001 | County | 055 | Grand Traverse | 067 | Kandiyohi | 071 | Franklin | | 015 | Boons | 199 | Pulsaki | 001 | Rarnstable
Berkshire | 057
059 | Gratiot
Hillsdale | 069
071 | Kittson
Koochiching | 073
075 | Gasconark | | 017 | Bourbon | 201 | Robertson | 005 | Bristol | 061 | Houghton | 073 | Lac Qui Parle | 073
077 | Gentry
Greene | | 019 | Boyd | 203 | Rockcastle | 007 | Dukes | 063 | Huron | 075 | Lake | 079 | Grundy | ···· | | | | | |------------|--------------------------|------------|-----------------------|------------|-------------------------|-------------------|------------------------|------------|--------------------------|------------------------|--------------------------| | C | on. | • | Zoa. | C | | | PA. | | on. | 0 | DA | | | Banks
Barrow | 193
195 | | | Cedar
Cerro Gordo | 007
009 | Bear Lake
Benewah | 093
095 | Kandali
Kaox | 963
965 | Heafticks
Heart | | 013
015 | Bartow | 197 | | | Cherokee | 011 | Bingham | 097 | Lake | 967 | How wd | | 017 | Den Hill | 199 | | 037 | Chickasaw | 013 | Blaine | 099 | La Salle | 069
071 | Hunriegton
Jack ve | | | Berrien
Bibb | 201
205 | | 039
041 | Clarke
Clay | 015
017 | Boise
Bonner | 101
103 | Lawrence
Lee | 073 | Jaspir | | 023 | Bleckley | 207 | Monroe | 043 | Clayton | 019 | Bonneville | 105 | Livingston | 075 | Jay | | 025 | Brantley | 209 | Montgomery | 045
047 | Clinton
Crawford | 021
023 | Boundary
Butte | 107
109 | Logan
McDonough | 077
079 | Jefferson
Jennissas | | 027
029 | Brooks
Bryan | 211
213 | Morgan
Murray | 049 | Dellas | 025 | Cames | 111 | McHenry | 061 | John von | | 031 | Bulloch | 215 | Muscogee | 051 | Devis | 027 | Canyon | 113 | McLean | 063 | Knor | | 033
035 | Burke
Butte | 217
219 | Newton
Ocones | 053
055 | Decatur
Delaware | 029
031 | Caribou
Cassia | 115
117 | Macon
Macoupin | 065
087 | Kosriúsko
Lagryge | | | Calhoun | 221 | Oglethorpe | 057 | Des Moines | 033 | Clark | 119 | Madison | 089 | Lake | | ••• | Camden | 223 | Paulding | 059 | Dickinson | 035 | Clearwater | 121 | Marion | 091
093 | La P THE | | 043
045 | Candler
Carroll | 225
227 | Peach
Pickens | 061
063 | Dubuque
Emmet | 037
039 | Custer
Elmore | 123
125 | Marshall
Mason | 095 | Mad '''e | | 047 | Catoosa | 229 | Pierce | 065 | Fayette | 041 | Franklin | 127 | Massac | 097 | Marine | | 049 | Charlton | 231 | Pike | 067 | Floyd | 043 | Fremont | 129 | Menerd
Mercer | 0 99
101 | Marriell
Marrie | | 051
053 | Chatham
Chattahoochee | 233
235 | Polk
Polaski | 069
071 | Franklin
Framont | 045
047 | Gem
Gooding | 131
133 | Monroe | 103 | Mierri | | 055 | Chattooga | 237 | Putnam | 073 | Greene | 049 | Idaho | 135 | Montgomery | 105 | Monme | | 057 | Cherokee | 239 | Quitman | 075 | Grundy | 051
053 | Jefferson
Jerome | 137
139 | Morgan
Moultrie | 107
109 | Mos womery
Mos ws | | 059
061 | Clarke
Cley | 241
243 | Rabun
Randolph | 077
079 | Guthrie
Hamilton | 055 | Kootensi | 141 | Ogle | 111 | Newson | | 063 | Clayton | 245 | Richmond | 081 | Hancock | 057 | Letah | 143 | Peoria | 113 | Nob'n | | 065 | Clinch | 247 | Rockdale
Schley | 083
085 | Hardin
Harrison | 059
061 | Lemhi
Lewis | 145
147 | Perry
Piatt | 115
117 | Ohir
Orangs | | 067
069 | Cobb
Coffee | 249
251 | Screven | 067 | Henry | 063 | Lincoln | 149 | Pike | 119 | OM14 | | 071 | Colquitt | 253 | Seminole | 089 | Howard | 065 | Madison | 151 | Pope | 121 | Park* | | 073 | Columbia
Cook | 255
257 | Spelding
Stephens | 091
093 | Humboldt
Ida | 067
069 | Minidoka
Nez Perce | 153
155 | Pulaski
Putnam | 123
125 | Perr*
Pike | | 075
077 | Coweta | 259 | Stewart | 095 | lowa | 071 | Oneida | 157 | Randolph | 127 | Port ** | | 079 | Crawford | 261 | Sumter | 097 | Jackson | 073 | Owyhee | 159 | Richland | 129 | Poerv | | 061
063 | Crisp
Dade | 263
265 | Talbot
Taliaferro | 099
101 | Jasper
Jefferson | 075
077 | Payette
Power | 161
163 | Rock Island
St. Clair | 131
133 | Pula %i
Putrem | | 065 | Dawson | 267 | Tattnail | 103 | Johnson | 079 | Shoshone | 165 | Saline | 135 | Ran tolph | | 087 | Decatur | 269 | Taylor | 105 | Jones | 061 | Teton | 167 | Sangamon | 137 | Ripl*v | | 089
091 | De Kalb
Dodge | 271
273 | Telfair
Terrell | 107
109 | Keokuk
Kossuth | 063
065 | Twin Falls
Valley | 169
171 | Schuyler
Scott | 139
141 | Rus'
St. Joseph | | 093 | Dooly | 275 | Thomas | iii | Lee | 087 | Washington | 173 | Shelby | 143 | Scott | | 09.5 | Dougherty | 277 | Tift | 113 | Linn | | | 175 | Stark | 145
147 | Shel'w
Sperver | | 097
099 | Douglas
Early | 279
281 | Toombs
Towns | 115
117 | Louise
Lucas | | Minois
County | 177
179 | Stephenson
Tazewell | 149 | Starte | | 101 | Echols | 283 | Treutien | 119 | Lyon | 001 | Adams | 181 | Union | 151 | Stev ten | | 103
105 | Effingham
Elbert | 285
287 | Troup
Turner | 121
123 | Madison
Mahaska | 003
005 | Alexander
Bond | 183
185 | Vermilion
Wabash | 153
155 | Sull ''en
Swit redand | | 107 | Emanuel | 289 | Twiggs | 125 | Marion | 007 | Boone | 187 | Warren | 157 | Tipy *canoe | | 109 | Evans | 291 | Union | 127
 Marshall | 009 | Brown | 189 | Washington | 159 | Tipton | | 111
113 | Fannin
Fayette | 293
295 | Upson
Walker | 129
131 | Mills
Mitchell | 011
013 | Bureau
Calhoun | 191
193 | Wayne
White | 161
163 | Unira
Van Arbumh | | 115 | Floyd | 297 | Walton | 133 | Monona | 015 | Carroll | 195 | Whiteside | 165 | Veri-Mion | | 117 | Forsyth | 299 | Ware | 135 | Monroe | 017 | Cass | 197 | Will | 167
169 | Vier
Web - 4 | | 119
121 | Franklin
Fulton | 301
303 | Warren
Washington | 137
139 | Montgomery
Muscatine | 019
021 | Champaign
Christian | 199
201 | Williamson
Winnebago | 171 | Watro | | 123 | Gilmer | 305 | Wayne | 141 | O'Brien | 023 | Clark | 203 | Woodford | 173 | Warrick | | 125
127 | Glascock
Glynn | 307
309 | Webster
Wheeler | 143
145 | Osceola | 025
027 | Clay
Clinton | | Indian | 175
177 | Was≒ington
Way≈e | | 129 | Gordon | 311 | White | 147 | Page
Palo Alto | 029 | Coles | | County | 179 | Well . | | 131 | Grady | 313 | Whitfield | 149 | Plymouth | 031 | Cook | 001 | Adams | 181 | Whi ~ | | 133
135 | Greene
Gwinnett | 315
317 | Wilcox
Wilkes | 151
153 | Pocahontas
Polk | 033
035 | Crawford
Cumberland | 003
005 | Allen
Bartholomew | 183 | Whi *** | | 137 | Habersham | 319 | Wilkinson | 155 | Pottawattamie | 037 | De Kalb | 007 | Beaton | | Kanwa | | 139 | Hall | 321 | Worth | 157 | Poweshiek | 039 | De Witt | 009 | Blackford | 001 | County | | 141
143 | Hancock
Haralson | | Hewaii | 159
161 | Ringgold
Sac | 041
043 | Douglas
Du Page | 011
013 | Boone
Brown | 003 | Aller
Andreson | | 145 | Harris | | County | 163 | Scott | 045 | Edgar | 015 | Carroll | 005 | Atc/Yeon | | 147
149 | Hart
Hoard | 001
003 | Hawaii
Honolulu | 165
167 | Shelby
Sioux | 047 | Edwards
Effineham | 017
019 | Cass
Clark | 007
009 | Barine
Barine | | 151 | Henry | 005 | Kalewao | 169 | Story | 051 | Fayette | 021 | Clay | 011 | Bourbon | | 153 | Houston | 007 | Kauai | 171 | Tame | 053 | Ford | 023 | Clinton | 013 | Brown | | 155
157 | Irwin
Jackson | 009 | Maui | 173
175 | Taylor
Union | 055
057 | Franklin
Fulton | 025
027 | Crawford
Daviess | 015
017 | Buting
Chan | | 159 | Jasper | | lowa | 177 | Van Buren | 059 | Gallatin | 029 | Dearborn | 019 | Chartauqua | | 161 | Jeff Davis | | County | 179 | Wapello | 061 | | 031 | Decatur | 021
023 | Chemice | | 163
165 | Jefferson
Jenkins | 001
003 | Adair
Adams | 181
183 | Warren
Washington | 063
065 | Grundy
Hamilton | 033
035 | De Kalb
Delaware | 025 | Chevenne
Chry | | 167 | Johnson | 005 | Allamakee | 185 | Wayne | 067 | Hancock | 037 | Dubois | 027 | Clay | | 169
171 | Jones
Lamez | 007
009 | Appanoose
Audubon | 187
189 | Webster
Winnebago | 069
071 | Hardin
Henderson | 039
041 | Elkhart
Fayette | 029
031 | Cloud
Coff'v | | 173 | Lanier | 011 | Augubon
Benton | 191 | Winneshiek | 071 | Henry | 043 | Ployd | 033 | Con whiche | | 175 | Laurens | 013 | Black Hawk | 193 | Woodbury | 075 | Iroquois | 045 | Fountain | 035 | Courtey | | 177
179 | Lee
Liberty | 015
017 | Boone
Bremer | 195
197 | Worth
Wright | 077
079 | Jackson
Jasper | 047
049 | Franklin
Fulton | 037
039 | Crarvford
Dec vius | | 181 | Lincoln | 019 | Buchanan | .,, | - | 061 | Jefferson | 051 | Gibeon | 041 | Dict-leson | | 183
185 | | 021
023 | Buena Vista
Butler | | Idaho
County | 063 | Jersey
In Devices | 053 | Grant | 043
045 | Dos tohan | | 187 | Lumpkin | 025 | Calhoun | 001 | County
Ada | 085
087 | Jo Daviess
Johnson | 055
057 | Greene
Hamilton | 047 | Dourles
Edureds | | 189 | McDuffie | 027 | Carroll | 003 | Adams | 069 | Kane | 059 | Hancock | 049 | Elk | | 191 | Meintoch | 029 | Cass | 005 | Bannock | 091 | Kankakee | 061 | Harrison | 051 | EMir | | | | | | | _ | | _ | | | | | |------------|----------------------------|--------------------|--------------------------|-------------------|--------------------------|------------|--------------------------|------------|-------------------------|-------------------|-----------------------------| | 061 | Con.
Harrison | 027 | Coa.
Coahoma | 041 | Con.
Hill | 103 | Con.
Keya Paha | 095 | Con.
Hyde | 075 | Con.
Renville | | 083 | Heary | 029 | Copieh | 043 | Jefferson | 105 | Kimball | 097 | Iredell | 077 | Richlen ⁴ | | 085
087 | Hickory
Holt | 031
033 | Covington
De Soto | 045
047 | Judith Beein
Lake | 107
109 | Knox
Lencaster | 099
101 | Jackson
Johnston | 079
061 | Rolette
Sagent | | 089 | Howard | 035 | Forrest | 049 | Lewis and Clark | 111 | Lincoln | 103 | Jones | 083 | Sheridar | | 091
093 | Howell
Iron | 037
039 | Franklin
George | 051
053 | Liberty
Lincoln | 113
115 | Logan
Loup | 105
107 | Lee
Lenoir | 085
087 | Sioux | | 096 | Jackson | 041 | Greene | 055 | McCone | 117 | McPherson | 109 | Lincoln | 089 | Slope
Stark | | 097 | Jasper
Jafferson | 043 | Grenada
Hancock | 057 | Madison | 119 | Madison | 111 | McDowell | 091 | Stock | | 099
101 | Johnson | 045
047 | Harrison | 059
061 | Meagher
Mineral | 121
123 | Merrick
Morrill | 113
115 | Macon
Madison | 093
095 | Statume v
Towner | | 103 | Knox | 049 | Hinds | 063 | Missoula | 125 | Nance | 117 | Martin | 097 | Treili | | 105 | Laciede
Lafavette | 051
053 | Holmes
Humphreys | 065
067 | Musecisheli
Park | 127
129 | Nemaha
Nuckolis | 119
121 | Mecklenburg
Mitchell | 099
101 | Walsh
Ward | | 109 | Lawrence | 055 | Issaquena | 069 | Petroleum | 131 | Otoe | 123 | Montgomery | 101 | Wells | | 111 | Lewis | 057 | itawamba | 071 | Phillips | 133 | Pawnoe | 125 | Moore | 105 | | | 113
115 | Lincoln
Linn | 059
061 | Jackson
Jasper | 073
075 | Pondera
Powder River | 135
137 | Perkins
Photos | 127
129 | Nash
New Hanover | | New Ha weathing | | 117 | Livingston | 063 | Jefferson | 077 | Powell | 139 | Pierce | 131 | Northempton | | County | | 119
121 | McDonald
Macon | 065
067 | Jefferson Davis
Jones | 079
081 | Prairie
Ravalli | 141
143 | Platte
Polk | 133
135 | Onslow
Orange | 001
003 | Beiknap | | 123 | Madison | 069 | Kemper | 063 | Richland | 145 | Red Willow | 137 | Pamiico | 003 | Carroll
Cheshin | | 125 | Mariet | 071 | Lafayette | 085 | Roosevelt | 147 | Richardson | 139 | Pasquotank | 007 | Coos | | 127
129 | Marion
Marcer | 073
075 | Lemer
Leuderdale | 087
089 | Rosebud
Sanders | 149
151 | Rock
Saline | 141
143 | Pender
Perquimans | 009
011 | Grafton
Hillsborn | | 131 | Miller | 077 | Lawrence | 091 | Sheridan | 153 | Sarpy | 145 | Person | 013 | Merrimeck | | 133
135 | Mississippi
Moniteau | 079
081 | Lonke
Lon | 093
095 | Silver Bow
Stillwater | 155
157 | Saunders
Scotts Bluff | 147
149 | Pitt
Poli: | 015 | Rockingtem | | 137 | Monroe | 083 | Leflore | 093
097 | Sweet Gram | 159 | Seward | 151 | Randolph | 017
019 | Straffor 1
Sullivan | | 139 | Montgomery | 085 | Lincoln | 099 | Teton | 161 | Sheridan | 153 | Richmond | ••• | | | 141
143 | Morgan
New Madrid | 087
089 | Lowndes
Medison | 101
103 | Tools
Treasure | 163
165 | Sherman
Sioux | 155
157 | Robeson
Rockingham | | New Jervy
County | | 145 | Newton | 091 | Marion | 105 | Valley | 167 | Stanton | 159 | Rowan | 001 | Atlantic | | 147
149 | Nodeway
Ozogon | 093
095 | Marshall | 107 | Wheatiand
Wibeux | 169 | Thayer | 161 | Rutherford | 003 | Bergen | | 151 | Onge | 097 | Monroe
Montgomery | 109
111 | Yellowstone | 171
173 | Thomas
Thurston | 163
165 | Sampson
Scotland | 905
007 | Burling(na
Camder | | 153 | Ozark | 099 | Neshoba | 113 | Yellowstone Nati | 175 | Valley | 167 | Stanly | 009 | Cape MITT | | 155
157 | Pemiscot
Parry | 101 | Newton
Noxubee | | Park-Part | 177
179 | Washington
Wayne | 169
171 | Stokes
Surry | 011
013 | Cumber wnd
Essex | | 159 | Pottis | 105 | Oktibbaha | | Nobenska | 181 | Webster | 173 | Swain | 015 | Glonces ✓4 | | 161
163 | Phelps
Pike | 107
109 | Panola
Pearl River | 001 | County | 183 | Wheeler | 175 | Transylvania | 017 | Hudson | | 165 | Platte | 111 | Perry | 003 | Adams
Antelope | 185 | York | 177
179 | Tyrreli
Union | 019
021 | Hunterdon
Mercer | | 167 | Polk | 113 | Pike | 005 | Arthur | | North Carolina | 181 | Vance | 023 | Middles | | 169
171 | Pulaski
Putnam | 115
117 | Pontotoc
Prenties | 007
009 | Banner
Blaine | 001 | County
Alamance | 183
185 | Wake
Warren | 025
027 | Monmo th | | 173 | Ralls | 119 | Quitman | 011 | Boone | 003 | Alexander | 187 | Washington | 027 | Morris
Ocean | | 175
177 | Randolph
Ray | 121
123 | Rankin
Scott | 013
015 | Box Butte | 005 | Alleghany | 189 | Watauga | 031 | Passaic | | 179 | Reynolds | 125 | Sharkey | 013 | Boyd
Brown | 007
009 | Anson
Ashe | 191
193 | Wayne
Wilkes | 033
035 | Salem
Somerar | | 181 | Ripley | 127 | Simpson | 019 | Buffalo | 011 | Avery | 195 | Wilson | 037 | Sussex | | 183
185 | St. Charles
St. Clair | 129
131 | Smith
Stone | 021
023 | Burt
Butler | 013
015 | Beaufort
Bertie | 197
199 | Yadkin
Yancev | 039 | Union | | 187 | St. Francois | 133 | Sunflower | 025 | Cass | 017 | Bladen | 199 | 1 ancey | 041 | Warren | | 189
193 | St. Louis
Ste Genevieve | 135 | Tallahatchie | 027 | Codar | 019 | Brunswick | | North Dakota | | New Marico | | 195 | Saline | 137
139 | Tate
Tippah | 029
031 | Chase
Cherry | 021
023 | Buncombe
Burke | 001 | County
Adams | 001 | County
Bernelli ~ | | 197 | Schuyler | 141 | Tishomingo | 033 | Cheyenne | 025 |
Cabagrus | 003 | Barnes | 003 | Catron | | 199
201 | Scotland
Scott | 143
145 | Tunica
Union | 035
037 | Clay
Colfax | 027
029 | Caldwell
Camden | 005
007 | Benson
Billings | 005 | Chaves | | 203 | Shannon | 147 | Walthall | 039 | Cuming | 029 | Carteret | 007 | Bottinesu | 007
009 | Colfax
Cuzry | | 205
207 | Shelby
Stoddard | 149 | Warren
Washington | 041 | Custer | 033 | Caswell | 011 | Bowman | 011 | De Baca | | 209 | Stone | 151
153 | Wassangton
Wayne | 043
045 | Dakota
Dawas | 035
037 | Catawba
Chatham | 013
015 | Burke
Burioish | 013
015 | Dona Are
Eddy | | 211 | Sullivan | 155 | Webster | 047 | Dawson | 039 | Cherokee | 017 | Cass | 017 | Grant | | 213
215 | Teney
Texas | 157
159 | Wilkinson
Winston | 049
051 | Deuci
Dixon | 041
043 | Chowan
Clay | 019
021 | Cevalier
Dickey | 019 | Guadalu ve | | 217 | Vernon | 161 | Yalobusha | 053 | Dodge | 045 | Cleveland | 021 | Divide | 021
023 | Harding
Hida le o | | 219
221 | Warren
Washington | 163 | Ya200 | 055 | Douglas | 047 | Columbus | 025 | Dunn | 025 | Lee | | 223 | Wayne | | Montane | 057
059 | Dundy
Fillmore | 049
051 | Craven
Cumberland | 027
029 | Eddy
Emmons | 027
028 | Lincoln
Los Alarvos | | 225 | Webster | | County | 061 | Franklin | 053 | Curituck | 033 | Golden Valley | 029 | Lune | | 227
229 | Worth
Wright | 100 | Begverheed
Big Horn | 063
065 | Frontier
Furnes | 055
057 | Dere
Devidson | 035
037 | Grand Forks | 031 | McKinky | | | Independent City | 005 | Blaine | 067 | Gage | 057 | Davie | 037 | Grant
Griens | 033
035 | Mora
Otero | | 510 | St. Louis City | 007
009 | Broadwater | 069 | Gerden | 061 | Duplin | 041 | Hettinger | 037 | Quay | | | Mississippi | 011 | Carbon
Carter | 071
073 | Gerfield
Gosper | 063
065 | Durham
Edgecombe | 043
045 | Kidder
La Moure | 039
041 | Rio Azrina
Roossvett | | 001 | County Adams | 013 | Cascade | 075 | Grant | 067 | Forsyth | 047 | Logan | 043 | Sandova ¹ | | 003 | Alcom | 015
017 | Chouteau
Custer | 077
079 | Greeley
Hall | 069
071 | Fmaklin
Geston | 049 | McHenry | 045 | San Juan | | 005 | Amite | 019 | Daniels | 061 | Hamilton | 073 | Gates | 051
053 | McIntosh
McKenzie | 047
049 | San Mig vi
Santa Fe | | 007
009 | Attala
Benton | 021
023 | Dewson
Deer Lodge | 063 | Harian | 075 | Grahem | 055 | McLean | 051 | Sierra | | 011 | Boliver | 025 | Fallon | 085
087 | Hayes
Hitchcock | 077
079 | Granville
Greens | 057
059 | Mercer
Morton | 053
055 | Socorro | | 013
015 | Calhoun | 027 | Feegus | 089 | Holt | 061 | Geilford | 061 | Mountrall | 057 | Taos
Torrano: | | 017 | Carroli
Chickasaw | 029
031 | Fintheed
Gellatin | 091
093 | Hooker
Howard | 063
065 | Halifax
Harnett | 063 | Nelson | 059 | Union | | 019 | Choctaw | 033 | Gerfield | 095 | Jefferson | 087 | Haywood | 965
967 | Otiver
Pembina | 061 | Valencia | | 021
023 | Claiborne
Clarke | 03 <i>5</i>
037 | Glacier
Golden Valley | 097 | Johnson | 089 | Henderson | 069 | Pierce | | Novada | | 025 | Clay | 039 | Granite | 099
101 | Keerney
Keith | 091
093 | Hertford
Hoke | 071
073 | Ransey
Ransom | 001 | County
Churchii` | | | | | | | | | | 5.5 | | wi | CHEICH | | | on. | c | On. | | Con. | | Con. | | Con. | | Con. | |------------|-----------------------|------------|-------------------------|-------------------------|-----------------------|--------------|-----------------------|------------------|------------------------|------------|-----------------------| | 003 | Clark | 015 | Brown | 017 | Canadian | 041 | Lincoln | 007 | Providence | 079 | Lake | | 005 | Douglas | | Butler | 019 | Carter
Cherokee | 043
045 | Linn
Malheur | 009 | Washington | 081
083 | Lawrence
Lincoln | | 007
009 | Elko
Esmeralda | | Carroli
Champaign | 021
023 | Choctaw | 047 | Marion | | South Carolina | 085 | Lyman | | 011 | Eureka | | Clark | 025 | Cimarron | 049 | Morrow | | County | 087 | McCank | | 013 | Humboldt | 025 | Clermont | 027 | Cleveland | 051 | Multnomah | 001 | A bbeville | 089 | McPh **son | | 015 | Lander | | Clinton | 029 | Coal | 053
055 | Polk | 003
005 | Aiken
Allendale | 091
093 | Marsh vil
Mead v | | 017
019 | Lincoln
Lyon | | Columbiana
Coshocton | 031
033 | Comanche
Cotton | 057 | Sherman
Tillamook | 003 | Anderson | 095 | Melle'te | | 021 | Mineral | | Crawford | 035 | Craig | 059 | Umatilia | 009 | Bamberg | 097 | Miner | | 023 | Nyc | 035 | Cuyahoga | 037 | Creek | 061 | Union | 011 | Barnwell | 099 | Minnchaha | | 027 | Pershing | 037 | Darke | 039 | Custer | 063 | Wallowa | 013 | Beaufort | 101 | Moody | | 029 | Storey | 039 | Defiance | 041 | Delaware | 065 | Wasco | 015
017 | Berkeley
Calhoun | 103
105 | Pennington
Perkins | | 031
033 | Washoc
White Pine | 041
043 | Delaware
Erse | 043
045 | Dewey
Ellis | 067
069 | Washington
Wheeler | 017 | Charleston | 103 | Potter | | 033 | Independent City | 045 | Fairfield | 047 | Garfield | 071 | Yamhili | 021 | Cherokec | 109 | Roberts | | 510 | Carson City | 047 | Fayette | 049 | Garvin | | | 023 | Chester | 111 | Sanborn | | | - | 049 | Franklin | 051 | Grady | | Pennsylvania | | Chesterfield | 113 | Shannon | | | New York | 051 | Fulton | 053
055 | Grant | 001 | County
Adams | 027
029 | Clarendon
Colleton | 115
117 | Spint
Stanley | | 001 | County Albany | 053
055 | Gallia
Geauga | 055
057 | Greer
Harmon | 001 | Allegheny | 031 | Darlington | 119 | Sully | | 003 | Allegany | 057 | Greene | 059 | Harper | 005 | Armstrong | 033 | Dillon | 121 | Tode | | 005 | Bronx | 059 | Guernsey | 061 | Haskell | 007 | Beaver | 035 | Dorchester | 123 | Tripp | | 007 | Broome | 061 | Hamilton | 063 | Hughes | 009
011 | Bedford
Berks | 037
039 | Edgefield
Fairfield | 125
127 | Turn**
Union | | 009
011 | Cattaraugus
Cayuga | 063
065 | Hancock
Hardin | 065
067 | Jackson
Jefferson | 013 | | 041 | Florence | 129 | Walworth | | 013 | Chautauqua | 067 | Harrison | 069 | Johnston | 015 | | 043 | Georgetown | 131 | Wash hough | | 015 | Chemung | 069 | Henry | 071 | Kay | 017 | Bucks | 045 | Greenville | 135 | Yankton | | 017 | Chenango | 071 | Highland | 073 | Kingfisher | 019 | | 047 | Greenwood | 137 | Ziebwh | | 019 | Clinton | 073
075 | Hocking
Holmes | 075
077 | Kiowa
Latimer | 021
023 | Cambria
Cameron | 049
051 | Hampton
Horry | | Tenresse | | 021
023 | Columbia
Cortland | 073 | Huron | 077 | Le Flore | 025 | | 053 | Jasper | | County | | 025 | Delaware | 079 | Jackson | 081 | Lincoln | 027 | | 055 | Kershaw | 001 | And Tson | | 027 | Dutchess | 081 | Jefferson | 083 | Logan | 029 | | 057 | Lancaster | 003 | Bedf wd | | 029 | Erie | 083 | Knox | 085 | Love | 031 | | 059 | Laurens | 005
007 | Benton
Bledine | | 031
033 | Essex
Franklin | 085
087 | Lake
Lawrence | 087
089 | McClain
McCurtain | 033
035 | | 061
063 | Lee
Lexington | 007 | Blount | | 035 | Fulton | 089 | Licking | 091 | McIntosh | 037 | | 065 | McCormick | őlí | Bradley | | 037 | Genesce | 091 | Logan | 093 | Major | 039 | | 067 | Marion | 013 | Cambell | | 039 | Greene | 093 | Lorain | 095 | Marshall | 041 | | | Marlboro | 015 | Cannon | | 041 | Hamilton | 095 | Lucas | 097
0 5 9 | Mayes | 043
045 | | 071
073 | Newberry
Oconee | 017
019 | Carroll
Carter | | 043
045 | Herkimer
Jefferson | 097
099 | Madison
Mahoning | 101 | Murray
Muskogee | 047 | | 073 | Orangeburg | 021 | Chertham | | 047 | Kings | 101 | Marion | 101 | Noble | 049 | | 077 | Pickens | 023 | Cherter | | 049 | Lewis | 103 | Medina | 105 | Nowata | 051 | | 079 | Richland | 025 | Clail~rne | | 051 | Livingston | 105 | Meigs | 107 | Okfuskee | 053 | | 081 | Saluda | 027 | Clay | | 053
055 | Madison
Monroe | 107
109 | Mercer | 109 | Oklahoma
Okmulgee | 055
057 | | 083
085 | Spartanburg
Sumter | 029
031 | Coche
Coff := | | 057 | Montgomery | 111 | Miami
Monroe | 111
113 | | 059 | | 087 | Union | 033 | Crockett | | 059 | Nassau | 113 | Montgomery | 115 | | 061 | | | Williamsburg | 035 | Curr berland | | 061 | New York | 115 | Morgan | 117 | Pawnee | 063 | Indiana | 091 | York | 037 | Davidson . | | 063 | Niagara | 117 | Morrow | 119 | | 069 | | | 0. 4 0.4.4. | 039 | Decreus | | 065
067 | Oneida
Onondaga | 119
121 | Muskingum
Noble | 121
123 | Pittsburg
Pontotoc | 061
069 | | | South Dakota County | 041
043 | De Kalb
Dickson | | 069 | Ontario | 123 | Ottawa | 125 | Pottawator | | | 003 | Aurora | 045 | Dye | | 071 | Orange | 125 | Paulding | 127 | Pushmatah | a 073 | | 005 | Beadle | 047 | Fayette | | 073 | Orleans | 127 | Perry | 129 | Roger Mill | | | 007 | Bennett | 049 | Fen*ress | | 075
077 | Oswego
Otsego | 129
131 | Pickaway
Pike | 131
133 | | 077
079 | | 009
011 | Bon Homme
Brookings | 051
053 | Franklin
Gib:∾n | | 079 | Putnam | 133 | Portage | 135 | | 08 | | 013 | Brown | 055 | Gile | | 081 | Queens | 135 | Preble | 137 | Stephens | 083 | McKean | 015 | Brule | 057 | Gra/veer | | 083 | Rensselaer | 137 | Putnam | 139 | | 089 | | 017 | Buffalo | 059 | Grenne | | 085
087 | Richmond
Rockland | 139
141 | Richland
Ross | 141
143 | | 08° | | 019
021 | Butte
Campbell | 061
063 | Grundy
Hambien | | 089 | St. Lawrence | 143 | Sandusky | 145 | | 09 | | | Charles Mix | 065 | Hamilton | | 091 | Saratoga | 145 | Scioto | 147 | Washingto | | Montour | 025 | Clark | 067 | Hancock | | 093
095 | Schenectady | 147 | Seneca | 149 | | 099 | | | Clay | 069 | Har teman | | 097 | Schoharie
Schuyler | 149
151 | Shelby
Stark | 151
153 | | 091 | | rland 029
031 |
Codington
Corson | 071
073 | Hartin
Havkins | | 099 | Seneca | 153 | Summit | 133 | WOODWEIG | 10 | | | Custer | 075 | Hay wood | | 101 | Steuben | 155 | Trumbull | | Oregon | 10: | | 035 | Davison | 077 | Hen derson | | 103 | Suffolk | 157 | Tuscarawas | | County | 10: | | 037 | Day | 079 | Henry | | 105
107 | Sullivan
Tioga | 159
161 | Union
Van Wert | 001 | | 10 | | 039
041 | Deuel | 081
083 | Hic∱man
Hovston | | 109 | Tompkins | 163 | Vinton | 003 | | | | 043 | Dewey
Douglas | 085 | Humphreys | | 111 | Ulster | 165 | Warren | 007 | | 111 | | 045 | Edmunds | 087 | Jackson | | 113 | Warren | 167 | Washington | 009 | Columbia | iii | | | | 089 | Jeff `*son | | 115 | Washington | 169 | | 011 | Coos | [1] | | 049 | | 091 | Johnson | | 117
119 | Wayne
Westchester | 171
173 | | 013
013 | | 111 | | 051
053 | | 093
095 | Knox | | 121 | Wyoming | 175 | | 013 | | 12 | | 053 | | 093
097 | Lak :
Lau derdale | | 123 | | | • | 019 | Douglas | 12: | Washington | | | 099 | Lavrence | | | Ob to | | Oklahoma | 021 | Gilliam | 12 | 7 Wayne | 059 | Hand | 101 | Levris | | | Ohio
County | 100 | County
Adair | 02: | | 12 | | | | 103 | Linroln | | 001 | Adams | 001 | | 02:
02: | | 13
er 13: | | 063
065 | | 105
107 | Lordon
McNinn | | 003 | Allen | 005 | Atoka | 029 | | 13. | | 067 | | 107 | McNairy | | 005 | | 007 | Beaver | 031 | Jefferson | | Rhode Islan | nd 069 | Hyde | 111 | Macon | | 007
009 | | 009 | | 033 | | | County | 071 | | 113 | Madison | | 011 | | 011
013 | | 03:
03: | | 00
00 | | 073
075 | | 115
117 | Marion
Marshall | | 013 | | 015 | | 039 | | 00 | | 073 | | 119 | Manry | | | | | | ••• | | - | | 0,, | | ••• | | | | on. | | Con. | c | ion. | | Con. | | Con. | | Con. | |------------|-----------------------|------------|---------------------|------------|-----------------------------|------------|---------------------------|--------------------|---------------------------------|------------|------------------------| | 121 | Meigs | 109 | Culberson | 293 | Limestone | 477 | Washington | 085 | Hanover | 830 | Williamsburg | | 123 | Monroe | 111 | Dellam | 295 | Lipscomb
Live Oak | 479
481 | Webb
Wharton | 087
089 | Henrico
Henry | 840 | Winchester | | 125
127 | Montgomery
Moore | 113
115 | Dallas
Dawson | 297
299 | Live Oak | 483 | Wheeler | 091 | Highland | VT | Vermont | | 129 | Morgan | 117 | Deaf Smith | 301 | Loving | 485 | Wichita | 093 | late of Wight | 001 | County | | 131 | Obion | 119 | Delta | 303 | Lubbock | 487
489 | Wilbarger
Willacy | 095
097 | James City
King and Queen | 001 | Addison
Bennington | | 133
135 | Overton
Perry | 121
123 | Denton
De Witt | 305
307 | Lynn
McCulloch | 491 | Williamson | 099 | King George | 005 | Caledonia | | 137 | Pickett | 125 | Dickens | 309 | McLennan | 493 | Wilson | 101 | King William | 007 | Chittenden | | 139 | Polk | 127 | Dimmit | 311 | McMullen | 495 | Winkler | 103
105 | Lancaster | 009
011 | Essex
Franklin | | 141
143 | Putnam
Rhee | 129
131 | Donley
Duval | 313
315 | Madison
Marion | 497
499 | Wise
Wood | 103 | Lee
Loudoun | 013 | Grand late | | 145 | Roane | 133 | Eastland | 317 | Martin | 501 | Yoakum | 109 | Louise | 015 | Lamoille | | 147 | Robertson | 135 | Ector | 319 | Mason | 503 | Young | 111 | Lunenburg | 017
019 | Orange
Orleans | | 149 | Rutherford | 137 | Edwards
Filis | 321
323 | Matagorda
Maverick | 505
507 | Zapata
Zavala | 113
115 | Madison
Mathews | 021 | Rutland | | 151
153 | Scott
Sequetchie | 139
141 | El Paso | 325 | Medina | 307 | 2.21 000 | 117 | Mecklenburg | 023 | Washington | | 155 | Sevier | 143 | Erath | 327 | Menard | | Utah | 119 | Middlesex | 025 | Windham
Windsor | | 157 | Shelby | 145 | Falls | 329 | Midland
Milam | 001 | County
Beaver | 121
123 | Montgomery
Nansemond | 027 | Wildson | | 159
161 | Smith
Stewart | 147
149 | Fannin
Fayette | 331
333 | Mills | 903 | Box Elder | 125 | Nelson | | Washington | | 163 | Sullivan | iší | Fisher | 335 | Mitchell | 005 | Cache | 127 | New Kent | | County | | 165 | Sumner | 153 | Floyd | 337 | Montague | 007 | Carbon | 131 | Northampton | 001
003 | Adams
Asotin | | 167 | Tipton | 155 | Foard
Fort Bend | 339
341 | Montgomery
Moore | 009
011 | Daggett
Davis | 133
135 | Northumberland
Nottoway | 003 | Benton | | 169
171 | Trousdale
Unicoi | 157
159 | Franklin | 343 | Mooris | 013 | Duchesne | 137 | Orange | 007 | Chelan | | 173 | Union | 161 | Freestone | 345 | Motley | 015 | Emery | 139 | Page | 009 | Clallem | | 175 | Van Buren | 163 | Frio | 347 | Nacogdoches
Navarto | 017
019 | Garfield
Grand | 141
143 | Patrick
Pittsylvania | 011
013 | Clark
Columbia | | 177
179 | Warren
Washington | 165
167 | Gaines
Galveston | 349
351 | Newton | 021 | Iron | 145 | Powhetan | 015 | Cowlitz | | 181 | Wayne | 169 | Garza | 353 | Nolan | 023 | Juab | 147 | Prince Edward | 017 | Douglas | | 183 | Weakley | 171 | Gillespie | 355 | Nueces | 025 | Kane | 149 | Prince George
Prince William | 019
021 | Ferry
Franklin | | 185
187 | White
Williamson | 173
175 | Glasscock
Goliad | 357
359 | Ochiltree
Oldham | 027
029 | Millard
Morgan | 153
155 | Pulaski | 021 | Garfield | | 189 | Wilson | 177 | Gonzales | 361 | Orange | 031 | Pinte | 157 | Rappahannock | 025 | Grant | | | | 179 | Gray | 363 | Palo Pinto | 033 | Rich | 159 | Richmond | 027 | Grays Harbor | | | Texas
County | 181
183 | Grayson | 365
367 | Panola
Parkar | 035
037 | Salt Lake
San Juan | 161
163 | Roanoke
Rockbridge | 029
031 | island
Jefferson | | 001 | Anderson | 185 | Gregg
Grimes | 369 | Parmer | 039 | Sanpete | 165 | Rockingham | 033 | King | | 003 | Andrews | 187 | Guadalupe | 371 | Pecos | 041 | Sevier | 167 | Russell | 035 | Kitsap | | 005 | Angelina | 189 | Hale
Hali | 373
375 | Polk
Potter | 043
045 | Summit
Tooele | 169
171 | Scott
Shenandoah | 037
039 | Kittitas
Klickitet | | 007
009 | Aranses
Archer | 191
193 | | 373 | Presidio | 047 | Uintah | 173 | Smyth | 041 | Lewis | | 011 | Armstrong | 195 | Hansford | 379 | Rains | 049 | Utah | 175 | Southampton | 043 | Lincoln | | 013 | Atascosa | 197 | | 381
383 | Randali | 051
053 | Wasatch
Washington | 177
179 | Spotsylvania
Stafford | 045
047 | Mason
Okanogan | | 015
017 | Austin
Bailey | 199
201 | | 385 | Rosgan
Rosi | 055 | Wayne | 181 | Surry | 049 | Pacific | | 019 | Bandera | 203 | Harrison | 387 | Red River | 057 | Weber | 183 | Sussex | 051 | Pend Oreille | | 021 | Bastrop | 205 | | 389
391 | Roeves | | Mantala | 185
187 | Tazewell
Warren | 053
055 | Pierce
San Juan | | 023
025 | Baylor
Bee | 207
209 | | 391
393 | Refugio
Roberts | | Virginia
County | 191 | Washington | 057 | Skagit | | 027 | Bell | 211 | | 395 | Robertson | 901 | Accomack | 193 | Westmoreland | 059 | Skamania | | 029 | Bexar | 213 | | 397 | Rockwall | 003 | Albemarie | 195 | Wise | 061
063 | Snohomish
Spokane | | 031
033 | Blanco
Borden | 215
217 | | 399
401 | Runnels
Rusk | 905
907 | Alleghany
Amelia | 197
199 | Wythe
York | 065 | Stevens | | 035 | Bosque | 219 | | 403 | Sabine | 009 | Amherst | | ndependent City | 067 | Thurston | | 037 | Bowie | 221 | | 405 | San Augustine | 011 | Appomattox | 510 | Alexandria | 069 | Wahktakuru | | 039 | Brazoria
Brazos | 223
225 | | 407
409 | San Jacinto
San Patricio | 013
015 | Arlington
Augusta | 515
520 | Bedford
Bristol | 071
073 | Walls Walls
Whatcom | | 043 | Brewster | 227 | | 411 | San Saba | 017 | Bath | 530 | Buene Vista | 075 | Whitman | | 045 | Briscoe | 229 | Hudspeth | 413 | Schleicher | 019 | | 540 | Charlottesville | 077 | Yakima | | 047
049 | Brooks | 231
233 | | 415
417 | Scurry
Sheckelford | 021
023 | Bland
Botetourt | 550
560 | Chesapeake
Chifton Forge | | Wisconsin | | 051 | Brown
Burleson | 233 | | 417 | Shelby | 025 | | 570 | Colonial Heights | | County | | 053 | Burnet | 237 | Jack | 421 | Sherman | 027 | Buchanan | 580 | Covington | 001 | Adams | | 055 | Caldwell
Calboun | 239 | | 423 | Smith | 029 | | 590 | Danville | 003
005 | Ashland
Barron | | 057
059 | Calhoun
Callahan | 241
243 | | 425
427 | Somervell
Starr | 031
033 | Campbell
Caroline | 595
600 | Emporia
Fairfax | 907 | Bay field | | 061 | Cameron | 24 | | 429 | Stephens | 035 | Carroll | 610 | Falls Church | 009 | Brown | | 063 | Camp | 24 | | 431 | Sterling | 036 | | 620 | Franklin | 011 | Buffalo | | 065
067 | Carson
Cass | 249
25 | | 433
435 | Stonewall
Sutton | 037
041 | Charlotte
Chesterfield | 630
640 | Fredericksburg
Galax | 013
015 | Burnett
Calumet | | 069 | Castro | 25 | | 437 | Swisher | 043 | | 650 | Hampton | 017 | Chippewa | | 071 | Chambers | 25 | | 439 | Tarrant | 045 | | 660 | Harrisonburg | 019 | Clark | | 073 | Cherokee
Childress | 25°
25° | | 441
443 | Taylor | 047 | | 670 | Hopewell | 021
023 | Columbia
Crawford | | 075
077 | | 26 | | 445 | Terrell
Terry | 049
051 | | 678
680 | | 025 | Dane | | 079 | Cochran | 263 | 3 Kent | 447 | Throckmorton | | Dinwiddle | 690 | Martinsville | 027 | Dodge | | 061 | Coke | 26 | | 449 | Titus | 057 | | 700 | | 029 | Door | | 083
385 | | 26°
26° | | 451
453 | Tom Green
Travis | 059
061 | | 710
7 20 | | 031
033 | Dougles
Dunn | | 087 | Collingsworth | 27 | 1 Kinney | 455 | Trinity | 063 | | 730 | Petersburg | 035 | Eau Claire | | 089 | | 27 | | 457 | Tyler | 065 | Fluvanna | 740 | | 037 | Florence | | 091
093 | | 27
27 | | 459
461 | | 067
069 | | 750
760 | | 039
041 | Fond Du Lac
Forest | | 095 | | 27 | | 463
| | 071 | | 770 | | 043 | Grant | | 097 | Cooke | 28 | 1 Lampeses | 465 | Val Varde | 073 | Gloucester | 775 | Salem | 045 | Green | | 099
101 | | 28
28 | | 467
469 | | 075
077 | | 780
790 | | 047
049 | Green Lake
Iowa | | 103 | | 28 | | 471 | | 079 | | 900
800 | | 051 | iron | | 105 | Crockett | 28 | 9 Leor | 473 | Waller | 081 | Greensville | 810 | Virginia Beach | 053 | Jackson | | 107 | Crosby | 29 | 1 Liberty | 475 | Ward | 083 | Halifax | 820 | Waynesboro | 055 | Jefferson | | Con. Con. West Virginia Con. Con | a. Gr. | |--|-----------------------------------| | | Randolph 009 Converse | | | Ritchie 011 Crook | | | Roane 013 Fremont | | | Summers 015 Goshen | | | Taylor 017 Hot Springs | | | Tucker 019 Johnson | | 069 Lincoln 111 Sauk 011 Cabell 053 Mason 095 Ty | Tyler 021 Laramia | | 071 Manitowoc 113 Sawyer 013 Calhoun 055 Mercer 097 Up | Jpshur 023 Lincoln | | 073 Marathon 115 Shawano 015 Clay 057 Mineral 099 Wi | Vayne 025 Natrona | | 075 Marinette 117 Sheboygan 017 Doddridge 059 Mingo 101 We | Webster 027 Njobrara | | 077 Marquette 119 Taylor 019 Fayette 061 Monongalia 103 We | Vetzel 029 Park | | | Virt 031 Pintte | | | Vood 033 Sheridan | | | Vyoming 035 Sublette | | 083 Oconto 127 Walworth 027 Hampshire 069 Ohio | 037 Sweetwater | | | Vyoming 039 Teton | | | County 041 Uinta | | | Albany 043 Washakia | | | lig Horn 045 Weston | | | ampbell | | | Carbon | | 097 Portage 141 Wood | | | Alaska Con. Con. Con. | on. Con. | | Census division 060 Bristol Bay 110 Juneau 160 Kuskokwim 210 Se | Seward 250 Upper Yukon | | 010 Aleutian Islands Borough 120 Kenai-Cook 170 Matanuska- 220 Si | Sitka 260 Valdez-Chitina- | | | Skagway- Whittier | | The state of s | | | The rest of re | Yakutat 270 Wade Hampton | | 5.0 Date: Notal 500 Landarks 140 Robin 150 Outer Reichigan 240 St | Southeast 280 Wrangell-Petersburg | | | Fairbanks 290 Yukon-Koyukuk | | 050 Bethel | | # Table 2--NAWDEX Organizational Codes ### Foreign Organizations ### Organization Name | Code | | |-------|---| | CAX01 | Inland Water Directorate, Water Resources
Branch, Canada | # Federal Organizations | USBLM | Bureau of Land Management | |-------|--| | USBR | Water and Power Resources Services | | USCE | Corps of Engineers | | USEPA | Environmental Protection Agency | | USERD | Energy Research and Development Administration | | USFS | Forest Service | | USFWS | Fish and Wildlife Service | | USGS | Geological Survey | | USIBW | International Boundary and Water Commission | | USSCS | Soil Conservation Service | | USTVA | Tennessee Valley Authority | ### Non-Federal Organizations with State or Local Jurisdiction | AR001 | Bureau of Environmental Engineering, Arkansas | |-------|--| | | Department of Health | | AZ001 | Water Resources Research Center, Arizona University | | AZ003 | Arizona Game and Fish Department | | CA001 | California Department of Water Resources | | CA009 | California State Water Resources Control Board | | CA011 | California Department of Transportation | | CA059 | Orange County Health Department, California | | CA064 | Lahontan Region, California Regional Water Quality Control Board | | CA065 | Pacific Gas and Electric Company | | CA066 | Southern California Edison Company | | CA070 | San Diego State University, Center for Marine Studies,
California | | CA080 | Diablo Valley College, California | | CA082 | Merrit College, California | | CA103 | Moss Lunding Marine Laboratory, California | | CA104 | University of California, Sanitary Engineer Research Laboratory | | CA105 | University of California, Lawrence Livermore Laboratory | | CA112 | Regional Water-Quality Control Board, North Coast Region, California | | CA113 | San Francisco Bay Region, California Regional Water Quality
Control Board | # Table 2--NAWDEX Organizational Codes (Continued) | CA114 | Central Coast Region, California Regional Water Quality Control Board | |---------|---| | CA115 | Los Angeles Region, California Regional Water Quality Control Board | | CA118 | Regional Water Quality Control Board, Santa Ana Region,
California | | CA119 | San Diego Region, California Regional Water Control Board | | CA120 | University of Southern California | | C0003 | Water Division, City of Colorado Springs, Colorado | | CT001 | Environmental Health Service Division, Connecticut Dept. of Health | | FL051 | Florida Department of Environmental Regulation | | GA009 | Environmental Protection Division, Georgia Dept. of
Natural Resources | | IA007 | Agricultural Engineering Department, Iowa State University | | ID002 | Idaho Fish and Game Department | | ID004 | Idaho Department of Health and Welfare | | IN001 | Division Stream Pollution Control, Indiana State Board | | 777001 | of Health | | ĶY001 | Kentucky Department for Natural Resources and
Environmental Protection | | MI001 | Michigan Department of Natural Resources | | MNO12 | Minnesota Pollution Control Agency | | м0003 | Metropolitan St. Louis Sewer District, Missouri | | NC004 | North Carolina Department of Natural Resources and Community Development | | NV005 | Division of Renewable Natural Resources, University of Nevada | | ORO01 | Department of Forest Engineering, Oregon State University | | OR005 | Oregon Department of Fish and Wildlife | | PA001 | Pennsylvania Department of Environmental Resources | | SRBC | Susquehanna River Basin Commission | | TN002 | Division of Water Quality Control, Tennessee Department of Public Health | | TX001 | Texas Department of Natural Resources | | TX007 | Texas Water Quality Board | | UT001 | Utah State Health Department | | VA001 | Virginia State Water Control Board | | VT003 | Vermont Water Resources Research Center, University of | | | Vermont, Burlington, Vermont | | WA004 | College of Fisheries, University of Washington | | WA006 | Department of Zoology, University of Washington | | WA011 | Seattle Water Pollution Control, Washington | | WI001 | Wisconsin Department of Natural Resources | | WI003 | Dairyland Power Cooperative, Wisconsin | | WY004 | Water Resources Research Institute, University of Wyoming | | ., 1004 | mater resources research institute, our versity of wyoning | # | | , | | | | | | | | | |----------------------------|-------------|--|--|---|--|---|---|---|--| | AOT2 G32 | ပ | 0000 | 00000 | 00000 | 00000 | 00000 | 00000 | ۵۵۵۵ | | | ORGANIZATION
CODE | USCE | USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USGS
USGS
USGE
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS |
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USEPA
USGS | | | SUSP DISCHARGE | | | | X Xm | m m m | 4442 | m K A m | νm z | | | 35/2 TAAR REUZ | | | | | | | | | | | 2021 ZED CONCEN | ш | wwww | шшшшш | X | m X m 4 Q | Z
YYQQZ | E R E E E | N M M Z | | | OW END
REAR | | | | | | 1979 | | 1969 | | | OW BEGIN
RA3Y | 1975 | 1975
1975
1975
1975 | 1975
1975
1975
1975 | 1974
1978
1975
1952
1974 | 1960
1979
1966
1978
1963 | 1977
1977
1977
1977
1966 | 1971
1968
1974
1973
1968 | 1975
1952
1958
1979 | | | NISAB
ROTAIRDS30 | | | | 00
4
4
4
4
4
4 | 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 013 | 013
004
013
004 | %
8
8
8
8 | | | DRAINAGE
AREA | NO | | | 2700.00
8270.00
1250.00
1943.00 | 6670.00
7765.00
2720.00
5478.00
69.50 | 3257.00 | 1460.00
232.00
3410.00
590.00
1298.00 | 2.48
622.00
2300.00 | | | 10 39YT
3T12 | | N N N N | AS S AS | AS A | AS AS AS | AS
AS
AS
AS
AS | A A A A A A A A A A A A A A A A A A A | N N N N | | | COUNTY | ш | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 0003 | E E E E E E E E E E E E E E E E E E E | 019
019
025
011 | 88888 | 029
029
005
005 | 031
009
017
013 | | | 3TAT2 | II 8 | 023
023
023
023 | 023
023
023
023 | 023
023
023
023 | 023
023
023
023
023 | 023
023
023
023
023 | 023
023
023
023 | 023
033
025
033 | | | LONGITUDE | LAND | 0694222
0690528
0690547
0691351 | 0692149
0691911
0692722
0694308
0694315 | 0690525
0675555
0690237
0690451 | 0683856
0684148
0695312
0694108
0705846 | 0701708
0701638
0701750
0701602 | 0671750
0675610
0695825
0701812
0704653 | 0703416
0714110
0712217
0713151 | | | LATITUDE | GLA | 465902
470632
470727
471431 | 470347
470348
465654
464154
464159 | 470644
470935
470501
470414
465057 | 451412
454941
450306
442825
442326 | 440857
440740
440636
440558
440420 | 451011
443629
435503
434328
434835 | 431958
434533
423820
431232 | | | STATION NAME AND LOCATION | | 1 SHIELDS BRANCH & FIELD MARKER 1 ST. JOHN R. E. OF BR. AT DICKEY 1 LITTLE BLACK R. N. OF BR. & ALLA 1 LITTLE BLACK R. AT BOAT LANDING | CHIMENTICOOK STR. @ CROSSING
POCWOCK STR. @ FIELD MARKER
BIG BLACK R. NR ST. JOHN R.
ST. JOHN R. @ NINE MILE BRK.
NINE MILE BRK. @ ST. JOHN R. | 1 ST. JOHN RIVER AT DICKEY, ME
1 ST. JOHN RIVER AT VAN BUREN, ME
2 ALLAGASH R. W. OF BR. © ALLAGASH
2 ALLAGASH RIVER NEAR ALLAGASH, ME
4 AROOSTOOK RIVER AT CARIBOU, ME | PENOBSCOT RIVER AT WEST ENFIELD, ME
PENOBSCOT RIVER AT EDDINGTON, ME
KENNEBEC RIVER AT BINGHAM, ME
KENNEBEC RIVER AT NORTH SIDNEY, ME
WILD RIVER AT GILEAD, ME | LAPHAM BROOK AT WEST AUBURN, ME
LAPHAM BROOK AT YOUNG CORNER, ME
HODGKINS BROOK NEAR AUBURN, ME
TAYLOR BROOK AT STEVENS MILL, ME
ANDROSCOGGIN RIVER NEAR AUBURN, ME | ST. CROIX RIVER AT MILLTOWN, ME
NARRAGUAGUS RIVER AT CHERRYFIELD, ME
ANDROSCOGGIN RIVER AT BRUNSWICK, ME
PRESUMPSCOT RIVER NEAR WEST FALMOUTH, ME
SACO RIVER AT CORNISH, ME | BLACKSMITH BROOK AT WELLS, ME. PEMIGEWASSET RIVER AT PLYMOUTH, NH MERRIMACK RIVER ABOVE LOWELL MERRIMACK RIVER AT CONCORD, NH | | | HYDRDLOGIC
Unit
Code | 01010001 | 01010001
01010001
01010001 | 01010001
01010001
01010001
01010001 | 01010001
01010001
01010002
01010004 | 01020005
01020005
01030003
01040002 | 01040002
01040002
01040002
01040002 | 01050001
01050002
01060001
01060001 | 01060003
01070001
01070002 | | | | | | | | | | | | | |----------------------------|--------------------------------|--|--|--|--|---|---|---|---| | NOT2 G32
AIG3M | ٥٥ | 000 00 | 000 | 0000 | 00000 | 00000 | 00400 | 0004 | | | SCODE
ONCITATION | nses
uses | USGS
USGS
USGS
USGS | USGS
USGS
USGS | USGS
USGS
USGS
VTOO3 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
CTOO1
USGS
USGS | USGS
USGS
USGS
USERD | | | SUSP DISCHARGE | | | AXX | мхх | шшааа | шаааа | 4 R H 2 | GUX | | | ISIS TRAS TAM 038 | | | | | | | | tri | | | BZIZ TAA9 92UZ | | ∞ ∢ | <u>α</u> ο | ęш | | | មាក | | · | | SUSP SED CONCEN | α ο | RU4 XII | A CX D | K M X X 3 | шшааа | MAAAA | A K O H O | 0 K X | | | OW END
YEAR | 1978 | | 1978 | 1978
1978 | 1978
1966
1978
1978
1978 | 1978
1978
1978
1978 | 1978
1978
1971 | 1978
1978
1978
1977 | | | OW BEGIN | to it | 1969
1953
1976
1953 | 95 | 1955
1952
1956
1978 | 1956
1964
1957
1965
1952 | 1967
1954
1956
1967 | 1967
1952
1964
1952
1952 | 1975
1956
1952
1959 | | | MISAB
ADT4IA3230 | 0004 | | 0004 | | 000
400
410
410
410 | 0000
444444 | 004
004
124
004 | 004 | | | DRAINAGE
AREA | 76.80 | 3900.00
4635.00
5.75
116.00 | 2644.00
436.00 | 5700.00
690.00
103.00 | 83.00
60.80
187.00
50.40
375.00 | 6.38
362.00
88.40
24.00
558.00 | 41.40
151.00
9661.00
98.20 | 93.70 | | | TYPE OF | £ | A A A A A A A A A A A A A A A A A A A | E KKK | SW | X X X X X X X X X X X X X X X X X X X | A S S A S S S S S S S S S S S S S S S S | A S A A A A A A A A A A A A A A A A A A | N A A A | | | YTNUOD | 0 0 0 | 017 | 009
0017
0005
7 | 005
005
027
0025 | 027
027
027
027
011 | 025
011
011
011 | 003
003
003
003 | 009
015
013
003 | | | STATE | | 025
025
033
025
025 | 033 | 033
050
050
050 | 025
025
025
025
025 | 050
025
025
025
025 | 025
025
009
009 | 009
025
025
009 | | | LONGITUDE | 07 12744 | 0712217
0711756
0720135
0712701 | 0713752
0720234
0720223 | 0722604
0722507
0723105
0724800 | 0720502
0720534
0720903
0721334
0722619 | 0725104
0725120
0724332
0724139
0723914 | 0724016
0721551
0723628
0723621
0723348 | 0724806
0725346
0724158
0724251 | | | LATITUDE | 431422 | 423802
423845
431533
422555
423812 | 441608
440913
442156 | 430504
434251
431231
425600 | 424103
423737
423747
423832
423551 | 423733
423733
423818
423231
423209 | 424212
421056
415958
415914
415442 | 412144
421414
4 20624
415320 | | | STATION NAME AND LOCATION | SOUCOOK RIVER NEAR CONCORD, NH | MERRIMACK RIVER ABOVE LOWELL, MA
MERRIMACK RIVER BL CONCORD RIVER AT LOWELL,
WEST BRANCH WARNER RIVER NEAR BRADFORD, NH
ASSABET RIVER AT MAYNARD, MA
CONCORD R REIOW R MEADOW RROOK, AT LOWELL M | AMMONDOSUC RIVER AT BETHLEHEM JUNCTION, NH CONNECTICUT RIVER AT WELLS RIVER, VT PASSUMPSIC, VT CONNECTICUT DIVER AT NODTH WALDOLE NH | CONNECTION RIVER AT WALPOIL, NH WHITE RIVER AT WEST HARTFORD, VT WILLIAMS RIVER AT BROCKWAYS MILLS, VT NB FIRE DISTRICT 1 WWTP-W DOVER | MILLERS RIVER NEAR WINCHENDON, MA
OTTER RIVER NEAR BALDWINSVILLE, MA
MILLERS RIVER AT SOUTH ROYALSTON, MA
EAST BRANCH TULLY RIVER NEAR ATHOL. MA
MILLERS RIVER AT ERVING, MA | BEAVER BROOK AT WILMINGTON, VT
DEERFIELD RIVER AT CHARLEMONT, MA
NORTH RIVER AT SHATTUCKVILLE, MA
SOUTH RIVER NEAR CONWAY, MA
DEERFIELD RIVER NEAR WEST DEERFIELD, MA | GREEN RIVER NEAR COLRAIN, MA
QUABDAG RIVER AT WEST BRIMFIELD, MA
CONNECTICUT R CANAL LOCKS ENFIELD
CONNECTICUT R AT THOMPSONVILLE, CT
SCANTIC R AT BROAD BROOK, CT. | FARM RIVER, AT AUGUR ROAD, NEAR NORTHFORD, C
WEST BRANCH WESTFIELD RIVER AT HUNTINGTON, M
WESTFIELD RIVER NEAR WESTFIELD, MA
WINDSOR SITE WASTE EFFLUENT | | | HYBROLOGIC
Unit
Code | 01070002 | 01070002
01070002
01070003
01070005 | 01080101
01080101
01080102 | 01080107
01080107
01080107 | 01080202
01080202
01080202
01080202
01080202 | 01080203
01080203
01080203
01080203
01080203 | 01080203
01080204
01080205
01080205 | 01080205
01080206
01080206
01080207 | | | AIGBM | | | | | | | | |----------------------------|--|--|---
---|---|--|--| | AOT2 G32 | 0000 | 00000 | 00 00 | 00000 | 00000 | 00000 | 0000 | | NOITA S INA DRO
3000 | | USGS
USGS
USGS
USGS
USGS | USGS
CT001
CT001
CT001
CT001 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | SUSP DISCHARGE | ш 4 ш ш | ほき丸なな | ⋖ | ZOAAA | 44444 | 4444m | <u>ဖ ဖ ဖ ဖ</u> | | SED MAT TAM COR | | | | | | | | | SUS TRAS SUSE | | <u> </u> | Z ~ ~ ~ ~ ~ | <u>z</u> | | | (2 (B (B (B | | | 8888
m 4 m m m | 4 | Z0000 | ZOAAA | 0-0-0
AAAAA | -00-0
AAAAH | დ თ თ თ
ი | | OW END
RABY | 197 | 197 | 197
197
197 | 197
197
197 | 197
197
197
197 | 197
197
197
197 | 197 | | OW BEGIN | 1959
1968
1968
1968 | 1969
1969
1968
1952
1967 | 1952
1958
1958
1958
1958 | 1974
1910
1971
1971
1962 | 1971
1971
1971
1971 | 1971
1971
1962
1971
1971 | 1975
1975
1975
1975 | | MIZAB
MOT91R3230 | 124
124
124
014
014 | 00
410
424
00 | 024 | 00
00
4 | 900 | 124 | | | DRAINAGE
AREA | 184.00
211.00
227.00
30.30 | 14.70
56.10
277.00
260.00
35.20 | 295.00 | 408.00
90.00 | 5.64 | 6.55
12.60 | | | TYPE OF | 3 3 3 3 S | 33333
00000 | N N N N N N N N N N N N N N N N N N N | N CO S | 22222 | X 0 X 0 0 | 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | YTNUOD | 021
021
021
023
023 | 023
023
027
023
009 | 009
015
015
011 | 015
011
007
007 | 007
007
007 | 600
600
600 | 600
600
600 | | STATE | 025
025
025
025
025 | | 009
009
009 | 600 | 6000 | 6600 | 600
600
600 | | LONGITUDE | 0711538
0711342
0714403
0704403 | 0703723
0704518
0713404
0705718 | 1*0715001
4 0715718
5 0715350
5 0720436
5 0721654 | 0720959
0720719
0722652
0722806
0723057 | 0722838
0723154
0723132
0723355
0723355 | 0724030
0723852
0723711
0724126
0724119 | 0724512
0724622
0724641 | | LATITUDE | 421522
421859
420220
415927 | 415630
414612
420116
415605
413426 | 412301,
420124
415926
413156
414706 | 414056
413331
411800
411640
411810 | 411628
411821
411642
411725
411633 | 411845
411708
411657
411804
411645 | 412434
412525
412434
412418 | | STATION NAME AND LOCATION | CHARLES RIVER AT DOVER, MA CHARLES RIVER AT WELLESLEY, MA CHARLES RIVER AT WALTHAM, MA CHARLES RIVER AT WALTHAM, MA CHONES RIVER AT KINGSTON, MA | EEL RIVER NEAR PLYMOUTH, M
WEWEANTIC RIVER AT SOUTH W
BLACKSTONE RIVER AT MILLVI
TAUNTON RIVER AT STATE FAR
WOOD RIVER NEAR ARCADIA, R | PAWCATUCK RIVER AT WESTERLY, RI
QUINEBAUG R RT 197 BRIDGE THOMPSON
FRENCH R RT 12 BRIDGE GROSVENORDAL
THAMES R RT 2 BRIDGE NORWICH
WILLIMANTIC R RT 32 & RT 275 | SHETUCKET R AT SOUTH WINDHAM, CT 2 YANTIC R AT YANTIC, CT 4 PATCHOGUE R AT WESTBROOK, CT. 4 PATCHOGUE R AT GROVE BEACH, CT. 5 MENUNKETESUCK R NR CLINTON, CT. | MENUNKETESUCK RIVER AT GROVE BEACH, CT. 1 INDIAN RIVER NR CLINTON, CT. 1 INDIAN R AT CLINTON, CT. 1 HAMMONASSET R NR CLINTON, CT. 1 HAMMONASSET R AT CLINTON, CT. | EAST R NR GUILFORD, CT. EAST R NR GUILFORD, CT. NECK R NR MADISON, CT. WEST R NR GUILFORD, CT. | FARM R, AT REEDS GAP ROAD EAST, NR NORTHFORD PISTAPAUG POND OUTLET NEAR EAST WALLINGFORD, I TRIBUTARY TO FARM RIVER NEAR NORTHFORD, CT. FARM RIVER NEAR NORTHFORD, CT. | | HYDROLOGIC
Unit
Code | 01090001
01090001
01090001
01090000 | 01090002
01090002
01090003
01090004 | 01090005
01100001
01100001
01100002 | 01100002
01100004
01100004
01100004 | 01100004
01100004
01100004
01100004 | 01100004
01100004
01100004
01100004 | 01100004
01100004
01100004
01100004 | | ∀1G3M | _ | | | | | | | | |----------------------------|--|---|---|--|--|--|--|--| | 9012 032 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | MOITAZINADRO
3000 | uses
uses
uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 0 0 0 0 0 | 00044 | NOAAA | বৰবৰৰ | 447 4 | 4 404 | 4440 | | | 3512 TRAS TAM 038 | | | | | ⋖ | ······································ | | | | SUSP SED CONCEN | (B (B (B (B (B | 40 40 40 40 A | | | × | | | | | | | | 9 82
0 4 4 4 | 00 | 440 4 | 0 0 0 | 000
4440 | | | OW END | 1977
1977
1977 | 197
197
197
197 | 196 | 197 | | 197 | 197
197
197 | | | OM BEGIN | 1975
1975
1975
1975 | 1975
1975
1975
1975 | 1963
1958
1977
1977 | 1978
1965
1965
1965 | 1978
1978
1909
1974 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | | | NISA8
ROTAIROS30 | | 004 | 00
4
4 | 000
4 4 4 4 | 124 | | | | | DRAINAGE
AREA | | 280.00 | 51.00
993.00
3.37
6.60
8.59 | 14.30
3.67
5.85
17.70
28.60 | 79.30
1541.00
1941.00 | | | | | TYPF OF
SITE | X X X X X X X X X X X X X X X X X X X | SW
SW
SW
SW | A S S S S S S S S S S S S S S S S S S S | M M M M M M M M M M M M M M M M M M M | N S S S S S S S S S S S S S S S S S S S | MS M | MS MS NS | | | YTNUOO | 600
600
600 | 600
600
600 | 003
005
005
005 | 005
005
005
005 | 000
000
000
000
000
000
000
000 | 005
005
005
005 | 005
005
005
005 | | | STATE | 600
600
600 | 009
009
009
025 | 003
009
009
009 | 600 | 6 | 66000 | 600
600 | | | LONGITUDE | 0724741
0724846
0724920
0724950 | 0725002
0725113
0725143
0725149
0732119 | 0732328
0732925
0732030
0731956
0732050 | 0732115
0731017
0731035
0731045
0731257 | 0731239
0731455
0731005
0730639
0732114 | 0732122
0732247
0732058
0732050
0732233 | 0732229
0732150
0732131
0732159 | | | LATITUDE | 412256
412038
412009
412009 | 411924
411920
411740
411637
421355 | 421131
413911
414353
414310
414202 | 414057
413646
413644
413432
413326 | 413136
412759
412302
411201
414102 | 414119
414120
414121
414133
414133 | 414136
414141
414143
414143 | | | STATION NAME AND LOCATION | FARM RIVER AT NORTHFORD, CT
FARM RIVER NEAR TOTOKET, CT
TRIB TO FARM R, AT BARBERRY RD, AT TOTOKET,
TRIBUTARY TO FARM RIVER AT TOTOKET, CT.
BURRS BROOK AT TOTOKET, CT | FARM RIVER AT FOXON,CT
MALONEY BROOK AT FOXON,CT
FARM RIVER NEAR EAST HAVEN,CT
FARM RIVER AT EAST HAVEN,CT
HOUSATONIC RIVER NEAR GREAT BARRINGTON, MA | GREEN RIVER NEAR GREAT BARRINGTON, MA
HOUSATONIC R AT GAYLORDSVILLE, CT.
LAKE WARAMAUG BROOK AT WARREN, CT
LAKE WARAMAUG BROOK NEAR WARREN, CT
LK WARAMAUG BK NR NEW PRESTON,CT (INFLOW SIT | EAST ASPETUCK RIVER AT NEW PRESTON, CT
NONEWAUG R NR BETHLEHEM CT
EAST SPRING BK NR BETHLEHEM CT
NONEWAUG RIVER AT MINORTOWN, CT. | POMPERAUG RIVER AT POMPERAUG, CT. POMPERAUG RIVER AT SOUTH BRITAIN, CT. HOUSATONIC R AT STEVENSON, CT HOUSATONIC R AT STRATFORD, CT TRIB TO LK WARAMAUG AT NEW PRESTON (INFL STE | TRIB TO LK WARAMAUG AT NEW PRESTON (INFL STETRIB TO LK WARAMAUG NR NEW PRESTON (INFL STETRIB TO LK WARAMAUG AT NEW PRESTON (INFL STETRIB TO LK WARAMAUG AT NEW PRESTON (INFL STETRIB TO LK WARAMAUG NR NEW PRESTON (INFL STE | TRIB TO LK WARAMAUG NR NEW PRESTON (INFL STE
TRIB TO LK WARAMAUG NR NEW PRESTON (INFL STE
TRIB TO LK WARAMAUG NR NEW PRESTON (INFL STE
TRIB TO LK WARAMAUG NR NEW PRESTON (INFL STE | | | HYDROLOGIC
Unit
Code | 01100004
01100004
01100004
01100004 | 01100004
01100004
01100004
01100004 | 01100005
01100005
01100005
01100005 | 01100005
01100005
01100005
01100005 | 01100005
01100005
01100005
01100005 | 01100005
01100005
01100005
01100005 |
01100005
01100005
01100005
01100005 | | | V(03b) | | | | | |----------------------------|--|---|---|---| | NOT2 032
AIG3M | 0000 | 00000 | 00000 | 0000 | | MOITAZINADRO
3000 | uses
uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | U U U U | | SUSP DISCHARGE | वयय व | ααααα | AAABX | ⋖ ш | | SEIZ TRAS TAM 038 | | | | | | 3ZIZ TAA9 9ZUZ | | | | α m | | SUSP SED CONCEN | 4444 | 000 | 44400 | 4 m & m | | OW END
AA3Y | 1976
1976
1976 | 1979
1979
1979 | 1979 | 1978 | | OW BEGIN | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1964
1976 | 1964
1962
1973
1973 | | NISA8
ROTGIRJ230 | | | 004 | 000 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | DRAINAGE
AREA | | | 14.50
15.20 | 3.53
30.00
122.00
142.00 | | TYPE OF | 3 | N S R R S R R S R R S R R S R R S R R S R R S R R S R S R S R R S | N N N N N N N N N N N N N N N N N N N | 2 2 3 3
S S S S | | COUNTY | 005
005
005
005 | 0000
0000
0000
0000 | 000
005
005
005
005
005 | | | 3TAT2 | 600
600
600
600 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | LONGITUDE | 0732240
0732243
0732040
0732247 | 0732104
0732118
0732130
0732212
0732259 | 0732245
0732303
0732046
0732605
0732535 | 0732731
0732511
0721123 | | LATITUDE | 414145
414146
414151
414157
414157 | 414207
414210
414210
414223 | 414239
414234
414237
411445
411352 | 1 | | IAME AND LOCATION | NR NEW PRESTON (INFL STE
NR NEW PRESTON (INFL STE
NR NEW PRESTON (INFL SIT
NR NEW PRESTON (INFL SIT
NR NEW PRESTON (INFL SIT | ##3 ##4 NR NEW PRESTON (INFL SIT NR NEW PRESTON (INFL SIT NR NEW PRESTON (INFL SIT | NR NEW PRESTON (INFL SIT # #10 WARREN, CT (INFLOW SITE TOWN CT | | | STATION NAME | TRIB TO LK WARAMAUG
TRIB TO LK WARAMAUG
TRIB TO LK WARAMAUG
TRIB TO LK WARAMAUG | LAKE WARAMAUG INFLOV
LAKE WARAMAUG INFLOV
TRIB TO LK WARAMAUG
TRIB TO LK WARAMAUG | TRIB TO LK WARAMAUG NR NEW
LAKE WARAMAUG INFLOW #10
LAKE WARAMAUG BK NR WARREN
NORWALK R AT GEORGETOWN CT
NORWALK RIVER AT CANNONDALI | | | HYDROLOGIC
Unit
CODE | 01100005
01100005
01100005
01100005 | 01100005
01100005
01100005
01100005 | 01100005
01100005
01100006
01100006 | | | MEDIA | <u> </u> | | | | | | | | | |-------------------------------------|-------------|---|--|---|---|---|--|--|--| | 9012 G32 | c | | 00004 | 00000 | 00004 | ۵۵۵۵ | 00000 | 0000 | | | MOITASINADMO
3000 | ט
ט
- | VT003
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 0 | : ≥ α α | $\alpha \times \triangleleft \phi$ | Omm44 | < 0 0 K | х шш | шшшшш | 3 X | | | 3512 TAA9 92U2
3512 TAA9 TAM 038 | | | | - | | | | | | | 2026 SED CONCEN | | 3 X X X | α× 4 04 | Ommaa | A 60 0 m | NA A | A A A A | 4 Z
3440 | | | | α | 0 00 00 | യ വ ത | တ ဆ ဆ ဆ | 48 | -137 | 979 | 9 1- | | | OW END
AA3Y | 70 | <u> </u> | 197 | 196
197
197 | 197 | 195
197
197
197 | 197 | 197 | | | OW BEGIN | ,
0 | 1975
1975
1954
1954 | 1953
1972
1975
1976
1949 | 1969
1963
1967
1967
1953 | 1967
1954
1969
1947
1948 | 1951
1951
1966
1971
1971 | 1971
1970
1975
1971 | 1974
1970
1978
1962 | | | BASIN
BOTGIRJ230 | 4 | | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000
400
410
410 | 004 | 004
124
004 | 124 | 003
003
4 | | | | 2 8 | 88 | 88 89 | 8.000 | 8 88 | 88885 | 8888 | .50 | | | DRAINAGE
AREA | Z | 8 8 9 | 479.
2810.
3440.
90. | 3773.
7.
46.
39. | 42.
4620.
8090. | 3375.
3456.
236.
314. | 359.
444.
532. | 131.
59. | | | TYPE OF
SITE | | N N N N | A S A A S | N N N N N N N N N N N N N N N N N N N | S W W S W W D D D D D D D D D D D D D D | NS N | A S S A S | SES | | | COUNTY | | 38-35 | 091
091
091
091 | 000
000
000
000
000
000
000
000
000
00 | 093
093
093 | 095
095
095 | 095
095
095
095 | 001 | | | 3TAT2 | | 050
050
050
050 |
050
036
036
036
036 | 036
025
025
025
025 | 025
036
036
036
036 | 036
036
036
036 | 036
036
036
036 | 036
036
036 | | | LONGITUDE | <u>O</u> | 0731000
0733528
0724437
0730423 | 0724155
0733658
0733524
0733425
0735435 | 0733904
0730648
0730728
0730537 | 0731150
0734059
0734028
0734122
0735155 | 0735400
0734229
0742610
0742703
0742636 | 0742824
0742745
0742734
0742440
0742015 | 0734145
0735425
0734600
0742320 | | | LATITUDE | ANTIC | 441600
431552
441642
444045 | 445730
431820
431750
430554
430518 | 425616
423520
423640
424208
424221 | 424232
425419
424719
424508
424931 | 425140
424707
421915
422350
422418 | 422544
422757
422807
423210
423600 | 423645
424043
423107
420659 | | | STATION NAME AND LOCATION | MID ATL | LAPLATTE RIVER WATERSHED
HUDSON RIVER AT ROGERS ISLAND AT FORT EDWARD
MAD RIVER NEAR MORETOWN, VT
LAMOILLE RIVER AT EAST GEORGIA, VT | MISSISQUOI RIVER NEAR EAST BERKSHIRE, VT
HUDSON RIVER AT GLENS FALLS NY
HUDSON RIVER AT FENIMORE NY
HUDSON RIVER AT SCHUYLERVILLE NY
KAYDEROSSERAS CREEK NR WEST MILTON N.Y. | HUDSON RIVER AT STILLWATER, N.Y.
DRY BROOK NEAR ADAMS, MA
HOOSIC RIVER AT ADAMS, MA
NORTH BRANCH HOOSIC RIVER AT NORTH ADAMS. MA
HOOSIC RIVER NEAR WILLIAMSTOWN, MA | GREEN RIVER AT WILLIAMSTOWN, MA
HUDSDN RIVER AT BRIDGE AT MECHANICVILLE NY
HUDSON RIVER AT WATERFORD NY RT 4 BRIDGE
HUDSON RIVER AT GREEN ISLAND NY
KAPL KNOLLS SITE PARSHALL FLUME | MOHAWK R AT REXFORD FLATS NY
MOHAWK RIVER AT COHOES, N. Y.
SCHOHARIE C AT PRATTSVILLE NY
SCHOHARIE CREEK AT GILBDA NY
PLATTER KILL AT GILBOA N.Y. | MINE KILL NEAR NORTH BLENHEIM NY
SCHOHARIE CREEK AT NORTH BLENHEIM, N. Y.
WEST KILL AT NORTH BLENHEIM NY
SCHOHARIE CREEK AT BREAKABEEN NY
SCHOHARIE CREEK AT MIDDLEBURG NY | MILL CREEK NR EAST GREENBUSH NY
NORMANS KILL NEAR WESTMERE NY
HUDSON RIVER BELOW CASTLETON-ON-HUDSON NY
ESOPUS CREEK AT SHANDAKEN, NY | | | HYDROLOGIC
UNIT
CODE | 200002 | 02010002
02010003
02010003
02010005 | 02010007
02020003
02020003
02020003 | 02020003
02020003
02020003
02020003 | 02020003
02020003
02020003
02020003 | 02020004
02020004
02020005
02020005
02020005 | 02020005
02020005
02020005
02020005
02020005 | 02020006
02020006
02020006
02020006 | | | |
 | | | | | | | |----------------------------|---|---|--|---|---|--|--| | AIGEM | 00000 | ۵۵۵۵ | 00000 | 00000 | ممممم | 00000 | ۵۵۵۵ | | MOITASINABIIO
3003 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | uses
uses
uses
uses | | SUSP DISCHARGE | ZZZ | | ы п с | ш | 04 N | | | | 3212 TRAS TAM 038 | | | | | | · | | | SUSP PART SIZE | ΖΖΖΩΩ | ααααα | A A A A | x m x x x | NAAR N | Zddad | ΧΧ α 4 | | | 777 | 62 | | | n w | 24444 | 7 T G G | | OW END
AA3Y | 197
197
197 | - 19 | | | 197 | | | | OW BEGIN | 1962
1977
1977
1976
1959 | 1976
1976
1976
1978 | 1959
1959
1923
1960
1959 | 1963
1923
1963
1961
1923 | 1923
1962
1961
1974
1952 | 1974
1959
1965
1923
1979 | 1959
1959
1923
1976 | | NISA8
ROT91R3230 | 024 | 003 | 123
004
004
014 | 123
014
004
003
123 | 004
123
003
123 | 000
003 | 023 | | DRAINAGE
AREA | 192.00
4.38
29.40 | 60.80
59.40
17.30 | 58.00
29.60
55.40
100.00
116.00 | 136.00
29.40
68.50
361.00
90.40 | 118.00
355.00
372.00
745.00 | 803.00
16.40
45.00
54.60 | 16.90
25.50
40.90
20.90 | | TYPE OF | A A A A A | S S S S S S S S S S S S S S S S S S S | 33333
33333 | 33333 | XXXXX
XXXXX | N N N N N | 3 3 3 3
5 5 5 5 5 | | CONMIX | 111
111
111
037 | 037
037
037
071 | 003
003
035
027
027 | 027
027
031
031 | 003
031
013
031 | 031
003
003
031 | 039
039
0239 | | 3TAT2 | 036
036
036
034
034 | 034
034
036
036 | 034
034
034
034 | 034
034
034
034 | 034
034
034
034 | 034
034
034
034 | 034 | | LONGITUDÈ | 0741616
0741845
0742021
0743736
0743521 | 0743432
0743559
0742833
0735729
0735824 | 0735927
0740119
0743145
0742323
0742440 | 0742053
0742722
0742051
0741623 | 0740948
0741656
0741622
0741558
0741335 | 0740746
0740648
0740556
0740451
0740946 | 0741322
0741844
0741700
0742353 | | LATITUDE | 420051
420455
420539
410159
410643 | 411138
411202
411321
412213
411018 | 405955
405933
404048
404331
405406 | 405129
404821
405042
405350
410233 | 410551
405809
405352
405332
405305 | 405337
405952
405647
405325 | 404033
404111
403705
401746 | | STATION NAME AND LOCATION | ESOPUS CREEK AT COLDBROOK NY
0136240001-ESOPUS CREEK AT PHONECIA NY
0136230001-ESOPUS CREEK AT WOODLAND NY
7 WALLKILL R AT DUTFLOW OF LK MOHAWK AT SPARTA
7 WALLKILL R AT FRANKLIN NJ | WALLKILL R NR SUSSEX NJ 7 PAPAKATING C AT SUSSEX NJ 8 BLACK C NR VERNON NJ 8 HUDSON RIVER AT HIGHLAND FALLS NY 9 HACKENSACK R AT BROOKSIDE PK N Y | HACKENSACK R AT RIVERVALE NU
PASCACK BK AT WESTWOOD NU
PASSAIC R NR MILLINGTON NU
PASSAIC R NR CHATHAM NU
ROCKAWAY R AB RE AT BOONTON NU | ROCKAWAY R AT PINE BROOK NU
WHIPPANY R AT MORRISTOWN NU
WHIPPANY R NR PINE BROOK NU
PASSAIC R AT TWO BRIDGES NU
WANAQUE R AT WANAQUE NU | RAMADO RIVER NEAR MAHWAH NU
POMPTON R AT POMPTON PLAINS NU
POMPTON R AT TWO BRIDGES NU
PASSAIC R AT RT 46 AT SINGAC NU
PASSAIC R AT LITTLE FALLS NU | PASSAIC R AT RT 46 AT ELMWOOD PARK NU
HOHOKUS BK AT HOHOKUS NU
SADDLE R AT PARAMUS NU
SADDLE R AT LODI NU
THIRD RIVER AT PASSAIC, NU | ELIZABETH R AT URSIND LAKE AT ELIZABETH NU
RAHWAY R NR SPRINGFIELD NU
RAHWAY R AT RAHWAY NU
MAMALDAM BK AT FEDERAL RD NR MANALADAN NA | | HYDROLOGIC
Unit
Code | 02020006
02020006
02020006
02020007
02020007 | 02020007
02020007
02020007
02020008
02030103 | 02030103
02030103
02030103
02030103 | 02030103
02030103
02030103
02030103 | 02030103
02030103
02030103
02030103 | 02030103
02030103
02030103
02030103 | 02030104
02030104
02030104
02030104 | | MEDIA | | | | | | | | · | |----------------------------|---|---|--|--|--|---|--|---------------------------------------| | NOTE GEZ | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | ONDANIZATION | uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 4 444 | ш ш « | ZΝ | বৰ | д шХд | 484 X | X 3 X | | | 3512 TRA9 TAM 038 | | | | | | | | | | BEIZ TRAY YRUZ | | | шш | | шα | α | <u>α</u> α | · · · · · · · · · · · · · · · · · · · | | SOZY SED CONCEN | <u> </u> | пкпхк | ZMUXA | XAXAX | 4 X m X 4 | XX4XX | XX3X | | | OW END
PA3Y | | | | | | | | | | OW BEGIN | 1975
1975
1923
1965 | 1963
1963
1923
1976
1976 | 1976
1959
1923
1959 | 1976
1979
1957
1979 | 1979
1963
1923
1963
1963 | 1963
1923
1979
1976
1976 | 1977
1960
1963
1976 | | | BASIN
DESCRIPTOR- | 004
124
124 | 000
4 4 4 |
004
014
124
004 | 00
4
4 | 004
004 | 004 | 004
004 | | | DRAINAGE
AREA | 7.52
9.71
9.96
6.43 | 16.60
47.70
65.30
68.80
12.30 | 11.80
41.30
147.00
4.61
4.31 | 181.00
2.24
25.70
1.98
265.00 | 9.51
7.57
26.20
63.80
7.37 | 10.90
32.80
2.18
53.60
57.30 | 1.02 | | | TYPE OF | 8 8 8 8 8
0 0 0 0 0 | N N N N N N N N N N N N N N N N N N N | N A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | 3 | N N N N N N N N N N N N N N N N N N N | N N N N | | | CONNEX | 025
025
025
025
025 | 027
027
019
019
019 | 019
019
019
019 | 019
019
019
035 | 035
027
035
035
027 | 027
027
019
035
019 | 019
019
019 | | | 3TAT2 | 034
034
034
034 | 034
034
034
034 | 034
034
034
034 | 034
034
034
034 | 034
034
034
034 | 034
034
034
034 | 034
034
034 | | | LONGITUDE | 0741026
0741016
0740655
0740414
0740358 | 0744345
0744918
0745245
0745352
0745615 | 0745809
0745458
0745210
0745054
0744940 | 0744812
0745252
0744942
0744952
0744148 | 0744350
0743734
0743811
0744056
0743802 | 0743840
0744350
0744509
0744338 | 0744538
0744958
0744601
0744525 | | | LATITUDE | 401947
401747
401910
401156
40113 | 404843
404540
404040
403949
404129 | 403851
403821
403421
403628
403115 | 403101
403055
402818
402541
403248 | 403330
404616
404230
403809
405103 | 405007
404339
404316
403938
403802 | 403836
403805
403724
403731 | | | STATION NAME AND LOCATION | WILLOW BK NR HOLMDEL NJ
YELLOW BK AT COLTS NECK NJ
SWIMMING R NR RED BANK NJ
SHARK R NR NEPTUNE CITY NJ
JUMPING BK NR NEPTUNE CITY NJ | DRAKES BK AT BARTLEY NJ
SB RARITAN R AT MIDDLE VALLEY NJ
SB RARITAN R NR HIGH BRIDGE NJ
SB RARITAN R ARCH ST AT HIGH BRIDGE NJ
SPRUCE RUN AT GLEN GARDNER, NJ | MULHDCKAWAY C AT VAN SYCKEL NJ
SPRUCE RN AT CLINTON NJ
SB RARITAN R AT STANTON NJ
PRESCOTT BK AT ROUND VALLEY NJ
BUSHKILL AT ROCKEFELLOWS MILLS NJ | SB RARITAN R AT THREE BRIDGES NJ
WALNUT BK NR FLEMINGTON NJ
NESHANIC R AT REAVILLE NJ
BACK BK TRIB NEAR RINGDES NJ
SB RARITAN R AT SOUTH BRANCH NJ | HOLLAND BK AT READINGTON NJ NB RARITAN R NR CHESTER NJ NB RARITAN R NR FAR HILLS NJ NB RARITAN R AT BURNT MILLS NJ LAMINGTON RIVER AT SUCCASUNNA, NJ | LAMINGTON (BLACK) R NR IRONIA NU
LAMINGTON (BLACK) R NR POTTERSVILLE NU
UPPER COLD BK NR POTTERSVILLE NU
LAMINGTON R AT LAMINGTON NU
LAMINGTON (BLACK) R NR WHITEHOUSE NU | ROCKAWAY C NR POTTERSTOWN NJ
SB ROCKAWAY C TR AT LEBANDN NJ
SB ROCKAWAY C AT WHITEHOUSE NJ
ROCKAWAY C AT MILL RD AT WHITEHOUSE NJ | | | HYDROLOGIC
Unit
Code | 02030104
02030104
02030104
02030104 | 02030105
02030105
02030105
02030105 | 02030105
02030105
02030105
02030105 | 02030105
02030105
02030105
02030105 | 02030105
02030105
02030105
02030105 | 02030105
02030105
02030105
02030105 | 02030105
02030105
02030105
02030105 | | | SED STOR | ۵۵۵۵ | 0000 | 00000 | ۵۵۵۵ | 00000 | 00000 | ٥٥٥٥ | | |----------------------------|---|---|--|---|---|--|---|----------| | 300 0 | ស្តស្តស្ត | ស្តស្តស | N N N N N | និនិនិនិន | និនិនិនិ | | និ | <u> </u> | | MOITASINADRO | nseg
Uses
Uses
Uses
Uses
Uses
Uses
Uses
U | USGS
USGS
USGS
USGS
USGS | USG
USG
USG
USG
USG | USG
USG
USG
USG
USG | USG
USG
USG
USG
USG | USGS
USGS
USGS
USGS
USGS | USG
USG
USG
USG | | | SUSP DISCHARGE | ×××× | ш ш | 200 | 48084 | X X 4 | ш | XZα | | | SIZ TAAN TAM 038 | | | | | | | | | | SUSP PART SIZE | α « « | ш ш | | ш | шш | <u>u</u> | | | | SUSP SED CONCEN | ××××× | пиипа | N 0 0 0 | 4 K U K 4 | O D O | ແ ጸጸጠແ | N N 4
X S M ∢ | | | OW END
YEAR | | | 197
197
197 | 1970
1970
1970
1969
1970 | 197
196
197 | | 197
197
197 | | | OW BEGIN | 1959
1977
1977
1963 | 1923
1977
1979
1923
1966 | 1960
1975
1963
1970
1970 | 1960
1960
1961
1967
1968 | 1968
1968
1968
1925
1979 | 1975
1975
1959
1923
1975 | 1974
1966
1952
1964 | | | BASIN
DESCRIPTOR | 004 | 004
124
123 | 004
004
004 | 0000
4 4 4 4 4 | 0000
44444 | 004
004 | 004
004
003 | | | DRAINAGE
AREA | 37.10
97.60
100.00
174.00 | 190.00
474.00
4.19
490.00 | 15.00
43.40
65.80
1.78
2.57 | 17.00
1.99
2.52
26.50
26.50 | 1.28
.60
3.83
44.50
5.21 | 9.00
172.00
27.60
258.00
271.00 | . 29
1. 20
785. 00
804. 00 | | | TYPE OF | ****** | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N | | | COUNTY | 019
019
035
035 | 035
035
035
035 | 023
021
023
021
021 | 021 | 021
021
021
021 | 023
023
035
035 | 035
035
035 | | | 3TAT2 | 034
034
034
034
034 | 034
034
034
034 | 034
034
034
034 | 034
034
034
034 | 034
034
034
034 | 034
034
034
034 | 034
034
034
034 | | | LONGITUDE | 19 0744411 0
24 0744317 0
20 0744202 0
34 0744113 0
30 0744027 0 | 0744045
0743810
0744000
0743502
0743403 | 0742822
0743631
0743651
0744933
0744807 | 0744714
0744750
0744648
0744605
0744538 | 0744529
0744522
0744439
0744056
0744006 | 0743659
0743715
0743902
0743434
0743519 | 0744024
0743905
0743254
0743141 | | | £ATITUDE | 403749
403724
403720
403804
403600 | 403410
403352
403535
403318
403234 | 401628
401919
401927
402237
402412 | 402155
402018
402026
401950
401917 | 402112
402122
402026
401959
401824 | 402210
402224
402452
402830
403147 | 403021
402956
403305
403334 | | | STATION NAME AND LOCATION | ROCKAWAY C AT WHITEHOUSE NJ
ROCKAWAY C AT ISLAND RD AT WHITEHOUSE. NJ
LAMINGTON R AT LAMINGTON RD NR NORTH BRANCH
LAMINGTON (BLACK) R AT BURNT MILLS NJ
NB RARITAN R AT NORTH BRANCH NJ | NB RARITAN R NR RARITAN NJ
PETERS BK NR RARITAN NJ
RARITAN R AT MANVILLE NJ | MILLSTONE R AT APPLEGARTH NJ
MILLSTONE R AT GROVERS MILL NJ
MILLSTONE R AT PLAINSBORD NJ
WOODSVILLE BK AT WOODSVILLE NJ
STONY BK TR 3 NR HOPEWELL NJ | STONY BK AT GLENMODRE NJ
BALDWIN C AT PENNINGTON NJ
BALDWIN C AT BALDWIN LK NR PENNINGTON NJ
STONY BK AT PENNINGTON NJ
HART BK NR PENNINGTON NJ | HONEY B NR MOUNT ROSE NJ
HONEY B TR NR PENNINGTON NJ
HONEY B NR ROSEDALE NJ
STONY BK AT PRINCETON NJ
DUCK POND RN AT CLARKSVILLE NJ | HEATHCOTE BK AT KINGSTON NJ
MILLSTONE R AT KINGSTON NJ
BEDEN BK NR ROCKY HILL NJ
MILLSTONE R AT BLACKWELLS MILLS NJ
MILLSTONE R AT WESTON NJ | ROYCE BK TR AT FRANKFORT NJ
ROYCE BK TR NR BELLE MEAD NJ
RARITAN R BL CALCO DAM AT BOUND BROOK NJ
PAPITAN P AT MJEENS BRINGE AT BOUND BROOK NJ | | | HYDROLOGIC
Unit
Code | 02030105
02030105
02030105
02030105 | 02030105
02030105
02030105
02030105 | 02030105
02030105
02030105
02030105 | 02030105
02030105
02030105
02030105 | 02030105
02030105
02030105
02030105 | 02030105
02030105
02030105
02030105 | 02030105
02030105
02030105
92939195 | | | V102 | T | | | | | | | · · · · · · · · · · · · · · · · · · · | |----------------------------|---|---|--|--|--|---|--|---------------------------------------| | NOT2 GB2
AIGBM | 00000 | 00000 |
00000 | 00 04 | 00000 | 00000 | <u> </u> | · | | MOITA SINADRO | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USCE
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USSCS
USGS
USGS
USGS | | | SUSP DISCHARGE | NAX | ⋖ | < α | α | 3 m ∝ α α | m 4 D | ⋖ | | | SSIZ TRAS TAM 038 | | | | | | | ပ | | | BSIS TRAS SEUR | 40 | | | <u> </u> | Am AA | m∢ | O - | | | SUSP SED CONCEN | 4 \(\times 4 \(\times 4 \) | $\alpha \forall X X \forall$ | 44888 | 40300 | 3 W W W W | X 111 40 12 | OZŒŒ | · · · · · · · · · · · · · · · · · · · | | OW END
PABY | | | 1978 | 1968 | 1974
1973
1973
1973 | | | <u></u> | | OM BEGIN | 1979
1959
1978
1978 | 1976
1932
1976
1976
1976 | 1976
1960
1979
1960
1979 | 1966
1967
1970
1966
1969 | 1956
1972
1972
1964
1972 | 1963
1923
1964
1964 | 1978
1923
1966
1976 | | | BASIN
Descriptor | 004 | 014 | 014
004
124 | 000
004
014
014 | 124 | 004
004
124
124 | 014 | | | DRAINAGE
AREA | 6.23
9.75
65.00 | 12.40
34.40
42.00
29.10
4.94 | 44.10
40.70
43.90
94.60
95.90 | 1101.00
27.00
75.00
290.00 | 3076.00 | 28.20
65.10
3850.00
4150.00 | 126.00
7.16
177.00 | | | TYPE OF
SITE | 3333 | SSESSE | N N N N N | SSES | N N N N N N N N N N N N N N N N N N N | X X X X X X X X X X X X X X X X X X X | 3333 | | | YTNUOD | 039
039
035
035 | 023
023
023
025
025 | 023
023
023
023
023 | 023
103
103
103
127 | 103
103
103
103
089 | 037
037
041
041
095 | 089
041
041
041 | | | 3TAT2 | 034
034
034
034 | 034
034
034
034
034 | 034
034
034
034
034 | 034
036
036
036
042 | 042
042
042
042 | 034
034
034
042 | 042
034
034
034 | | | LONGITUDE | 0742410
074255
074255
0743132
0743224 | 0742938
0742705
0742445
0742135 | 0742255
0742327
0742326
0742208
0742143 | 0741730
0731329
0731700
0724114
0751021 | 0744150
0744817
0745048
0745250
0750015 | 0744856
0745709
0750509
0750810
0750555 | 0751821
0745715
0750225
0750518 | | | LATITUDE | 403953
403653
403812
403812 | 402458
402700
402859
401921
402053 | 402322
402322
402326
402422
402500 | 403031
405058
403800
405449
412834 | 412214
411919
411740
411330
410552 | 411200
410624
410042
405840
405530 | 405844
405851
405514 | | | STATION NAME AND LOCATION | GREEN BK AT SEELEY MILLS NJ
GREEN BK AT PLAINFIELD NJ
STONY BK AT WATCHUNG NJ
BOUND BK AT SOUTH BOUND BROOK NJ | LAWRENCE BK,DAVIDSONS MILL RD NR PATRICKS CO
LAWRENCE BK AT FARRINGTON DAM NJ
LAWRENCE BK AT WESTONS MILLS NJ
MATCHAPONIX BK NR ENGLISHTOWN NJ
BARCLAY BK NR ENGLISHTOWN NJ | MATCHAPONIX BK AT MUNDY AVE AT SPOTSWOOD NJ
MANALAPAN BK AT SPOTSWOOD NJ
MANALAPAN BK AT BRIDGE ST AT SPOTSWOOD NJ
SOUTH R AT OLD BRIDGE NJ
SOUTH R BL DUHERNAL DAM AT OLD BRIDGE NJ | RARITAN R AT PERTH AMBOY NJ
NISSEQUOGUE RIVER NEAR SMITHTOWN NY
OAK BEACH INN NY
PECONIC RIVER AT RIVERHEAD NY
LACKAWAXEN RIVER AT HAWLEY PA | DELAWARE R AT PORT JERVIS NY
SAWKILL CREEK AT MILFORD, PA.
RAYMONDSKILL C. NR. SILVER SPRING, PA.
DINGMANS C AT DINGMANS FERRY PA
LITTLE BUSHKILL CREEK AT BUSHKILL, PA. | BIG FLAT BK AT TUTTLES CORNER NJ
FLAT BK NR FLATBROOKVILLE NJ
DELAWARE R NR DELAWARE WATER GAP, PA.
DELAWARE R AT DUNNFIELD NJ | BROADHEAD 2 "UPPER" SITE PA466
PAULINS KILL AT BLAIRSTOWN NJ
Y YRDS C NR BLAIRSTOWN NJ
PAULINS KILL AT MOUTH AT COLUMBIA NJ | | | HYDROLOGIC
Unit
Code | 02030105
02030105
02030105
02030105 | 02030105
02030105
02030105
02030105 | 02030105
02030105
02030105
02030105 | 02030105
02030201
02030202
02030202
02040103 | 02040104
02040104
02040104
02040104 | 02040104
02040104
02040104
02040104 | 02040104
02040105
02040105
02040105 | | | 9012 G32
A1G3M | 00 | 0000000 | 00000 | 00400 | 00000 | 00004 | 0000 | **** | |----------------------------|--|--|--|---|---|---|---|------| | MOITASIMADRO
3000 | USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | ⋖ | ш | < | ₹0 | 444 | 6 m m | | | 3512 TRA4 TAM 038 | | | | | | | | | | SSI2 TRAS SUZ | | | ш | < < | α | | | | | SUSF SED CONCEN | 4 22 | XXX XX4X | X X X M Q Q | $\alpha \alpha \sigma \sigma \alpha$ | ₩ ₩₩₩ | XX440 | 4 U m m | | | OW END | | | | | | | 1968
1975 | | | OW BEGIN | 1961 | 1923
1923
1956
1979
1979 | 1979
1976
1923
1961
1959 | 1959
1976
1926
1961 | 1959
1959
1976
1975 | 1963
1975
1923
1979 | 1979
1962
1962 | | | NIZAB
Rotqirdz30 | 014 | 000 000 | 014 | 004
124 | 004 | 004 | 004
004
004 | | | DRAINAGE
AREA | 4380.00 | 108.00
36.20
158.00
4717.00
14.20
33.40 | . 000.00 | 9.75
6420.00
97.40
6598.00 | 26.60
14.90
6680.00
5.28
6780.00 | 12.50
34.30
38.60
89.40 | 322.00
889.00
80.80 | | | TYPE OF
SITE | NS. | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | X X X X X X X X X X X X X X X X X X X | N N N N N | 33333
00000 | 3333 | | | COUNTY | 041 | 041
0041
0041
0041 | 037
041
041
041 | 019
019
017
023
017 | 019
019
019
019 | 025
021
021
021
025 | 079
095
077
077 | | | 3TAT2 | | 034
034
034
034
034 | | 034
034
042
034
042 | 034
034
034
034 | 034
034
034
034
042 | 042
042
042
042 | | | LONGITUDE | 0750506
0745602 | 075845
0750248
0750444
0751215
0751013
0750107 | 0744407
0745032
0750340
0751120
0750544 | 0750409
0750355
0750701
0743708
0750216 | 0745913
0745654
0745657
0745641 | 0743338
0744020
0744207
0744458
0753554 | 0754545
0753612
0752900
0754119 | | | LATITUDE | 404944
405106 | 404943
405040
404945
404130
404038
404555
404557 | 405510
404848
404020
403532
403406 | 403253
403134
402601
402224
402427 | 402441
402251
402153
402151
401318 | 401305
401611
401606
401327
404822 | 4 10225
404525
403456
403955 | | | STATION NAME AND LOCATION | DELAWARE R NR RICHMOND PA (BELVIDERE NJ)
PEQUEST RIVER AT TOWNSBURY, NJ | PEQUEST R AT PEQUEST NJ BEAVER BK NR BELVIDERE NJ PEQUEST R AT BELVIDERE NJ DELAWARE R AT NORTHAMPTON ST AT EASTON PA LOPATCONG C AT PHILLIPSBURG NJ BRASS CASTLE C NR WASHINGTON NJ POHATCONG C AT NEW VILLAGE NJ | MUSCONETCONG R AT LOCKWOOD NU
MUSCONETCONG R AT BEATTYSTOWN
MUSCONETCONG R NR BLOOMSBURY NU
MUSCONETCONG R AT RIEGELSVILLE NU
HAKIHOKAKE C AT MILFORD NU | HARIHDKAKE C NR FRENCHTOWN NJ
DELAWARE R AT FRENCHTOWN NJ
TOHICKON CREK NEAR PIPERSVILLE, PA.
DELAWARE AND RARITAN CA AT KINGSTON NJ
DELAWARE R AT LUMBERVILLE PA | WICKECHEDKE C AT STOCKTON NJ
ALEXAUKEN C NR LAMBERTVILLE NJ
DELAWARE R AT LAMBERTVILLE NJ
SWAN CK AT LAMBERTVILLE NJ
DELAWARE R AT TRENTON NJ | ASSUNPINK C AT CARSONS MILLS NJ
ASSUNPINK C NR CLARKSVILLE NJ
ASSUNPINK C AT BAKERSVILLE NJ
ASSUNPINK C AT TRENTON NJ
AQUASHICOLA C AT PALMERTON PA | LEHIGH RIVER AT TANNERY, PA. LEHIGH RIVER AT WALNUTPORT, PA. LITTLE LEHIGH CREEK NEAR ALLENTOWN, PA. JORDAN CR NR PLEASANT CORNERS, PA. | | | HYDROLOGIC
Unit
Code | 02040105
02040105 | 02040105
02040105
02040105
02040105
02040105 | 02040105
02040105
02040105
02040105 | 02040105
02040105
02040105
02040105 | 02040105
02040105
02040105
02040105 | 02040105
02040105
02040105
02040105 | 02040106
02040106
02040106
02040106 | | | V-1/2 | | | | | | | ····· | | |----------------------------|---|--|---
--|---|---|---|--| | SED STOR | ۵۵۵ | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | NOITAZINADRO
3000 | nses
uses
nses
nses | USGS
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | иши | n n 0 | | шшшшо | X | ∢ αααш | шш ш | | | 35:2 TRA4 TAM 038 | | | | | | | | | | SUS PART SIZE | | ш ш | | ш | | | | | | SUSP SED CONCEN | שנות | | NKXXK | шшшшо | XX4UX | X X X X W W | шшкш | | | OW END
RABY | 1975
1975
1975 | 3781
3781 | | 1973
1970
1970
1973
1970 | | 1973 | 1970
1972 | | | OW BEGIN | 1967
1972
1972 | 1962
1962
1972
1957
1975
1975 | 1979
1975
1959
1957 | 1967
1967
1967
1967 | 1975
1978
1979
1975
1958 | 1923
1975
1959
1975
1967 | 1940
1968
1975
1967 | | | BASIN
Descriptor | 004 | 88 82 88
44 44 44 | 0 000
4 4 4 4 | 33333 | 014 | 004
003 | 600
600 | | | DRAINAGE
AREA | 89 | 83.60
94.50
17.20
25.80 | 20.00
14.50
10.60
7.00
37.20 | 5.08
13.20
2.17
5.34
7.13 | 44.40
53.30
47.90
19.50
2.31 | 4.12
8.00
9.15
37.90 | 42.80
3.35
12.80
9.16 | | | TYPE OF | 8 8 8
N N N | ************************************** | N N N N N | M M M M M M M M M M M M M M M M M M M | N N N N N N N N N N N N N N N N N N N | M M M M M M M M M M M M M M M M M M M | N N N N | | | COUNTY | 770
770 | 077
077
021
021
025 | 005
005
005
005 | 101 | 005
005
005
005 | 005
005
005
101 | 101
101
005 | | | 3TAT2 | 042
042
042 | 042
042
034
034 | 034
034
034
034
034 | 042
042
042
042 | 034
034
034
034
034 | 034
034
034
034
042 | 042
042
034
034 | | | LONGITUDE | 0754133
0754027
0753825 | 075
075
075
076
076
076 | 0744158
0744242
0744523
0744327
0744757 | 0745940
0745833
0745937
0745857
0745947 | 0744305
0744550
0744847
0743448
0743020 | 0744105
0745114
0745246
0745338
0750410 | 0750334
0750122
0745810
0750005 | | | LATITUDE | 403934
403730
404035 | 23 42 33 43 43 43 43 43 43 43 43 43 43 43 43 | 400702
400814
400601
400325
400419 | 400755
400410
400522
400501
400345 | 395523
395622
395416
395804
395305 | 395810
400153
400158
400209
400523 | 400504
400319
395707
395630 | | | STATION NAME AND LOCATION | SWITZER CREEK NR PLEASANT CORNERS, PA.
LYON CREEK AT LYON VALLEY, PA.
MILL CR NR SCHNECKSVILLE, PA. | JORDAN CREEK NEAR SCHNECKSVILLE, PA
JORDAN CREEK AT ALLENTOWN, PA.
TULPEHOCKEN CR AT BERNVILLE, PA.
CROSSWICKS C AT EXTONVILLE
CROSSWICKS C AT GROVEVILLE NJ
DOCTORS C AT ALLENTOWN NJ
DOCTORS C AT RT 130 AT YARDVILLE NJ | BLACKS C AT MANSFIELD SQUARE NJ
BLACKS CK AT BORDENTOWN NJ
CRAFTS C AT HEDDING NJ
ASSISCUNK C AT COLUMBUS NJ
ASSISCUNK C NR BURLINGTON NJ | POQUESSING CREEK AT TREVOSE ROAD, PHILA PA
POQUESSING CR ABOVE BYBERRY CR AT PHILA PA
WALTON RUN AT PHILADELPHIA, PA.
BYBERRY CREEK AT CHALFONT ROAD, PHILA PA.
BYBERRY CREEK AT GRANT AVE PHILA PA. | SB RANCOCAS C AT RETREAT SB RANCOCAS C AT VINCENTOWN NJ SWB RANCOCAS C AT RT 70 AT MEDFORD NJ NB RANCOCAS C AT BROWNS MILLS NJ MCDONALDS B IN LEBANON STATE FOREST NJ | NB RANCOCAS C AT PEMBERTON NJ
MILL CREEK NEAR WILLINGBORO NJ
MILL C AT WILLINGBORO NJ
MILL CREEK AT LEVITT PKY AT WILLINGBORO NJ
PENNYPACK CREEK AT PINE RD., PHILADELPHIA, P | PENNYPACK CREEK BELOW VEREE ROAD AT PHILA., WOODEN BRIDGE RUN AT PHILA., PA. NB PENNSAUKEN C NR MOORESTOWN NJ SB PENNSAUKEN C AT CHERRY HILL NJ | | | HYDROLOGIC
Unit
CODE | 02040 106
02040 106
02040 106 | 02040106
02040106
02040106
02040201
02040201
02040201 | 02040201
02040201
02040201
02040201
02040201 | 02040202
02040202
02040202
02040202 | 02040202
02040202
02040202
02040202 | 02040202
02040202
02040202
02040202 | 02040202
02040202
02040202
02040202 | | | |
 | | | | | | | | |----------------------------|---|---|--|--|---|---|---|--| | AIG3M | 00000 | 00000 | 00000 | ٥٥٥٥٥ | υυυυυ | 00000 | 0000 | | | ORGANIZATION
GGOOD | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | шш | м x | х m | രചച | | N 4 4 | αααα | | | 3512 T8A4 TAM 036 |
 | | | ······································ | | | | | | SUSP PART SIZE |
шшхкх | ш | ▼ | ш | | MAA | ~~~~ | | | | ω 4
m m T fr X | 0
0 € X X A | A X A A H | 8 33 A A | 0000 | 44044 | <u> </u> | | | OW END
PEAR | 197 | 197 | 197 | 197
197
197 | 1979
1979
1979 | | <i>y</i> = | | | KEAR
OW BEGIN | 1967
1967
1975
1964 | 1925
1969
1975
1964
1975 | 1957
1970
1975
1972
1967 | 1964
1967
1967
1973
1973 | 1973
1973
1973
1973 | 1973
1952
1965
1975 | 1975
1975
1975
1975 | | | NIZAB
DESCRIPTOR | 00
00
4 4 | 003 | 024
004
003
003 | 80000 | 88888 | 003
004
004 | | | | DRAINAGE
AREA | 16.70
33.80
1.13
5.13
12.70 | 17.40
35.20
19.10
19.00
18.80 | 6.05
14.70
41.50
5.15
37.40 | 4.78
10.60
22.00
5.30
10.30 | 4.50
9.70
2.00
6.00
10.10 | 4.30
9.00
29.90 | | | | TYPE OF
SITE | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | X X X X X X X X X X X X X X X X X X X | N A A A A A A A A A A A A A A A A A A A | X X X X X X X X X X X X X X X X X X X | A S A S A S A S A S A S A S A S A S A S | 3 3 3 3
3 3 3 3 | | | COUNTY | 101
101
1007
0007 | 007
007
015
007 | 015
015
015
029
045 | 101
101
045
029
029 | 029
029
029
029 | 029
015
015
005
005 | 0005
005
005
005 | | | 3TAT2 | 0042
034
034
034 | 034
034
034 | 0000
0000
0000
0000
0000
0000 | 0000
0000
0000
0000 | 0000
0000
0000
0000 | 042
034
034
034 | 034
034
034 | | | LONGITUDE | 0750647
0750533
0745855
0750006
0750059 | 0750119
0750503
0750427
0750433 | 0750653
0750810
0751021
0752520 | 0751649
0751531
0751452
0752755 | 0753238
0753100
0753540
0753257
0753228 | 0753331
0751205
0751533
0745159
0745148 | 0745212
0745322
0745159
0745153 | | | LATITUDE | 400233
400025
394943
395011
395214 | 395411
395535
394805
394817
395004 | 394414
394622
394742
400121
395544 | 395929
395752
395502
400028
395952 | 395926
395850
395949
395821
395621 | 395601
394231
394428
400046
400111 | 400141
400153
400158
400207 | | | STATION NAME AND LOCATION | TACONY CREEK AT COUNTY LINE, PHILADELPHIA, P
FRANKFORD CREEK AT TORRESDALE AVE., PHILA.,
COOPER R AT NORCROSS RD AT LINDENWOLD NJ
COOPER R AT KIRKWOOD NJ
COOPER R AT LAWNSIDE NJ | COOPER R AT HADDONFIELD NU COOPER R AT CAMDEN NU SB BIG TIMBER C AT BLACKWOOD TERRACE NU SB BIG TIMBER C AT BLACKWOOD NU NB BIG TIMBER C AT GLENDORA NU | MANTUA C AT PITMAN NJ
MANTUA C AT SEWELL NJ
MANTUA C AT MANTUA NJ
DARBY CREEK AT WATERLOO MILLS NEAR DEVON, PA
DARBY CREEK NEAR DARBY, PA. | COBBS CR AT U.S. HGHWY NO. 1 AT PHILA PA. COBBS CR BLW INDIAN CR NR UPPER DARBY, PA. COBBS CREEK AT DARBY, PA. EAST BRANCH CRUM CREEK NEAR PAOLI, PA. WEST BRANCH CRUM CREEK NEAR PAOLI, PA. | RIDLEY CREEK NEAR GOSHENVILLE, PA. RIDLEY CREEK NEAR DUTTON MILL, PA. CHESTER CREEK NEAR WEST CHESTER, PA. CHESTER CREEK NEAR MILLTOWN, PA. CHESTER CREEK AT WESTTOWN SCHOOL, PA. | GOOSE CREEK NEAR WEST CHESTER, PA. RACCOON C NR
MULLICA HILL NJ RACCOON C NR SWEDESBORD NJ SB MILL CK AT RANCOCAS NJ MILL CK TR NO 2 AT RANCOCAS NJ | MILL C TR 2 AT WOODLANE RD AT WILLINGBORO NJ
SB MILL CK AT LEVITT PARKWAY AT WILLINGBORO
MILL CK AT WILLINGBORO PARKWAY AT WILLINGBOR
MILL CK TRIB AT NORTHAMPTON DR AT WILLINGBOR | | | HYDROLOGIC
Unit
Code | 02040202
02040202
02040202
02040202 | 02040202
02040202
02040202
02040202 | 02040202
02040202
02040202
02040202
02040202 | 02040202
02040202
02040202
02040202
02040202 | 02040202
02040202
02040202
02040202
02040202 | 02040202
02040202
02040202
02040202 | 02040202
02040202
02040202
02040202 | | | , | | | | | | | | |----------------------------|---|--|--|---|--|---|--| | A103M | 00000 | 00000 | 00000 | 00000 | 000 | 00000 | 0000 | | MOITASINADRO
GODE | PA001
PA001
PA001
USCE
USCS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | SUSP DISCHARGE | 4 3 | 44444 | OXXMX | XXXXX | X m m | 4.01 | | | 3512 TAAR TAM G38 | ₹ | | | | ∢ | | | | 2026 SED CONCEN | 40003
4 0 | 44444 | OXXMX | XXXX | ΧσmΣm | 40444 | 4444 | | 111121 | 80 | വവവവ | വ വവ | വവവവവ | 10.10 00 | തെ | თთთ | | OW END
RAJY | 197 | 197
197
197 | 197 | 197
197
197
197 | 197
196
197 | 197 | 197 | | OM BECIM | 1925
1968
1945
1979 | 1947
1946
1946
1948 | 1946
1974
1974
1974 | 1974
1974
1974
1974 | 1974
1962
1972
1973
1967 | 1925
1943
1973
1973 | 1973
1973
1973
1973 | | MISAB
ROTGIROS30 | 000 00
4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000
44000
4444 | 8 8 | 004 | 8888
4444 | 88888
88888 | 0000
4 4 4 4 4 | | DRAINAGE
AREA | 52.50
3.06
134.00 | 53.40
133.00
160.00
65.70
122.00 | 355.00 | 20.40 | 192.00
42.00
175.00 | 211.00
1147.00
3.90
7.70
11.80 | 0. 2
0. 3
0. 4
0. 5
0. 7
0. 7 | | TYPE OF | 33333 | A S A S A S A S A S A S A S A S A S A S | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | MS AN AS | S S S S S | 8 8 8 8
8 8 8 8 | | COUNTY | 107
029
029
011 | 107
107
107
107 | 22222 | 2222 | 22222 | 011
091
029
029 | 029
029
029 | | STATE | 0 0 0 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 042
042
042
042
042 | 042
042
042
042
042 | 042
042
042
042
042 | 042
042
042
042 | 042
042
042
042
042 | 0 0 4 2 2 2 4 2 2 4 2 4 2 4 2 4 2 4 4 4 4 | | LONGITUDE | 0761131
0753618
0753947
0755231
0760955 | 0761112
0760730
0760520
0755725
0760050 | 0755955
0754300
0754340
0754425
0754445 | 0754405
0754507
0754617
0754703 | 0754757
0755619
0760651
0760651 | 0755846
0753905
0754010
0753810 | 0753445
0753257
0754553
0754528 | | LATITUDE | 403803
400649
395534
403130 | 404101
403735
403605
402623
403840 | 403121
402813
402750
402858
402920 | 402923
402942
403057
403127
403155 | 403212
402555
402550
402550
402200 | 402208
401430
401150
401127
401203 | 401001
401001
401200
401109 | | STATION NAME AND LOCATION | WEST BR SCHUYLKILL R AT CRESSONA, PA.
PICKERING CREEK TRIB NR KIMBERTON, PA.
WEST BRANCH BRANDYWINE CREEK AT WAWASET, PA.
MAIDEN C NR VIRGINVILLE PA
SCHUYLKILL RIVER AT PORT CARBON, PA. | SCHUYLKILL RIVER AT POTTSVILLE, PA. SCHUYLKILL R AT LANDINGVILLE, PA. SCHUYLKILL RIVER AT AUBURN, PA. LITTLE SCHUYLKILL RIVER AT SOUTH TAMAQUA. PA. LITTLE SCHUYLKILL RIVER AT DREHERSVILLE, PA. | SCHUYLKILL RIVER AT BERNE, PA. SACONY CR AT SALLY ANN FURNACE, NR BOWERS, P LITTLE SACONY CREEK NEAR BOWERS, PA. SACONY CREEK ABOVE BOWERS, PA. SACONY CREEK BELOW BOWERS, PA. | SACONY CREEK TRIB NEAR BOWERS, PA. SACONY CREEK ABOVE KUTZTOWN, PA. SACONY CREEK AT NORMAL AVE. AT KUTZTOWN, PA. SACONY CREEK AT KUTZTOWN, PA. SACONY CREEK BELOW KUTZTOWN, PA. | SACONY CR AT GREENWICH BRIDGE, NR KUTZTOWN, MAIDEN CREEK NEAR EAST BERKLEY, PA. NORTHKILL CR AT BERNVILLE, PA. NORTHKILL CR AT BERNVILLE, PA. TULPEHOCKEN CR, BL MARSH DAMSITE NR READING. | TULPEHOCKEN CREEK NEAR READING, PA.
SCHUYLKILL RIVER AT POTTSTOWN, PA.
PIGEON CREEK NEAR BUCKTOWN, PA.
PIGEON CREEK NEAR PORTERS MILL, PA.
PIGEON CREEK NEAR PARKER FORD, PA. | STONY RUN NEAR SPRING CITY, PA. STONY RUN AT SPRING CITY, PA. FRENCH CREEK NEAR TRYTHALL, PA. FRENCH CREEK NEAR KNAURERTOWN, PA. | | HYDROLOGIC
Unit
Code | 02040203
02040203
02040203
02040203
02040203 | 02040203
02040203
02040203
02040203 | 02040203
02040203
02040203
02040203 | 02040203
02040203
02040203
02040203 | 02040203
02040203
02040203
02040203 | 02040203
02040203
02040203
02040203 | 02040203
02040203
02040203
02040203 | | Library I | | | | , | | | | | |----------------------------|---|--|---|--|--|--|---|---| | NOT2 G32 | ပပ | 0000000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | MOITASINARNO
3000 | USGS | USGS
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | ZOZE DISCHYEGE | | ש שא מ | < ⊻ | 0.0 | D M M G | 2 N N | ш | | | SIS TAAR TAN GE | | | | | | | | | | SUST TARE SELECTION | 4 4 | AMA AMKGK | 44470 | T S M S | 00m0q | A A B B B B | ABAA | | | YEAR | თ | 668 | | 3 4 | വഠര | | | | | OM END | /
197 | 197
196
196
196 | 1968
1973
1968
1968 | 196 | 196
197
197 | 1968
1968 | | | | OM BEGIN | 1973 | 1973
1950
1973
1967
1967
1968 | 1967
1973
1968
1967
1973 | 1967
1948
1969
1973 | 1946
1962
1967
1925
1974 | 1966
1967
1950
1973 | 1973
1955
1973
1973 | | | MI2A8
ROT41R3230 | 000
4 40 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00000
44444 | 000
4 4 00
000
000
000 | 003
004
004
004 | 000
4 4 4 00
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 004
003
003 | | | 1 | 90 | 70
00
00
12
33 | 06
06
07
57 | 82
00
10
10 | 88888 | 29
92
30
30 | 8828 | | | DRAINAGE
AREA | | | . 5.
26.
31. | 3.
279.
53.
12. | 1830.
40.
59.
1893. | 6.
2975.
10. | 10.01 | | | TYPE OF | AS. | | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N | X X X X X X X X X X X X X X X X X X X | SEE | | | COUNTY | 029 | 0020
0020
0020
0020
0020 | 029
029
001
029
029 | 077
091
091
029
029 | 101
101
101
029 | 029
029
035
029
029 | 029
003
029
029 | | | 3TAT2 | 0 0 | 000 0000
444 4444
9999999999999999999999 | 042
042
042
042
042 | 040
042
040
042
042 | 042
042
042
042
042 | 042
042
042
042 | 042
010
042
042 | | | LONGITUBE | 0754150
0754251 | 0753825
0753606
0753105
0753914
0753750
0753932
0753932 | 0753645
0753531
0753234
0753234
0753142 | 0753120
0752707
0752601
0752822
0752825 | 0751344
0751313
0751252
0751140
0754644 | 0754619
0754507
0774503
0754652
0754927 | 0754747
0754535
0754333
0754129 | | | LATITUBE | 401014 |
400914
400905
400807
400443
400522
400603
400603 | 48666 | 402732
401346
400952
400351
400408 | 400141
400726
400259
395942
400548 | 400441
400329
411928
394939 | 394556
394250
395013
394911 | | | STATION NAME AND LOCATION | FRENCH CREEK NEAR COVENTRYV
FRENCH C NR COVENTRYVILLE, | FRENCH CREEK NEAR PUGHTOWN, PA. FRENCH CREEK NEAR PHOENIXVILLE, PA. FRENCH CREEK AT PHOENIXVILLE, PA. PICKERING CREEK NEAR EAGLE, PA. PICKERING CREEK NEAR CHESTER SPRINGS, PA. UNNAMED TRIB TO PICKERING CR NR CHESTER SPS, PICKERING CR TRIB AT CHESTER SPRINGS, PA. PICKERING CR TRIB AT CHESTER SPRINGS, PA. PINE CR AT SHARP FARM NR LIONVILLE, PA. | PINE CREEK AT CHESTER SPR
PIGEON RUN AT RAPPS CORNE
ROCK RUN AT CHARLESTOWN,
ROCK RUN AT CHARLESTOWN,
PICKERING CREEK NEAR PHOE | INDIAN CREEK NR ZIONSVILLE, PA. PERKIOMEN CREEK AT GRATERFORD, PA. SKIPPACK CREEK NEAR COLLEGEVILLE, PA. LITTLE VALLEY CR NR VALLEY FORGE, PA. VALLEY CREEK NR VALLEY FORGE, PA. | SCHUYLKILL RIVER AT MANAYUNK, PHILA., PA.
WISSAHICKON CR AT FORT WASHINGTON, PA.
WISSAHICKON CR AT LIVEZEY LANE, PHILA., PA.
SCHUYLKILL RIVER AT PHILADELPHIA, PA.
EAST BR BRANDYWINE CR AT GLENMOORE, PA. | | W BR WHITE CLAY CR NR CHESTERVILLE, PA. WHITE CLAY C AB NEWARK DE RED CLAY CREEK NEAR KENNETT SQUARE, PA. RED CLAY CREEK NEAR FIVE POINT, PA. | | | HYDROLOGIC
UNIT
CODE | 02040203
02040203 | 02040203
02040203
02040203
02040203
02040203
02040203 | 02040203
02040203
02040203
02040203
02040203 | 02040203
02040203
02040203
02040203 | 02040203
02040203
02040203
02040203 | 02040203
02040203
02040203
02040205
02040205 | 02040205
02040205
02040205
02040205 | - | | WEDIY | | | · · · · · · · · · · · · · · · · · · · | | | | | | |----------------------------|---|---|--|--|---|---|---|--| | NOTZ G32 | ں دو م | 00000 | ممممن | | 00000 | 00000 | 0000 | | | MORANIZATION
3000 | uses
uses
uses
uses | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 2 | Υ | mmax | | 97 OO | 4 4 m X | 2211 | | | SSIZ TRAY YZUZ | V | | | | шшш | ш | | | | SUSP SED CONCEN | 7 4 4 | 4 44470 | A G m m g | 00044 | 22 A C C | X X X M X | ZZWŒ | | | OW END
YEAR | 1972 | 1979
1968
1968 | 1979
1974
1968 | 1967
1966
1979 | | 1973 | 1974
1974
1974 | | | OW BEGIN | 1953
1965
1973 | - 97 - 99 | 1969
1966
1967
1966 | 1965
1954
1965
1973 | 1948
1946
1973
1923 | 1975
1975
1957
1970 | 1970
1959
1971
1970 | | | BASIN
DESCRIPTOR | 004
003
004 | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00000
0024
0044
0044 | 00 4
00 4 | 888
444 | 000
000
000
000
000 | | | DRAINAGE
AREA | 47.00
18.70
35.50
44.10 | | 16.50
4.10
4.10
27.10
33.40 | 17.80
60.60
81.60
20.40
124.00 | 287.00
314.00
10.40
113.00
28.00 | 47.30
21.00
14.60
10.60
7.21 | 7.67
33.50
.3.00
4.91 | | | TYPE OF | M M M M M M M M M M M M M M M M M M M | | ************************************** | X X X X X X X X X X X X X X X X X X X | N N N N N | X X X X X | N N N
N N N
N N N | | | COUNTY | 003
029
029 | 029
029
029
029 | 029
029
029
029
029 | 029
029
029
029
029 | 029
003
029
033
011 | 011
033
033
025
025 | 025
025
025
025 | | | 3TAT2 | 010
042
042 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 4 2 2 4 2 2 4 2 4 2 4 2 4 2 4 2 4 2 | 042
042
042
042 | 042
042
034
034 | 034
034
034
034 | 034
034
034
034 | | | LONGITUDE | ∞ + 0 0 | 075394
075514
075511
075504
075504 | 0754643
0754901
0754657
0754440
0754328 | 0754338
0754232
0754220
0753948
0753855 | 0753535
0753425
0755527
0750438
0751521 | 0751411
0752001
0751952
0741641
0741550 | 0741608
0741144
0741122
0740933 | | | LATITUDE | 394552
400422
400017
395544 | 395530
400605
400541
400555 | 400544
400425
400430
400334
400308 | 400358
400205
400020
395831
395531 | 395209
394609
394645
392942
392821 | 392554
394157
393836
401236 | 401233
401134
401047
401001 | | | STATION NAME AND LOCATION | RED CLAY C AT WOODDALE DE
WEST BR BRANDYWINE CREEK NEAR HONEY BROOK, P
W BR BRANDYWINE CR NR COATESVILLE, PA.
BUCK RUN NEAR DOE RUN, PA. | UDE KUN NEAK SPRINGUALE, PA. WB BRANDYWINE C 2.7 MILES SW OF WESTCHESTER, E BR BRANDYWINE CR NR STRUBLE DAM, PA. EAST BRANCH BRANDYWINE CREEK NEAR CUPOLA, PA EAST BR BRANDYWINE CR AT CUPOLA, PA. EAST BR BRANDYWINE TRIB NR CUPOLA, PA. | EB BRANDYWINE C NR GLENMOORE PA
EAST BR. BRANDYWINE CREEK NEAR GLENMOORE, PA
INDIAN RUN NEAR SPRINGTON, PA.
EAST BR BRANDYWINE CR AT LYNDELL, PA.
EAST BR BRANDYWINE CR NR DORLAN, PA. | MARSH CREEK NR LYNDELL, PA.
EAST BR BRANDYWINE CR NR DOWNINGTOWN, PA.
EAST BR BRANDYWINE CR AT DOWNINGTOWN, PA.
VALLEY CREEK AT MULLSTEINS MEADDWS, PA.
EAST BRANCH BRANDYWINE CREEK AT WAWASET, PA. | BRANDYWINE CREEK AT CHADDS FORD, PA.
BRANDYWINE C AT WILMINGTON DE
ELK CREEK NEAR OXFORD, PA.
MAURICE R AT NORMA NJ
COHANSEY R AT SEELEY NJ | COHANSEY R AT BRIDGETON NJ
OLDMANS C AT PORCHES MILL NJ
SALEM R AT WOODSTOWN NJ
MANASQUAN R NR GEDRGIA NJ
DEBOIS C AT ADELPHIA NJ | DEBDIS C AT WYCKOFF MILLS NU
MANASQUAN R AT WEST FARMS NU
MANASQUAN R TR NR FARMINGDALE NU
MARSH BOG BK AT SQUANKUM NU | | | HYDROLOGIC
Unit
Code | 02040205
02040205
02040205
02040205 | 02040205
02040205
02040205
02040205
02040205 | 02040205
02040205
02040205
02040205 | 02040205
02040205
02040205
02040205 | 02040205
02040205
02040205
02040206
02040206 | 02040206
02040206
02040206
02040301
02040301 | 02040301
02040301
02040301
02040301 | | | | | | | ···· | | | | | |----------------------------|--|--|---|--|---|---|---|--| | AIGEM AIGEM | ۵۵۵۵۵ | ۵۵۵۵۵ | 00000 | ۵۵۵۵۵ | ۵۵۵۵۵ | 00000 | ۵۵۵۵ | —————————————————————————————————————— | | ONGANIZATION
BOOD | USGS
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUS DISCHARGE | MZ44 | X CC C L | ०४ ४ | A A H O | X ≥ m ∪ | 4 × | m m | | | 12 TRAS TAM 038 | | | | | | | | | | SSIZ TRAS SEUZ | ш | o | 0 | į.i.i | | 4 | m | | | ZONOO 035 JED CONCE | w Z X α ∢ | OKKKE | $\alpha \alpha 4 4 X$ | XXXX | X≥mux | XXM | m m ∢ m | | | ON3 WO
AA3Y | 1974 | | | | 1978 | 1975
1968
1971 | 1975
1971 | | | JEPB OM BECIN | 1959
1970
1976
1973 | 1965
1965
1973
1975 | 1925
1925
1976
1976 | 1975
1975
1923
1971 | 1972
1972
1972
1925 | 1959
1979
1954
1965 | 1969
1953
1953 | | | BASIN
Descriptor | 004
004
004 | 124
004
004
004 | 004 | 004
124
003
003 | 0003
003
004 | 000
4
4
4
4
4
4
4
4 | 0014
000
004 | | | DRAINAGE
AREA | 43.40
6.20
5.52
34.90 | 124.00
7.43
16.00
26.70
46.10 | 9.60
70.50
84.10
85.90
64.00 | 8.11
16.60
15.10 |
.52
7.74
37.30
56.30
154.00 | 30.80
22.30
982.00
199.00
520.00 | 2086.00
2232.00
593.00
10.40 | | | TYPE OF | E S S S S | N M M M M M M M M M M M M M M M M M M M | X X X X X X X X X X X X X X X X X X X | SES | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | | | COUNTY | 025
025
025
029 | 029
029
029
005 | 005
005
005
005 | 005
005
007
007 | 000
000
000
000
000
000
000
000
000
00 | 001
011
077
017 | 115
007
017
023 | | | 3TAT2 | 0 3 4
0 3 4
0 3 4
0 3 4
0 3 4 | 034
034
034
034 | 034
034
034
034 | 034
034
034
034 | 034
034
034 | 034
036
036
036
036 | 042
036
036
036 | | | LONGITUDE | 0740921
0740942
0741717
0740910
0740652 | 0741329
0741502
0741911
0744337
0743955 | 0744305
0743900
0743254
0743228
0743126 | 0742630
0743935
0743116
0745705
0745739 | 0745701
0745625
0745449
0745106
0744647 | 0744915
0745800
0751901
0751925
0752423 | 0754433
0754812
0754618
0760738 | | | LATITUDE | 400947
401138
401052
400530
395656 | 395910
394754
393955
394425 | 393802
393833
394117
394030
393947 | 393723
393825
392545
394402
394331 | 394217
394147
394009
393542
393050 | 391825
392512
421917
423835
422240 | 415748
420207
421928
423004 | | | STATION NAME AND LOCATION | MANASQUAN R AT SQUANKUM NJ
MINGAMAHONE BK AT FARMINGDALE NJ
NB METEDECONK R NR WYCKOFF MILLS N. J.
NB METEDECONK R NR LAKEWDOD NJ
BARNEGAT BAY AT BAY SHORE NJ | TOMS R NR TDMS RIVER NU OVSTER C NR BRDOKVILLE NU WESTECUNK C AT STAFFORD FORGE NU MULLICA R AT OUTLET OF ATSION LK AT ATSION N MULLICA R NR BATSTD NU | HAMMONTON CK AT WESCDATVILLE NJ
BATSTD R AT BATSTD NJ
WEST BRANCH WADING RIVER NEAR JENKINS NJ
WB WADING R AT MAXWELL NJ
DSWEGO R AT HARRISVILLE NJ | EB BASS R NR NEW GRETNA NJ
MULLICA R AT PLEASANT MILLS NJ
ABSECON C AT ABSECON NJ
GREAT EGG HARBOR R NR SICKLERVILLE NJ
GREAT EGG HARBOR R TR AT SICKLERVILLE NJ | GREAT EGG HARBOR R TR 2 AT WINSLOW CROSSING FOURMILE B AT NEW BROOKLYN NJ
GREAT EGG HARBOR R NR BLUE ANCHOR NJ
GREAT EGG HARBOR R AT FOLSOM NJ
GREAT EGG HARBOR R AT WEYMOUTH NJ | TUCKAHDE R AT HEAD OF RIVER NJ
MANANTICO C NR MILLVILLE NJ
SUSQUEHANNA RIVER AT UNADILLA, N.Y.
UNADILLA RIVER NEAR NEW BERLIN, N.Y.
UNADILLA RIVER AT ROCKDALE, N. Y. | SUSQUEHANNA R NR. GREAT BEND, PA. SUSQUEHANNA RIVER AT CONKLIN, N.Y. CHENANGO RIVER AT GREENE, N. Y. GRIDLEY CREEK ABOVE EAST VIRGIL NY | | | HYDROLOGIC
UNIT
CODE | 02040301
02040301
02040301
02040301 | 02040301
02040301
02040301
02040301 | 02040301
02040301
02040301
02040301 | 02040301
02040301
02040302
02040302 | 02040302
02040302
02040302
02040302 | 02040302
02040302
02050101
02050101 | 02050101
02050101
02050102
02050102 | | | | | | | | | | | | <u> </u> | |----------------------------|-------------|---|---|---|--|---|---|--|-------------| | AIG3M | ۵۵ | مممر | 00000 | 00000 | 00000 | 00000 | 00000 | ۵۵۵۵ | | | MOITASINADRO
3000 | PA001 | USGS
PA001
PA001 | PAOO1
PAOO1
PAOO1
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | 2026 DISCHARGE | 7 | A N H | ZNN | NNNZN | スンメミス | 22442 | zzwo | ব বব | | | SIZ TAAS TAM 038 | | | | | | | | | | | BZIZ THAS SZUZ | ш | | | 0 | 0 | | шш | < < | | | 2026 SED CONCEN | | 4 4 I I | IIINN | NNNZA | INOEO | Z X Z W Z | 22300 | 4344 | | | OW END
PABY | ! | 1972
1972
1977
1977 | 1977
1977
1977 | 1975 | 1978
1975
1978
1978
1978 | 1975
1978
1975
1975 | 1974
1974
1977
1978 | 1975
1957
1972
1975 | | | OW BEGIN | 76 | 1952
1962
1975
1975 | 1975
1975
1975
1979 | 1979
1979
1979
1975 | 1973
1953
1973
1965
1965 | 1965
1975
1969
1973
1973 | 1973
1973
1969
1969 | 1953
1955
1972
1975 | | | MISA8
NOT4183230 | | 124 | | 004 | 000
4
000
4 | 004 | 0000
4 4 4 4 | 004 | | | DRAINAGE
AREA | - | 4773.00 | 57.50 | 1.81
153.00
12.20 | 186.00
10.20
76.80
282.00
74.20 | 122.00
131.00
446.00 | 66.50
266.00
298.00
771.00 | 158.00
340.00
1377.00 | | | TYPE OF | × S | N N N N | X X X X X X X X X X X X X X X X X X X | N M M M M M M M M M M M M M M M M M M M | N A A A A A A A A A A A A A A A A A A A | MS MS NS | NS N
S N
S N
S N | NS N | | | COUNTY | 015 | 015 | 117 | 117 | 117 | 117 | 117
117
117
101 | <u> </u> | | | STATE | | 042
042
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042
036 | 036
036
036 | | | LONGITUDE | 63026 | 070253
0770253
0770223 | 0770341
0770353
0770409
0765630
0770253 | 0770125
0770341
0770421
0770444
0770054 | 0770613
0765755
0770715
0770747 | 0770855
0770842
0770658
0773417 | 0773118
0772655
0771435
0770906 | 0773905
0772505
0771403
0770745 | | | LATITUDE | 158 | 420/40
415905
413932
413947 | 414017
414100
414131
414041
413932 | 414016
414017
414021
414734
414727 | 415030
414854
415255
415430
415035 | 415458
415455
415727
415455 | 415533
415805
415825
415904
420144 | 421850
421320
420625
420715 | | | STATION NAME AND LOCATION | SUSQUEHANNA | UWEGU CKEEK NEAK UWEGU,
SUSQUEHANNA RIVER NEAR 1
TIOGA RIVER ABOVE MORRI!
MORRIS RUN NEAR BLOSSBUI | CDAL CREEK AT BLOSSBURG, PA. BEAR CREEK AT BLOSSBURG, PA. TIOGA RIVER AT BLOSSBURG, PA. TIOGA R AT COUNTY BRIDGE, PA. | MORRIS RN NR MORRIS RUN, PA
CDAL RUN AT BLOSSBURG, PA
JOHNSON C AT BLOSSBURG, PA
TIOGA RIVER NEAR MANSFIELD, PA. | TIDGA RIVER AT LAMBS CREEK, PA. ELK RUN NEAR MAINESBURG, PA. MILL CR NR TIDGA, PA. TIDGA RIVER AT TIDGA, PA. CROOKED CREEK AT MIDDLEBURY CENTER, PA. | CROOKED CREEK AT TIOGA, PA. CROOKED CR AT TIOGA, PA. TIOGA RIVER AT TIOGA JUNCTION, PA. COWANESQUE RIVER AT WESTFIELD, PA. MILL CREEK AT WESTFIELD, PA. | COWANESQUE RIVER AT COWANESQUE, PA. TROUPS CREEK AT KNOXVILLE, PA. COWANESQUE RIVER AT NELSON, PA. COWANESQUE RIVER AT LAWRENCEVILLE, PA. TIOGA RIVER AT LINDLEY NY | CANISTEO RIVER BELOW CANACADEA CR AT HORNELL CANISTEO RIVER AT WEST CAMERON, N. Y. CANISTEO RIVER AT ADDISON NY TIOGA RIVER NEAR ERWINS, N. Y. | | | HYDROLOGIC
Unit
Code | 02050103 | 02050103
02050103
02050104
02050104 | 02050104
02050104
02050104
02050104 | 02050104
02050104
02050104
02050104 | 02050104
02050104
02050104
02050104 | 02050104
02050104
02050104
02050104 | 02050104
02050104
02050104
02050104 | 02050104
02050104
02050104
02050104 | | | 1976 1976 B
1976 1976 B
1976 1976 B
1976 1976 B
1976 1975 A A
1979 1973 1972 A
1979 1979 2 E
0004 1966 1975 A A
1979 2 E
0004 1965 1973 B
1979 2 E
0004 1979 2 E
1979 2 Z
1979 Z |
--| | 1966
1952
1975
1975
1979
1965
1965
1965
1979
1979
1979
1979
1979
1979
1979
197 | | 1966 1968 K
1963 1928 P
1955 1969 A
1970 1973 2
1979 Z
1979 Z
1970 Z
197 | | 1970 1973 2
1944 1979 2
1979 3
1979 3
1979 3
1979 3
1979 4
1979 4
1979 5
1979 5
1979 6
1979 6
1979 6
1979 6
1979 7
1979 7
1970 7 | | 1979
1979
1979
1979
1979
1979
1979
1979 | | 1930
1979
1979
1979
1979
1979
1979
1979 | | 979
979
979 | | | | | | | | | | | | , | |----------------------------|--|--|---|---|---|---|--|---| | ROTZ G32
AIG3M | 0000 | 00000 | 00000 | ٥٥٥٥٥ | ۵۵۵۵۵ | 00000 | ۵۵۵۵ | | | MOITAZINAGRO
3000 | uses
uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 7 | иииии | 77777 | 2222 | NNNEN | 7 277 | 0 N H | | | 3512 TAAS TAM 038 | | | | | | | | | | SEN TRAS SEUS | | | | | | | ш | | | 2026 2ED CONCEN | пппп | 77777 | 11111 | 22222 | NNNEN | NUNN | TONM | | | OW END
PABY | | | | | | 1975 | 1969
1968 | | | OW BEGIN | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1928
1928 | 1979
1944
1970
1979 | 1966
1966
1979
1965 | | | BASIN
Descriptor | | | | 904 | 904 | 004 | 00
4
4
4
8 | | | DRAINAGE
AREA | | | | 55.20 | 272.00 | 685.00
245.00 | 2.40
136.00
46.20 | | | TYPE OF STIE | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | M S A S A S A S A S A S A S A S A S A S | MS M | N N N N N N N N N N N N N N N N N N N | M M M M M M M M M M M M M M M M M M M | M M M M M M M M M M M M M M M M M M M | N N N N N N N N N N N N N N N N N N N | | | солити | 033
033
033
027 | 033
033
033
033 | 033
047
047
023
047 | 083
023
023
023
023 | 023
023
023
023 | 023
023
023
035
035 | 105
105
035
035 | | | 3TAT2 | 042
042
042
042
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042 | | | LONGITUBE | 0780936
0780919
0781606
0781226 | 0781238
0780600
0783500
0783602
0783430 | 0783414
0782937
0782722
0782348
0782348 | 0782305
0781547
0781646
0781847
0782208 | 0781928
0781333
0781029
0781150
0781311 | 0781324
0780503
0780128
0775416 | 0773922
0774934
0775130
0774128 | | | LATITUBE | 410325
410323
405012
405204
405211 | 405517
410915
411027
411140 | 411224
411629
411642
411721
411927 | 411850
412120
412247
413202
412838 | 412837
413716
412708
412448
412524 | 412519
411909
412406
411716 | 413849
412833
411857
412322 | | | STATION NAME AND LOCATION | ROLLING STONE RN NR ROLLING STONE, PA
MOWRY RN AT ROLLING STONE, PA
TROUT RN AT EDENDALE, PA
COLD STREAM ABOVE GLASS CITY, PA
COLD STREAM AT PHILIPSBURG, PA | EMIGH RN AT HAWK RUN, PA
SALTLICK RN NR POTTERSDALE, PA
S BR BENNETT BR SINNEMAHONING C NR PENFIELD.
MOUNTAIN RN NR PENFIELD, PA
WILSON RN NR PENFIELD, PA | MOOSE RN AT PENFIELD, PA
KERSEY RN AT WEEDVILLE, PA
LAUREL RN NR WEEDVILLE, PA
BENNETT BR SINNEMAHONING C AT MEDIX RUN, PA
SPRING RN NR WEEDVILLE, PA | TROUT RN AT BENZETTE, PA
DENTS RN AT DENTS RUN, PA
E BR HICKS RN NR HUSTON HILL, PA
DRIFTWOOD BR SINNEMAHONING C NR LOCKWOOD, PA
BIG RN AT TRUMAN, PA | WEST CREEK AT HOWARD SIDING PA
PARKER RUN AT GARDEAU, PA
HUNTS RN AT CAMERON, PA
DRIFTWOOD BR SINNEMAHONING CR, STERLING RUN,
STERLING RN NR STERLING RUN, PA | TANNERY HOLLOW RN NR STERLING RUN, PA
SINNEMAHONING CREK AT SINNEMAHONING, PA.
F FORK SINNEMAHONING CR NR SINNEMAHONING, PA
COOKS RN NR KEATING, PA
CROWLEY HOLLOW NR KEATING, PA | GERMANIA BRANCH AT GERMANIA, PA.
KETTLE CREEK AT CROSS FORK, PA.
TWOMILE RN NR WESTPORT, PA
YOUNG WOMANS CREEK NEAR RENOVO, PA. | | | HYDROLOGIC
Unit
Code | 02050201
02050201
02050201
02050201
02050201 | 02050201
02050201
02050202
02050202 | 02050202
02050202
02050202
02050202 | 02050202
02050202
02050202
02050202 | 02050202
02050202
02050202
02050202
02050202 | 02050202
02050202
02050202
02050203
02050203 | 02050203
02050203
02050203
02050203 | | | - L | | | | | | | | | |----------------------------|---|---|---|---|--|---
--|--| | 9012 G32
A1G3M | 0000 | 00000 | ۵۵۵۵۵ | 00000 | 00000 | 00000 | 0004 | | | CODE | nses
nses
nses
nses
nses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
PAOO1 | | | SUSP GISCHARGE | NN400 | NOBNO | RX4RO | NAGEA | AAAUM | աատատա | M 22 | | | ISI2 TRAS TAM 038 | | 4 | | | | | | | | 3512 TAA9 92UZ | шоо | ⋖ | | | шш | шшо | OKI | | | SUSP SED CONCEN | NN400 | NNAOX | X0400 | X & Q O A | X A A U E | | 0 M M O | | | OW END
AA3Y | 1975 | 1975 | | 1977 | | | 1975 | | | OW BEGIN | 1979
1970
1954
1954 | 1979
1978
1978
1978 | 1978
1978
1978
1978 | 1978
1978
1978
1978 | 1978
1978
1935
1971 | 1971
1971
1963
1963 | 1971
1970
1943
1962 | | | BASIN
DESCRIPTOR | 000 4 4 000 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 00
4
4 | | | 004
4 | 88888
44444 | 003
004
014 | | | | 40000 | 5888 | 57 | 32
80 | 288 8 | 88788 | 58 | | | DRAINAGE
AREA | 31.
36.
87.
399. | 44.
12.
13. | . . | . 22 | 37.
129.
604. | 22.
5.
37.
173.
443. | 20. | | | TYPE OF
SITE | 3 3 3 3 S | ***** | N N N N N N N N N N N N N N N N N N N | A A A A A | N N N N N | SESES | N N N N | | | COUNTY | 035
027
027 | 027
027
117
117 | 7
1
1
1
7
1
1
1 | 7
1
1
1
1
1
1
1 | 117
117
117
081
117 | 081
081
081
081
081 | 097
097
119
043 | | | STATE | 042
042
042
042 | 0 0 4 2 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 4 | 0000
4400
2440
2422 | 042
042
042
042 | 0 0 4 2 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 4 2 4 2 4 2 4 2 4 4 2 4 | 0000
0400
0400
0400 | 0 0 4 2 0 0 4 2 4 0 0 4 2 4 2 4 2 4 2 4 | | | LONGITUDE | 0773630
0773253
0774740
0774712 | 0773622
0775415
0771739
0771826 | 0771813
0771812
0771743
0771807
0771807 | 0771840
0771821
0771738
0771809 | 0771929
0772046
0772242
0772652
0770606 | 0770902
0770903
0771352
0770159
0765443 | 0765150
0765001
0765245
0765739 | | | LATITUDE | 411445
411032
405323
405635
410306 | 410334
410130
413543
413851
413800 | 413746
413743
413732
413726
413706 | 413705
413713
413650
413636 | 413623
413456
413321
413118
413404 | 412943
412939
412825
412506
411931 | 410453
410428
405802
403214 | | | STATION NAME AND LOCATION | BAKER RN NR HYNER, PA
TANGASCOOTACK CREEK NEAR LOCK HAVEN, PA.
SPRING CREEK NEAR AXEMANN, PA.
BALD EAGLE CR BLW SPRING CR AT MILESBURG, PA
BALD EAGLE CREEK AT BLANCHARD, PA. | MARSH CREEK AT BLANCHARD, PA. SOUTH FORK BEECH CREEK NEAR SNOW SHOE, PA. BABB C AT MORRIS, PA WILSON CREEK ABOVE SAND RUN NEAR ANTRIM, PA BACKSWITCH MINE DISCHARGE AT ANTRIM, PA | MITCHELL MINE DISCHARGE #1 NEAR ANTRIM, PA
MITCHELL MINE DISCHARGE #2 NEAR ANTRIM, PA
BRIDGE RUN AT MOUTH AT ANTRIM, PA
ANNA S MINE DISCHARGE #1 NEAR ANTRIM, PA
BASSWOOD RUN NEAR ANTRIM, PA | HUNTER DRIFT DISCHARGE NEAR ANTRIM, PA
ANNA S MINE DISCHARGE #2 NEAR ANTRIM, PA
BASSWOOD RN AT MOUTH NR ANTRIM, PA
RATTLER RUN NEAR MORRIS, PA
WILSON C AT MORRIS, PA | UNNAMED TRIBUTARY TO PAINT RUN NEAR MORRIS. STONY FK NR MOUTH NR BLACKWELL, PA BABB CREEK AT BLACKWELL, PA PINE CREEK AT CEDAR RUN, PA. BLOCKHOUSE CR TRIB AT LIBERTY, PA. | BLOCKHOUSE CR AT BUTTONWOOD, PA. STEAM VALLEY RUN AT BUTTONWOOD, PA. BLOCKHOUSE CREEK NEAR ENGLISH CENTER, PA. LYCOMING CREEK NEAR TROUT RUN, PA. | WEST BR SUSQUEHANNA R. AT WATSONTOWN, PA.
WARRIOR RUN AT MCEWENSVILLE, PA.
WEST BRANCH SUSQUEHANNA RIVER AT LEWISBURG,
WICONISCO C AT MILLERSBURG | | | HYDROLOGIC
Unit
Code | 02050203
02050203
02050204
02050204 | 02050204
02050204
02050205
02050205 | 02050205
02050205
02050205
02050205
02050205 | 02050205
02050205
02050205
02050205
02050205 | 02050205
02050205
02050205
02050205
02050205 | 02050205
02050205
02050205
02050206
02050206 | 02050206
02050206
02050206
02050301 | | | AIG3M | | | | | | | | |----------------------------|---|---|--|--|--|--|--| | NOT2 032 | 8 8 8 0 0 | 00000 | 0000 | 40000 | 00000 | 0000 | 0000 | | MOITA SUNADRO | PA001
PA001
PA001
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
PAOO1
USGS
USGS
PAOO1 | PAOO1
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
PA001
PA001
PA001 | | SUSP DISCHARGE | ш | 20000 | 4 m m D | 0 4 C H | 00000 | O III O | ш | | 3512 TAA9 TAM 038 | | | | | | | | | 3ZIZ THAN 42UZ | 0 | | <u> </u> | 4 m & | <u> </u> | I W W | | | ZNZW ZED CONCEN | 000mg | 3 2 | 4 ε
4 m m O Σ | ► 044 | 00000 | 3 50 | m Q Q Z | | OW END
AA3Y | | 197 | 197 | 197
197
197
197 | | 197 | | | OM BEGIN | 1962
1962
1962
1967 | 1964
1949
1926
1950
1950 | 1972
1963
1950
1926
1962 | 1962
1954
1952
1973
1970 | 1969
1969
1969
1969 | 1936
1969
1963
1957
1959 | 1956
1962
1962
1962 | | NIZA8
ROT91A3230 | 000
4400 | 88888
444444 | 000
004
014 | 00
4
4
4 | 90000
4 6 6 6 6 6 4 | 8888
44444 | 000 | | DRAINAGE
AREA | 18300.00 | 301.00
162.00
816.00
172.00
756.00 | 164.00
205.00
3354.00 | 15.00
200.00
470.00 | . 77.
. 76.
. 70
65 | 24100.00
1.85
216.00
337.00 | 510.00 | | TYPE OF
SITE | A W W W W W W W W W W W W W W W W W W W | NS N | SEES | 3 X X X X X X X X X X X X X X X X X X X | A S A S A S A S A S A S A S A S A S A S | X X X X X X X X X X X X X X X X X X X | A A A A A A A A A A A A A A A A A A A | | COUNTY | 043
109
109
109 | 119
097
061
009
009 | 061
087
061
099
043 | 041
099
041
041 | 04 1
0 0 4 1
0 4 1
0 4 1 | 043
043
041
075 | 133
071
071
133 | | 3TAT2 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042 | 040
040
040
040
040 | 042
042
042
042
043 | | LONGITUDE | 0765443
0765211
0765120
0765821 | 0770255
0765443
0780109
0782934
0781556 | 0775900
0773500
0775532
0770746 | 0770611
0772409
0771009
0770208 | 0765938
0765835
0765755
0765751 | 0765312
0764946
0765354
0763439
0763132 | 0764307
0762129
0763133
0764237 | | LATITUDE | 403640
404629
404850
405115 | 405200
403640
402905
400418 | 402717
403917
401245
402842
401128 | 401536
402215
401924
401510
401508 | 401727
401721
401744
401747
401805 | 401527
401641
401329
402409
401937 | 400452
395334
400319
400037 | | STATION NAME AND LOCATION | MAHANTANGO C NR DALMATIA
MIDDLE C NR SELINSGROVE
PENNS C NR SELINSGROVE
SUSQUEHANNA RIVER AT SUNBURY, PA.
SHAMOKIN CR NR SHAMOKIN (SHAMOKIN A), PA. | PENNS CREEK AT PENNS CREEK, PA.
EAST MAHANTANGO CREEK NEAR DALMATIA, PA.
JUNIATA RIVER AT HUNTINGDON, PA.
DUNNING CREEK AT BELDEN, PA.
RAYSTOWN BRANCH JUNIATA RIVER AT SAXTON, PA. | RAYSTOWN BR JUNIATA RIVER AT ARDENHEIM, PA.
KISHACOQUILLAS CREEK AT REEDSVILLE, PA.
AUGHWICK CREEK NEAR THREE SPRINGS, PA.
JUNIATA RIVER AT NEWPORT, PA.
SWATARA C NR MIDDLETOWN | CONODOGUINET C BL CARLISLE
BIXLER RUN NR LOYSVILLE, PA.
SHERMAN CREEK AT SHERMANS DALE, PA.
CONODOGUINET CR AT WLOW ML BG NR HOGESTOWN,
CONODOGUINET CREEK NR HOGESTOWN, PA. | CONDDOGUINET CREEK TRIB NO. 1 NR ENDLA, PA. CONDDOGUINET CR. TRIB. NO. 2 NR. ENDLA, PA. CONDDOGUINET CR. TRIB. NO. 2A NR. ENDLA, PA. CONDDOGUINET CR. TRIB. NO. 2B NR. ENDLA, PA. CONDDOGUINET CREEK TRIB. NO. 3 NR ENDLA, PA. | SUSQUEHANNA RIVER AT HARRISBURG, PA. SPRING CREEK TRIBUTARY NEAR HARRISBURG, PA. YELLOW BREECHES CREEK NEAR CAMP HILL, PA. SWATARA CREEK AT HARPER TAVERN, PA. | WEST CONEWAGO CREEK NEAR MANCHESTER, PA.
PEQUEA C LANCASTER CO
CHICKIES C DONEGALTWP LAN CO
CODORUS C BL YORK | | HYDROLOGIC
Unit
Code | 02050301
02050301
02050301
02050301 | 02050301
02050301
02050302
02050303
02050303 | 02050303
02050304
02050304
02050304
02050305 | 02050305
02050305
02050305
02050305 | 02050305
02050305
02050305
02050305 |
02050305
02050305
02050305
02050305 | 02050305
02050306
02050306
02050306 | | MEDIA | | | | ····· | | | | |-------------------------------------|--|--|--|---|--|---|---| | 80T2 G32 | 7 7 0 0 0 | 00000 | 00000 | 00000 | 0 00 | 0 4 O O O | 0000 | | MOITASINADÃO
3002 | PAOO1
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 2 Е | 0222 | XXDGX | m | шo | ও ৰচৰ | ≽លល | | 3512 TAA9 92U2
3512 TAA9 TAM 038 | | | | | | | | | ZOZE ZED CONCEN | | 0 X X X X | X X O O X | DAAAm | ACCHA
BB ₹ | A A B A A | ម្រាស្ត្រ
ម្រាស្ត្រ | | GN3 WD
RA3Y | 1970 | 1977 | 1970 | | 1969 | | | | OW BEGIN | 1962
1965
1969
1970 | 1925
1977
1977
1978 | 1977
1977
1976
1968
1978 | 1977
1973
1973
1973 | 1973
1963
1964
1954 | 1977
1978
1964
1961 | 1961
1960
1964
1353 | | BASIN
BOT9183230 | 0004 | 124 | 004 | 003
004
004 | 004
004
004 | 124
004
014
124 | 024 | | DRAINAGE
AREA | 1.26
2.20
117.00 | 324.00
42.80
1.63
72.90 | 20.40
1.56
148.00
133.00
27100.00 | 10.90
10.00
31.00
94.40 | 9.90
. 15
1.47
285.00
113.00 | 348.00
73.00
225.00
106.00 | 72.40
146.00
247.00
595.73 | | 40 39YT
3T12 | X X X X X X X X X X X X X X X X X X X | X X X X X X X X X X X X X X X X X X X | M M M M M M M M M M M M M M M M M M M | N N N N N N N N N N N N N N N N N N N | M M M M M M M M M M M M M M M M M M M | M M M M M M M M M M M M M M M M M M M | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | COUNTY | 133
071
001
133 | 071
071
071
071 | 071
071
071
133
025 | 025
029
029
029 | 029
005
005
027
011 | 003
005
023
023 | 001
000
001
057 | | STATE | 042
042
042
042 | 042
042
042
042
042 | 042
042
042
042
024 | 024
042
042
042
024 | 042
024
024
024
024 | 024
010
024
024 | 024
0024
054
054 | | LONGITUDE | 0764307
0762158
0770855
0770833 | 0761639
0760412
0761016
0761112 | 0761428
0761906
0761943
0761858
0761031 | 0761028
0755929
0755906
0755944 | 0755404
0764213
0764042
0764734
0754710 | 0764136
0751439
0791826
0791055
0790725 | 0790242
0784300
0784718
0785025 | | LATITUBE | 400452
395741
400118
400204
395514 | 400300
400104
400001
400021
395600 | 395628
395428
395421
394621
393926 | 393931
395652
395617
395444
393749 | 394845
392907
392845
391836
385950 | 385721
383250
391807
392338
393005 | 392938
394843
394007
393359 | | STATION NAME AND LOCATION | W CONEWAGO C AB YORKHAVEN
CONESTOGA C BL LANCASTER
LATIMORE CREEK TRIB NR YORK SPRINGS, PA.
N FORK LATIMORE CR TRIB NR YORK SPRINGS, PA.
SOUTH BRANCH CODORUS CREEK NEAR YORK, PA. | CONESTOGA RIVER AT LANCASTER, PA.
PEQUEA CREEK NEAR VINTAGE, PA
PEQUEA CREEK TRIBUTARY NEAR STRASBURG, PA
PEQUEA CREEK AT STRASBURG, PA
BIG BEAVER CREEK TRIBUTARY AT NEW PROVIDENCE | BIG BEAVER CREEK AT REFTON, PA PEQUEA CREEK TRIBUTARY NEAR MARTIC FORGE, PA PEQUEA CREEK AT MARTIC FORGE, PA. MUDDY CREEK AT CASTLE FIN, PA. SUSQUEHANNA RIVER AT CONOWINGO, MD. | SUSQUEHANNA R AT CONDWINGO MD
OCTORARO CR NR ATGLEN, PA.
VALLEY CREEK NR ATGLEN, PA.
OCTORARO CR NR ATGLEN, PA.
DEER CREEK AT ROCKS, MARYLAND | ELK CREEK AT ELKVIEW, PA.
BAISMAN RN AT SHAWAN, MD
BAISMAN RUN AT BROADMOOR, MD.
PATAPSCO RIVER AT HOLLOFIELD, MD.
CHOPTANK RIVER NEAR GREENSBORO, MD. | PATUXENT RIVER NEAR BOWIE, MD. FY78 REESTABLISH GWDC 74971 TO NORTH BRANCH POTOMAC RIVER AT STEYER, MD. N B POTOMAC R AT KITZMILLER, MD. SAVAGE R. BEL SAVAGE R. DAM NR BLOOMINGTON,M | GEORGES CREEK AT FRANKLIN, MD. WILLS C BL HYNDMAN, PA WILLS CREEK NEAR CUMBERLAND, MD. NORTH BRANCH POTOMAC RIVER AT PINTO, MD. | | HYDROLOGIC
UNIT
CODE | 02050306
02050306
02050306
02050306
02050306 | 02050306
02050306
02050306
02050306
02050306 | 02050306
02050306
02050306
02050306
02050306 | 02050306
02050306
02050306
02050306
02050306 | 02060003
02060003
02060003
02060003 | 02060006
02060010
02070002
02070002 | 02070002
02070002
02070003
02070003 | | NOT2 G32 | 00000 | 00000 | 00000 | 00000 | 00004 | 04000 | 0004 | | |----------------------------|--|---|--|--|---|---|---|--| | ONGENIZATION
SOOD | US GS
US GS
US GS
US GS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | m D w & G | 3 Z m 4 | ONZRD | 0 0 0 | A O A | 4 040 | wαш | | | BED MAT FAR SIZE | | | | | | | | | | 3512 TAA9 92UZ | n m | шZ | 200 | шшшш | m m A m m | шшши | шшшш | | | ZOZE ZED CONCEN | шоюто | OZm44 | OUZUD | 0 4 4 4 4 | B O A M M | 4 m D 4 U | m & m m | | | OW END
PA3Y | 1969 | 1968 | | 1971 | 1978
1975
1979 | 1968 | 1977
1974
1977 | | | OW BEGIN | 1964
1963
1973
1973 | 1948
1960
1948
1959
1930 | 1929
1929
1960
1947
1959 | 1968
1970
1968
1959
1957 | 1973
1972
1963
1948 | 1961
1951
1959
1977
1966 | 1966
1966
1967
1959 | | | BASIN
ROT4IA3230 | 014
000
004 | 004 | 0000
4 4
4 4 | 003
04
04
04 | 004
124
003 | 000
000
003 | 003 | | | DRAINAGE
AREA | 875.00
3109.00
155.00 | 494.00
5936.00
93.50
281.00 | 1642.00
768.00
3040.00
66.90
9651.00 | . 05
 | . 79
11560.00
173.00 | 18.40
82.30
11570.00 | 9.73
1.01
12.50
62.20 | | | TYPE OF | ************************************** | N N N N N N N N N N N N N N N N N N N | N A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | 33333
88888 | N N N N N | N N N N | | | тииоз | 019
001
031
065 | 043
037
043
043
165 | 187
187
037
021
021 | 059
059
059
031 | 031
059
031
021
013 | 021
021
021
013
031 | 031
031
001 | | | 3TAT2 | 054
024
024
054
054 | 024
054
024
024
051 | 051
051
054
024 | 051
051
051
024 | 024
051
024
024
024 | 024
024
024
051
024 | 024
024
024
011 | | | LONGITUDE | 0785025
0784624
0782728
0784331 | 0775000
0774807
0773628
0774352
0784518 | 0781240
0782011
0774722
0773325 | 0772218
0772216
0772204
0772013
0771038 | 0771456
0772043
0770740
0771406 | 0772350
0772000
0772240
0770702 | 0770609
0770600
0770712
0770225 | | | LATITUDE | 393359
393716
393213
390318 | 394229
392604
394259
392701
381921 | 385450
385836
391655
392535 | 385657
385656
385710
390741
390503 | 390003
385548
385658
394043 | 393540
392455
392316
385546
390832 | 390659
390636
390609
385821 | | | STATION NAME AND LOCATION | NORTH BRANCH POTOMAC R AT PINTO, MD.
NORTH BRANCH POTOMAC RIVER NEAR CUMBERLAND,
POTOMAC RIVER AT PAW PAW, W. VA.
LOST RIVER AT MCCAULEY NEAR BAKER, W. VA.
CACAPON RIVER NEAR GREAT CACAPON, W. VA. | CONOCOCHEAGUE CREEK AT FAIRVIEW, MD. POTOMAC RIVER AT SHEPHERDSTOWN, W. VA. ANTIETAM CREEK NEAR WAYNESBORD, PA. ANTIETAM CREEK NEAR SHARPSBURG, MD. S F SHENANDOAH RIVER NEAR LYNNWOOD VA | S F SHENANDOAH RIVER AT FRONT ROYAL VA
N F SHENANDOAH RIVER NEAR STRASBURG VA
SHENANDOAH RIVER AT MILLVILLE, W. VA.
CATOCTIN CREEK NEAR MIDDLETOWN, MD.
POTOMAC RIVER AT POINT OF ROCKS MD | STAVE RUN AT RESTON VA
STAVE RUN NEAR RESTON VA
SMILAX BRANCH AT RESTON VA
SENECA CREEK AT DAWSONVILLE, MD.
WATTS BRANCH AT ROCKVILLE, MD. | POTOMAC RIVER AT GREAT FALLS MD
SNAKEDEN BR AT RESTON, VA.
POTOMAC RIVER NR. WASH., D.C. LITTLE FALLS P
MONOCACY RIVER AT BRIDGEPORT, MD.
BIG PIPE CREEK AT BRUCEVILLE, MD. | HUNTING CREEK AT JIMTOWN, MD.
LINGANORE CREEK NEAR FREDERICK, MD.
MONOCACY R. AT REICHS FORD BR NEAR FREDERICK
POTOMAC RIVER AT CHAIN BRIDGE, WASHINGTON, DC
WILLIAMSBURG RN NR OLNEY, MD | N. BR. ROCK CREEK NEAR NORBECK, MD.
MANOR RUN NEAR NORBECK, MD.
N BR ROCK CREEK NR ROCKVILLE, MD.
ROCK CREEK AT SHERRILL DRIVE, WASHINGTON, D. | | | HYDROLOGIC
UNIT
CODE | 02070003 NDR1
02070003 PDTC
02070003 CDS
02070003 CACA | 02070004 CDNC
02070004 PDTC
02070004 ANT1
02070005 S F | 02070005 S F
02070006 N F
02070007 SHEN
02070008 CATG | 02070008 STAVE PO2070008 SMILAX 02070008 SENECA 02070008 WATTS PO2070008 PO20700008 PO20700000 WATTS PO2070000 PO207000 PO20700 PO2 | 02070008 POTC
02070008 POTC
02070009 MONC
02070009 BIG | 02070009 HUNI
02070009 LING
02070009 MONG
02070010 PQTC | 02070010 N. E
02070010 MANG
02070010 N BR | | | ROT2 G32
AIG3M | ۵۵۵۵ | 00040 | ٥٥٥٥٥ | 00000 | 00000 | ٥٥٥٥٥ | ۵۵۵ | |----------------------------|---|--|--|---|---|--|--| | NOITASINADFO
3000 | NSGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
VAOO1 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USFS
USGS
USGS
USGS
USGS | uses
uses
uses | | SUSP DISCHANCE | пксох | አሪዕ | 0000 | 4 3 4 D 4 | 44 m | п и | X m X | | 3512 TAA9 TAM 038 | | | | | | | | | NEW SED CONCEN | . nscvx
nnnn | ХИО ММ
ММ М | ппппп | 43000 | 444m
44 m | ₩ 2 4 2 M | ⋖ | | 111431 | 0444 | 41010 4 | 4 4 | ന ത വ | 9 | IO M | <u> </u> | | OW END
AA3Y | 195
197
197
197 | 197
197
197 | 197 | 197
196
196 | 197 | 197 | | | OW BEGIN | 1959
1967
1966
1967 | 1963
1960
1960
1961
1972 | 1973
1973
1971
1973 | 1960
1976
1945
1950
1944 | 1954
1944
1976
1944
1976 | 1976
1946
1930
1930 | 1974
1967
1978 | | MISAB
ROTGIRDS30 | 004
004
003 | 123 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00 0
4 4 4 | 00 0
4 4 4 | 8888
4444 | 004 | | | .80
.45
.45 | . 47
. 40
. 70 | 88888 | 58888 | 88 8 | 8888 | 8.60 | | DRAINAGE
AREA | 72. | . 21.
49.
16. | 155.
25.
49.
185. | 57.
19.
287.
620.
472. | 1596.
601.
1081. | 2075.
3683.
4584.
6257. | 6760.
8.
1344. | | TYPE OF | ************************************** | 3 A A A A A A A A A A A A A A A A A A A | MS M | AS AS AS | MS
MS
MS
MS | AS AS AS | S K K | | COUNTY | 033
031
031
031 | 031
033
033
033 | 153
153
059
059
153 | 017
061
047
061
047 | 177
097
109
085
045 | 045
027
125
003
075 | 087 | | 3TAT2 | 024
024
024
024 | 024
024
024
024 | 051
051
051
051 | 024
051
051
051 | 051
051
051
051 | 051
051
051
051 | 05
05
10
05
05
05
05
05
05
05
05
05
05
05
05
05 | | LONGITUDE | 0765534
0770115
0770311 | 0770308
0770148
0765800
0765842
0765912 | 0773316
0773414
0772757
0772452
0773414 | 0770325
0775209
0775755
0774850
0775831 | 0773105
0770948
0775703
0771957
0801225 | 0800954
0794045
0784930
0782930
0782930 | 0772149
0783810
0772832 | | LATITUDE | 385737
390736
390705
390705 | 390424
390355
385709
384716 | 383658
385321
384916
384559 | 383545
384758
383530
383150
382101 | 38 1920
375316
375822
374603
373101 | 373319
373150
373210
374750 | 372326
372455
371328 | | STATION NAME AND LOCATION | N.E. BR. ANACOSTIA RIVER AT RIVERDALE, MD.
N.W. BR. ANACOSTIA RIVER AT NORWOOD, MD.
NURSERY RUN AT CLOVERLY MD
BATCHELLORS RN AT OAKDALE, MD.
BET PRE CREEK AT LAYHILL, MD. | LUTES RUN AT LUTES MARYLAND N W BR ANACGSTIA R NR COLESVILLE, MD NORTHWEST BRANCH ANACGSTIA RIVER NEAR HYATTS HENSON CREEK AT OXON HILL, MD. PISCATAWAY C NR S PISCATAWAY MD | CEDAR RUN NR ADEN, VA. BULL RUN NEAR CATHARPIN, VA. CUB RUN NR BULL RUN, VA. BULL RUN NEAR CLIFTON, VA. | MATTAWOMAN C NR POMONKEY, MD
CARTER RUN NR MARSHALL VA.
HAZEL RIVER AT RIXEVVILLE, VA.
RAPPAHANNOCK RIVER AT REMINGTON, VA | RAPPAHANNOCK RIVER NR FREDERICKSBURG VA
MATTAPONI RIVER NR BEULAHVILLE VA
DESPER CR (NR MOUTH) NR MINERAL VA.
PAMUNKEY RIVER NR HANDVER VA
BELOW REGENERATION ON FS60416710 | COLD SPRING BRANCH AT 6042 50-2 JAMES RIVER AT BUCHANAN, VA JAMES RIVER AT BENT CREEK, VA. JAMES RIVER AT SCOTTSVILLE, VA. JAMES RIVER AT CARTERSVILLE, VA | JAMES R NR DUTCH GAP VA
HOLIDAY CREEK NEAR ANDERSONVILLE, VA.
APPOMATTOX RIVER AT MATOACA, VA. | | HYDROLOGIC
Unit
CODE | 02070010
02070010
02070010
02070010 | 02070010
02070010
02070010
02070010 | 02070010
02070010
02070010
02070010 | 02070011
02080103
02080103
02080103 | 02080104
02080105
02080106
02080106
02080201 | 02080201
02080201
02080203
02080203
02080203 | 02080206
02080207
02080207 | | ¥IQ3W | | | | | | | | | | |----------------------------|-------------|---|---|---|--|---|---|--|--------------------------------------| |
NOT2 032 | | | 000++ | <u> </u> | 00000 | 00000 | 00000 | 0000 | ~ *** *** *** *** *** *** | | MOITASINADRO
3003 | | USGS
USGS
USGS
GAOO9
GAOO9 | GA009
GA009
GA009
FL051 | GAOOS
USGS
USGS
USGS
VAOO | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | | | 2 ш ш | 0 K K X | &ON & N | 4 mI | X 02 | | | 3512 TAA9 TAM 038 | | | 44 | | | | | | | | BEIZ TRAS SEUZ | | EEE 44 | 444 | ⋖ | | шш | <u>_</u> | <u> x z</u> | | | SUSP SED CONCEN | | Z Z Z 4 4 | 444 | ∢ шш0. ≥ | 0 8 8 0 8 | <u> </u> | ANMIA | NAXZ | | | OW END
YEAR | | 1973 | | | 1979 | 1979
1979
1979 | 1973 | 1979 | | | MA3Y
MA3Y | 03 | 1971
1976
1972
1976 | 1975
1975
1975
1974
1972 | 1976
1945
1930
1930 | 1929
1978
1954
1973
1949 | 1968
1929
1963
1963 | 1963
1973
1948
1943
1978 | 1977
1973
1945
1945 | | | NISA8
ROT41RJ230 | | | | 004
004
004 | 014 | 0000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0 1 4
0 0 4
0 0 4 | 004
024 | | | DRAINAGE
AREA | OIS | | | 257.00
395.00
1789.00
257.00 | 2977.00
52.60
124.00
1.60
1050.00 | 538.00
2550.00
44.00
7.47
55.00 | 191.00
68
8410.00
8700.00 | 2.80
14.00
1421.00
617.00 | | | 30 39YT
3TI2 | -ш | A A A A A A A A A A A A A A A A A A A | SESE | MS MS MS | MS MS MS | X X X X X X X X X X X X X X X X X X X | N N N N N | N N N N | | | COUNTY | | 051
067
049
245
251 | 217
185
185
087
053 | 121
121
770
143
121 | 083
145
169
157
157 | 157
083
033
145 | 145
145
083
083
015 | 015
117
175
067 | | | 3TAT2 | | 045
045
045
013
013 | 0013 | 051
051
051
051 | 051
037
037
037 | 037
037
037
037 | 037
037
037
037 | 037
037
051
051 | | | LONGITUDE | _
 | | 0802348 | 0801234
0795620
0791744
0801234 | 0784428
0785221
0801811
0795126
0794945 | 0794554
0790523
0791213
0790548
0790622 | 0790142
0785405
0773718
0772302
0771038 | 0770805
0765730
0770959
0765355 | | | LATITUDE | <u> </u> | | 250542 | 371411
371530
370616
371411 | 365454
363226
363053
362000 | 363130
363832
362407
362144
362312 | 363102
362355
362804
361233
360102 | 360041
354320
364613
364545 | | | STATION NAME AND LOCATION | SOUTH ATLAN | LITTLE PEE DEE RIVER AT GALIVANTS FERRY, S. I FY78 CHANGE OPERATION OWDC54435 TO K SALKEHATCHIE RIVER NEAR MILEY, S.C. SAVANNAH R AT MOUTH OF AUGUSTA CA SAVANNAH R AT US 301 | M SOUTH R AT SNAPPING SHDALS WITH LACOOHEE AT GA 31 WITHLACOOHEE AT GA 31 S PENNEKAMP STATE PARK WEEKI WACHEE SPRINGS | CHATTAHOOCHEE R A COBB CO WTR INTK
ROANDKE RIVER AT LAFAYETTE, VA.
ROANDKE RIVER AT ROANDKE, VA.
ROANDKE RIVER AT ALTAVISTA, VA
ROANDKE R AT LAFAYETTE VA | PROANDKE (STAUNTON) RIVER AT RANDOLPH, VA. MAYO CR NR BETHEL HILL N.C. DOAN RIVER NEAR FRANCISCO, N.C. HUFFINES MILL CR NR BETHANY N C | SMITH RIVER AT EDEN, N. C.
DAN RIVER AT PACES VA
HYCO CREEK NEAR LEASBURG N C
DOUBLE CREEK NEAR ROSEVILLE N C
SOUTH HYCO CREEK NEAR ROSEVILLE N C | HYCO RIVER AT MCGHEES MILL N C
MAYO CREEK TRIB NEAR ALLENSVILLE N C
ROANOKE RIVER AT ROANOKE RAPIDS, N.C.
ROANOKE RIVER NEAR SCOTLAND NECK NC
INDIAN CREEK TRIB AT SR1123 NEAR CAHABA N C | CONIDIT CREEK AT SR 1108 NR CAHABA N C
7 HARDISON CREEK NR ROBERSON STORE N C
1 NOTTOWAY RIVER NR SEBRELL VA
2 BLACKWATER R NR FRANKLIN, VA | | | HYDROLOGIC
Unit
Code | | 030007 G
030007 I
030007 Z
030008 G | 030008 M
030009 M
030010 C
030010 H | 030011 D
03010101
03010101
03010101 | 03010102
03010103
03010103
03010103 | 03010103
03010104
03010104
03010104 | 03010104
03010107
03010107
03010107 | 03010107
03010107
03010201
03010202 | | | MEDIA | | | | | | | | |----------------------------|--|--|---|---|--|--|--| | MOTZ GBZ | 0000 | 0000 | 00000 | 0000 | 0000 | 40000 | 0000 | | MOITAZINADRO
BGD3 | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | Uses
Uses
Uses
Uses | | 2026 DISCHARGE | ш Z | αm∢α | m 4 4 | < X ∪ Œ | α X M M | шккк | ZD44 | | 3512 TAA9 TAM 038 | | | | | | | | | 3212 TAA9 92U2 | B A | <u> </u> | шш | шш | <u> </u> | | - 4 ω | | SUSP SED CONCEN | 9 S S S S S S S S S S S S S S S S S S S | <u> </u> | - O O | 4 4 X V X | な 太 m m O | <u>≥ m α α α</u> | Z344 | | OW END
RABY | 1979 | 1979
1979
1973 | 1971
1969
1979 | 1979
1979
1979 | | 1979 | | | OW BEGIN | 1976
1973
1975
1967 | 1975
1968
1969
1976
1954 | 1969
1969
1978
1968 | 1973
1968
1947
1943
1968 | 1975
1975
1976
1974 | 1975
1976
1968
1964
1975 | 1976
1978
1969
1969 | | BASIN
DESCRIPTOR | 014 | 000
44
400
004
44
400 | 014
004
004
024 | 888 8
888 8 | 00
00
4
4 | 00 00 00
4 4 4 4 4 | 0004 | | | 8889 | 88888 | 88888 | 58885 | 88888 | 2988 | 8888 | | DRAINAGE
AREA | 3
57.
747
6 | 191
1780
167
430
47 | 701
64
163 | 4.
175.
521.
2140.
78. | 19
17
17
45
45 | 15.12 | 23.
66.
14.1. | | TYPE OF
3TI2 | MS MS MS | 3 3 3 3 3 S | N N N N N | X X X X X X X X X X X X X X X X X X X | X | X X X X X | N N N N | | COUNTY | 175
091
091
595 | 091
157
077
035
069 | 127
127
065
127
181 | 127
083
065
065 | 7 4 1
7 4 1
7 4 1
7 4 1 | 147
147
013
013 | 187
013
135
063 | | STATE | 051
037
037
051
051 | 037
037
037
037 | 037
037
037
037
037 | 037
037
037
037
037 | 037
037
037
037
037 | 037
037
037
037
037 | 037
037
037 | | LONGITUDE | 0765355
0765600
0773227
0773235 | 0770136
0793621
0783500
0781743
0782024 | 0775551
0775440
0774034
0775516
0781905 | 0780005
0775234
0774200
0773200 | 0771113
0771330
0771330
0771343 | 0771443
0771443
0770109
0765226
0763101 | 0764449
0754019
0790614
0785424 | | LATITUOE | 364545
362225
361124
363055 | 362214
363229
361141
360541
360314 | 355057
355310
355535
360642
362306 | 360959
361108
360900
355338
354630 | 353157
353200
353200
353347
353347 | 353355
353355
353403
351925
354335 | 354349
353818
360418
360421 | | STATION NAME AND LOCATION | BLACKWATER R NR FRANKLIN, VA
DEEP CREEK AT N C 45 NR COFIELD N C
AMDSKIE CREEK AT AHOSKIE N C
MEHERRIN RIVER AT EMPORIA, VA
JACKS SWAMP NR PLEASANT HILL N C | POTECASI CREEK NEAR UNION, N. C. DAN RIVER NEAR MAYFIELD N C TAR RIVER NEAR TAR RIVER N C TAR R AT US 401 AT LOUISBURG N C CEDAR CREEK NEAR LOUISBURG, N. C. | TAR RIVER NEAR NASHVILLE, N. C.
SAPONY CREEK NEAR NASHVILLE, N. C.
WALNUT CREEK AT SR1225 AT KINGSBORO N C
SWIFT CREEK AT HILLIARDSTON, N. C.
FISHING CREEK NEAR MIDDLEBURG N C | WHITE DAK SWAMP NEAR ACTON N C
LITTLE FISHING CREEK NEAR WHITE DAK N C
FISHING CREEK NEAR ENFIELD, N. C.
TAR RIVER AT TARBORO, N. C.
CONETOE CREEK NEAR BETHEL, N. C. | CHICOD CR AT SR 1565 NR GRIMESLAND N C COW SWAMP NEAR GRIMESLAND N C COW SWAMP NEAR GRIMESLAND N C CHICOD CR AT SR 1760 NEAR SIMPSON N C CHICOD CR AT SR 1760 NEAR SIMPSON N C | JUNIPER BRANCH AT SR 1766 NR SIMPSON N C
JUNIPER BRANCH AT SR 1766 NR SIMPSON N C
HERRING RUN NEAR WASHINGTON N C
DURHAM CREEK AT EDWARD N C
NORTH LAKE CANAL ABOVE PUNGO LAKE NR WENONA | VAN SWAMP NEAR HDKE N C
ALBEMARLE CANAL NEAR SWINDELL N C
END RIVER AT HILLSBORD, N.C.
END RIVER NEAR DURHAM, N. C. | | HYDROLOGIC
Unit
Code | 030 10202
030 10203
030 10203
030 10204
030 10204 | 03010204
030106 E
03020101
03020101 | 03020101
03020101
03020101
03020101 | 03020102
03020102
03020102
03020103
03020103 | 03020103
03020103
03020103
03020103 | 03020103
03020103
03020104
03020104 | 03020104
03020104
03020201
03020201 | | WEDIY
250 2104 | ····· | 0000 | 0 0000 | 00000 | 0000 | 00400 | 0000 | 0000 | | |----------------------------|-------------|---
--|---|--|---|--|---|---| | SED STOR | | | | | | | | | | | ORGANIZATION
SGOO | | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | uses
uses
uses
uses | | | ZUSP DISCHARGE | | | 4 4 M | αα 4 4 | α 4 π | <u> </u> | 4 | X 00 | | | BED MAT PART SIZE | | | | | | | | | | | SUSP PART SIZE | | | <u>м 44 m</u> | <u>и ии</u> | ш ш | Σ | ш | | | | 202P SED CONCEN | | 9 9 9 A A A | | RRNAA | X 4 X W X | Z A Z X X | ARNAA | | | | OW END
RABY | | 97 | 1979
1973
1978 | 1979
1979
1979
1979 | 1979
1979
1979 | 1975
1979
1975
1979 | 1979
1978
1979
1979 | 1979
1979
1979 | | | MID38 WD
RA3Y | | 1960
1972
1969
1973 | 1969
1973
1952
1969
1973 | 1953
1969
1973
1969
1954 | 1975
1947
1973
1948
1973 | 1971
1978
1971
1954
1950 | 1971
1973
1969
1969 | 1948
1968
1973
1973 | | | MISA8
ROTGIRDS30 | | 888 | 0 0 0 4 4 4 | 00 4
00 4 | 00 0
4 4 4 | 88888
444444 | 8
8
4 | | | | DRAINAGE
AREA | | 50.4. | 1.10
770.00
770.00
770.00
1.30 | 1200.00
80.70
190.00
229.00 | 680.00
2390.00
.79
2690.00 | 9.80
.20
27.00
182.00
168.00 | 156.00
2.20
1.00
77.60
5.00 | 729.00
93.30
17.00
.80 | | | TYPE OF | | NS NS | X XXXX XX | N N N N N N N N N N N N N N N N N N N | A A A A A A A A A A A A A A A A A A A | A A A A A A A A A A A A A A A A A A A | A A A A A A A A A A A A A A A A A A A | ************************************** | * | | YTNUOD | | 063
063
063 | 063
183
101 | 00000 | 163
191
191
107 | 013
013
049
049 | 195
191
127
079
079 | 079
147
103
049 | | | STATE | | 037
037
037
037 | 037
037
037
037
037 | 037
037
037
037 | 037
037
037
037 | 037
037
037
037 | 037
037
037
037 | 037
037
037
037 | | | LONGITUDE | | 0785424
0785244
0785124
0784920 | 3457
3437
3432
2411
2421 | 0782100
0783530
0781557
0781112
0780936 | 0781721
0775951
0775257
0773509
07731312 | 0771112
0771040
0771346
0771145 | 0780629
0775240
0780442
0774822 | 0773510
0773041
0772207
0765826 | | | LATITUDE | | 360820
361057
361036
361030 | 60254
60233
55627
55624
53905 | 353046
353412
351756
353518 | 354517
352014
351414
351529 | 352542
352507
352330
352042
350354 | 354129
353410
354855
352920
352400 | 352540
353208
350225
345756 | | | STATION NAME AND LOCATION | | LITTLE RIVER NEAR ORANGE FACT
FLAT RIVER AT BAHAMA, N. C.
DIAL CREEK NEAR BAHAMA, N.C.
ROCKY CREEK NEAR BAHAMA N.C | NEUSE RIVER NEAR NORTHSIDE N C HORSE CREEK TRIB AT SR 1140 NR POCOMOKE N C NEUSE RIVER AT FALLS N C NEUSE RIVER NEAR FALLS N C NEUSE RIVER TRIB ABOVE SR 1705 NEAR CLAYTON NEUSE RIVER NEAR CLAYTON, N. C. | NEUSE RIVER AT SMITHFIELD, N.C.
MIDDLE CREEK NEAR CLAYTON, N. C.
BEAVERDAM CREEK NEAR DOBBERSVILLE N.C.
LITTLE RIVER NEAR KENLY, N.C.
LITTLE RIVER NEAR PRINCETON, N.C. | BLACK RIVER NEAR TOMAHAWK N C
NEUSE RIVER NEAR GOLDSBORD, N. C.
MILL CREEK NEAR SEVENS SPRINGS N C
NEUSE RIVER AT KINSTON, N. C.
CLAYFOOT SWAMP NEAR SHELMERDINE N C | CREEPING SWAMP NEAR CALICO N C
CREEPING SWAMP TRIB AT SUTTON ROAD NR WILMAR
CREEPING SWAMP NEAR VANCEBORO N C
SWIFT CREEK NEAR VANCEBORO N C
TRENT RIVER NEAR TRENTON, N.C. | CONTENTNEA CREEK NEAR LUCAMA, N. C. TURNER SWAMP NEAR EUREKA, N. C. WHITE OAK SWAMP NEAR MOUNT PLEASANT N C NAHUNTA SWAMP NEAR SHINE, N. C. RAINBOW CREEK AT US 258 NEAR BROWNTOWN N C | CONTENTNEA CREEK AT HOOKERTON, N. C. LITTLE CONTENTNEA CREEK NEAR FARMVILLE, N. C CROOKED RUN AT SR 1123 NEAR TRENTON N C BRICE CREEK AT SR 1100 AT CROATAN N C | | | HYDROLOGIC
UNIT
CODE | | | 03020201
03020201
03020201
03020201
03020201 | 03020201
03020201
03020201
03020201 | 03020201
03020202
03020202
03020202 | 03020202
03020202
03020202
03020202 | 03020203
03020203
03020203
03020203 | 03020203
03020203
03020204
03020204 | | | LIGHT. | | | | | | | | | |----------------------------|--|--|--|--|---|--|--|-------------| | NOT2 G32
A1G3M | 0000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | ORGANIZATION
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | প্ৰবৰ্ ব | বৰ ব | ৰমৰৰ | < α | 4 04 4 | ααα | шααх | | | SIZ TAAS TAM G38 | ····· | | | | ····· | | | | | SUSF PRRT SIZE | <u> </u> | <u> </u> | | | ш ш ш | | ш | | | | | 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 9 9 9 A A A A | 9
8 2 2 8 8 | 0000
40444 | 00000 | 00
m & & X | | | ON3 WO
RA3Y | 197
197
197
197 | 1979
1979
1979 | 197:
197: | 1979 | 197
197
197
197 | 1979
1969
1979
1979 | 1979 | | | M BEGIN | 1976
1950
1976
1969 | 1973
1969
1976
1973
1968 | 1975
1954
1969
1976 | 1973
1945
1973
1975
1976 | 1954
1964
1972
1977
1943 | 1973
1945
1975
1953
1978 | 1955
1975
1975
1975 | - | | MISA8
BOT4183230 | 004
014
024
014 | 004 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 014 | 0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 000
000
000
000
000
000
000
000
000
00 | 0000
4 6000 | | | DRAINAGE
Area | 19.90
133.00
37.00
599.00 | 1.00
31.30
1284.00
1310.00 | .30
285.00
1700.00
14.70 | 3.30
346.00
3.20
2.90
15.30 | 14 10 . 00
14 20 . 00
74 . 20
. 50
34 40 . 00 | 7.65
460.00
1.20
4810.00 | 5220.00
2.76
96.40
38.00 | | | TYPE OF | N N N N N | N S A S A S A S A S A S A S A S A S A S | N N N N N N N N N N N N N N N N N N N | A A A A A A A A A A A A A A A A A A A | A S A S A S A S A S A S A S A S A S A S | A A A A A A A A A A A A A A A A A A A | AS S AS | | | COUNTY | 80
00
11
10
10
10
10
10
10
10
10
10
10
10 | 135
135
037
037 | 037
037
037
081
151 | 151
151
125
125
037 | 105
037
037
085
085 | 093
085
129
017 | 017
051
163
085 | | | 3TAT2 | 037
037
037
037 | 037
037
037
037 | 037
037
037
037
037 | 037
037
037
037 | 037
037
037
037
037 | 037
037
037
037
037 | 037
037
037
037 | | | LONGITUDE | 0795715
0793657
0794230
0792202
0793145 | 0791029
0791446
0790802
0790544
0790512 | 0790150
0790136
0790359
0795646
0795105 | 0793917
0793915
0793730
0791956
0792008 | 0790648
0790600
0785809
0785517
0784848 | 54 0791040
16 0784635
28 0775332
05 0784927
02 0784124 | 0781738
0785708
0782917
0783728 | | | LATITUDE | 361024
361031
360713
360513
360513 | 355634
355634
354548
354640
354207 | 354708
354412
353856
360215
355406 | 355026
354336
352913
352305
353937 | 353741
353700
353418
353219
352430 | 351054
351546
341128
345005
344602 |
342415
350137
345713
352052 | | | STATION NAME AND LOCATION | REEDY FORK NEAR DAK RIDGE, N. C.
PREEDY FORK NEAR GIBSONVILLE, N. C.
NORTH BUFFALO CREEK NEAR GREENSBORO, N.C.
HAW RIVER AT HAW RIVER, N.C.
BIG ALAMANCE CREEK NEAR ELON COLLEGE N C | CANE CREEK NEAR BUCKHORN N C CANE CREEK NEAR TEER, N. C. HAW RIVER NEAR BYNUM N C WARD CREEK NEAR BYNUM N C HAW RIVER NEAR PITTSBORD, N.C. | NEW HOPE CR TRIB AT SR 1715 NR FARRINGTON N NEW HOPE RIVER NEAR PITTSBORO, N. C. HAW RIVER NEAR HAVWOOD, N. C. EAST FORK DEEP RIVER NEAR HIGH POINT, N.C. DEEP RIVER NEAR HIGH POINT, N.C. | SANDY CREEK TRIB AT MELANCTON N C DEEP RIVER AT RAMSEUR, N.C. GRASSY CREEK NEAR JUGTOWN N C BIG GOVERNORS CREEK TRIB NEAR CARTHAGE N C IICK CREEK NEAR MOUNT VERNON SPRINGS, N. C. | DEEP RIVER AT MONGURE, N.C. DEEP RIVER AT US HIGHWAY 1 AT MONGURE N C BUCKHORN CREEK NR CORINTH, N.C. PARKERS CREEK TRIB NEAR COKESBURY N C CAPE FEAR RIVER AT LILLINGTON, N. C. | FLAT CREEK NEAR INVERNESS N C
LLITTLE RIVER AT LINDEN, N. C.
HEWLETTS CR AT SR1102 NEAR WILMINGTON N.C.
CAPE FEAR R AT WILM O HUSKE LOCK NR TARHEEL
ELLIS CREEK TRIB AT SR1325 NEAR WHITE OAK N. | CAPE FEAR R AT LOCK # 1 NR KELLY, NC
BUCKHEAD CREEK NEAR OWENS N.C.
LITTLE COHARIE CREEK NEAR ROSEBORO, N. C.
BLACK RIVER AT SR 1722 NEAR DUNN N.C. | | | HYDROLOGIC
Unit
CODE | 03030002
03030002
03030002
03030002 | 03030002
03030002
03030002
03030002 | 03030002
03030002
03030003
03030003 | 03030003
03030003
03030003
03030003 | 03030003
03030004
03030004
03030004 | 03030004
03030005
03030005
03030005 | 03030005
03030006
03030006 | | | MEDIA | | | | | | | | | |----------------------------|---|--|--|--|--|---|---|--| | ACTS GBZ | 00000 | 0000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | ONGANIZATION
3003 | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | usas
usas
usas
usas | | | SUSP DISCHARGE | 2 ααα | X X X | 67 10 2 | X X X | ZX XX | X O K | ихи | | | SIZ TAA9 TAM G38 | | | | | | < | | | | 3512 TAA9 92U2 | | | ∢ | | 44 | ∢ Σ | ш 🗵 | | | 2025 SED CONCEN | <u>~~~~</u> | 4 X X X 4 | <u> </u> | XNXXX | SXAXX | 0 0 | 0 to | | | OW END
RA3Y | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979 | 1979
1979
1979 | 1979 | 1979 | 197 | | | N BEGIN | 1977
1973
1949
1975 | 1973
1960
1947
1965
1973 | 1947
1946
1952
1973
1964 | 1952
1973
1947
1964
1973 | 1957
1963
1973
1975
1975 | 1961
1973
1942
1973
1973 | 1956
1952
1956
1977 | | | BASIN
DESCRIPTOR | 00
4
000
8
003 | 000
4
004 | 000
440
440
44 | 00 00
4 4 4 | 004
014
003
013 | 003 | 024
004
004
004 | | | DRAINAGE
Area | 49.00
2.80
600.00
63.80
7.80 | 7.60
382.00
29.00
50.90
.30 | 93.90
493.00
122.00
854.00 | 80.40
121.00
231.00 | 42.80
1680.00
1.70
64.40
178.00 | 42.30
.40
2280.00
1.05
2.00 | 313.00
153.00
4.84 | | | 40 39YT
3TI2 | N N N N N | MS MS MS | AS SW
SW
SW
SW | MS AS | NS N | N N N N N N N N N N N N N N N N N N N | A S S S S S S S S S S S S S S S S S S S | | | COUNTY | 085
163
061
061 | 141
017
027
193
193 | 193
193
193
193 | 171
171
171
171 | 169
197
197
067 | 067
057
057
059
099 | 159
097
003
159 | | | 3TAT2 | 037
037
037
037 | 037
037
037
037 | 037
037
037
037 | 037
037
037
037 | 037
037
037
037
037 | 037
037
037
037
037 | 037
037
037
037 | | | LONGITUDE | 0783821
0782025
0774957
0780222
0775803 | 0774857
0813330
0812413
0811547 | 0811009
0810845
0810241
0805803 | 0804836
0805006
0804020
0803343 | 0802553
0802639
0803459
0801818 | 0801807
0801432
0802310
0802624
0805516 | 0803938
0804445
0810400
0803904 | | | LATITUDE | 351703
344215
344945
344432
344402 | 343027
344845
355929
360416
360304 | 361029
360909
361459
361027 | 361858
362815
362027
362416
362149 | 361756
360755
361113
360216
36001 | 360022
355730
355124
355117
355915 | 355039
360001
355200
354402 | | | STATION NAME AND LOCATION | BLACK RIVER NEAR DUNN N C
SOUTH RIVER TRIB AT N C 41 AT TOMAHAWK N C
NORTHEAST CAPE FEAR RIVER NEAR CHINQUAPIN, N
ROCKFISH CREEK NEAR WALLACE, N. C.
LITTLE ROCKFISH CREEK AT WALLACE N C | LILLINGTON CREEK NEAR ST HELENA N C
SOUTH RIVER NEAR PARKERSBURG, N. C.
YADKIN RIVER AT PATTERSON, N. C.
ELK CREEK AT ELKVILLE, N.C.
BIG WARRIOR CREEK SUBTRIB NEAR BOOMER N C | REDDIES RIVER AT NORTH WILKESBORO, N. C.
YADKIN RIVER AT WILKESBORO N C
ROARING RIVER NEAR ROARING RIVER, N. C.
GRAYS CREEK NEAR CLINGMAN N C
YADKIN RIVER AT ELKIN, N. C. | MITCHELL RIVER NEAR STATE ROAD, N. C.
ENDICOTT CREEK NEAR BLEVINS STORE N C
FISHER RIVER NEAR COPELAND, N. C.
ARARAT RIVER AT ARARAT, N. C.
EAST PRONG LITTLE YADKIN R TRIB NEAR CAPELLA | LITTLE YADKIN RIVER AT DALTON, N. C.
YADKIN RIVER AT ENON, N. C.
LITTLE FORBUSH CREEK NEAR FORBUSH N C
SALEM CREEK NR ATWOOD, N. C
MUDDY CREEK NEAR MUDDY CREEK, N. C. | SOUTH FORK MUDDY CREEK NR. CLEMMONS, N.C.
FRYES CREEK TRIB AT SR 1506 NEAR MIDWAY N C
YADKIN RIVER AT YADKIN COLLEGE N C
HUMPY CREEK NEAR FORK N C
OLIN CREEK AT SR 1868 NEAR UNION GROVE N C | SOUTH YADKIN RIVER NEAR MOCKSVILLE N C
HUNTING CREEK NEAR HARMONY, N. C.
THIRD CREEK NR. STONY POINT, N. C.
TRIB TO THIRD CREEK TRIB NR BARBER, N.C. | | | HYDROLOGIC
Unit
Code | 03030006
03030006
03030007
03030007 | 03030007
030306 0
03040101
03040101 | 03040101
03040101
03040101
03040101 | 03040101
03040101
03040101
03040101 | 03040101
03040101
03040101
03040101 | 03040101
03040101
03040101
03040101 | 03040102
03040102
03040102 | | | MEDIA | | | | | | | ······································ | | |----------------------------|---|--|---|---|---|---|---|--| | NOTE G32 | 0000 | 00000 | 00000 | 0000 | 0000 | 0000 | 0000 | | | MOITAS INADRO
3000 | USGS
USGS
USGS
USGS
USGS | | 3DRAHDZIG 92UZ | αν | 4444 | m K X I | E OZOO | ∢ 0 | 88 X | αα∢α | | | 3212 18A9 92U2 | | | | | | | | | | 2026 BV81 212E | S R A B A B A B A B A B A B A B A B A B A | NAAAA | M X I N | EEZOO | <u> </u> | RRAXA | αα∢α | | | Medal | o o o o | თითი | თთ | 6 | თთთთ | 0 0 0 | 0 | | | OW END
RA3Y | 197
197
197
197 | 197
197
197 | 197 | 197 | 197
197
197 | 197 | 1978 | | | NIOSB WO
RASY | 1977
1973
1977
1952 | 1973
1978
1978
1978 | 1946
1962
1952
1946
1973 | 1948
1951
1945
1968
1970 | 1962
1949
1973
1944
1954 | 1975
1955
1973
1965
1973 | 1953
1974
1951
1951 | | | MISA8
Descriptor | 00 400
004 | 904 | 004
023
004
014 | 004
004
004 | 004 | 023
004
004 | 124
004
004
024 | | | DRAINAGE
AREA | 6.90
2.60
3.80
105.00 | 55.70
8.75
3.98
5.83 | 1370.00
6.98
72.40
6870.00 |
8830.00
1030.00
178.00
1220.00
96.00 | 1252.00
706.00
6.40
171.00
67.20 | 31.80
28.20
2.60
16.10
3.20 | 80.00
25.40
68.40
31.40 | | | TYPE OF
STI2 | M | N N N N N N N N N N N N N N N N N N N | N N N N N | X X X X X | X X X X X X X X X X X X X X X X X X X | X X X X X | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | | | YTNUOD | 123
109
007
123 | 025
167
179
179
179 | 167
119
179
153
153 | 067
009
153
155
061 | 089
019
019
111
023 | 027
003
003
119
023 | 035
023
109
071 | | | 3TAT2 | 037
037
037
037
037 | 037
037
037
037
037 | 037
037
037
037
037 | 045
045
037
037
045 | 045
037
037
037
037 | 037
037
037
037
037 | 037
037
037 | | | LONGITUDE | 0795953
0800313
0800723
0794956 | 0804258
0802009
0802011
0802849
0802624 | 0801000
0804913
0804523
0795211
0793802 | 0793255
0794515
0792939
0785738
0801818 | 0795010
0783256
0781825
0820200
0815327 | 0813159
0811357
0811352
0805435
0813628 | 0812403
0813402
0811552
0911103 | | | LATITUDE | 352522
353210
345723
35311
351642 | 352953
352002
350602
345039 | 350900
350827
345706
345646
350126 | 341215
340305
350338
342632
340902 | 333940
340543
340607
354226 | 355420
355650
355324
351942
353907 | 354106
353526
352520
351923 | | | STATION NAME AND LOCATION | SPENCER CREEK AT S.R. 1303 AT UWHARRIE N.C.
KILLIAN CREEK AT SR. 1349 NEAR DENVER N.C.
GOULDS FORK AT SR.1205 NEAR WADESBORD
I LITLE RIVER NEAR STAR, N.C. | PARK CREEK AT SR 1614 NEAR
BIG BEAR CREEK NEAR RICHFI
GOURDVINE CREEK AT SR 1715
LANE CREEK AT SR 2115 NEAR
WICKER BRANCH AT SR 1940 N | ROCKY RIVER NEAR NORWOOD, N. C.
MCMULLEN CR AT SHARON VIEW RD NEAR CHARLOTTE
TWELVE MILE CREEK NEAR WAXHAW, N. C.
PEE DEE R NR ROCKINGHAM, NC
BONES FORK CREEK NEAR HOFFMAN N C | PEE DEE RIVER AT PEEDEE S. C.
LYNCHES RIVER AT EFFINGHAM S. C.
DROWNING CREEK NEAR HOFFMAN, N. C.
LUMBER RIVER AT BOARDMAN, N. C.
SCAPE ORE SWAMP NEAR BISHOPVILLE,SC | BLACK RIVER AT KINGSTREE, S.C.
WACCAMAW RIVER AT FREELAND, N. C.
JUNIPER CREEK AT N.C. 211 NEAR PROSPECT N.C.
CATAWBA RIVER NEAR MARION, N.C.
LINVILLE RIVER NEAR NEBO N.C. | LOWER CREEK AT MULBERRY ST AT LENDIR, N. C. LOWER LITTLE RIVER NEAR ALL HEALING SPRINGS. LOWER LITTLE R TRIB AT SR 1124 NR TAYLORSVIL LONG CREEK NEAR PAW CREEK, N. C. HENRY FORK TRIB AT SR 1924 NR PLEASANT GROVE | HENRY FORK NEAR HENRY RIVER, N.C.
JACOB FORK AT RAMSEY, N. C.
INDIAN CREEK NEAR LABORATORY N.C.
LONG CREEK NEAR BESSEMET CITY, N. C. | | | HYDROLOGIC
Unit
Code | 03040103
03040103
03040104
03040104 | 03040105
03040105
03040105
03040105 | 03040105
03040105
03040105
03040201 | 03040201
03040202
03040203
03040203 | 03040205
03040206
03040207
03050101 | 03050101
03050101
03050101
03050101 | 03050102
03050102
03050102
03050102 | | | MEDIA | | | | | | | | | |----------------------------|-------------------------------|---|---|---|--|--|---|--| | NOTZ G3Z | ۱۵ | 0000 | 0000 | 00 00 | 0000 | 00000 | 00000 | 0000 | | ORGANIZATION
GODE | ဗ္ဗ | 3000 O | 0000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USFS
USGS
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE | | SUSP DISCHARGE | α ı | አኧኧጦ ር | ZZY | e zv | m z c m o | о ш | | | | BED MAT PART SIZE | | | | | | 60 | 0000000 | 00000 | | 3512 TRAS SZUZ | | 4 ∢ | | Σ | ZZXIZ | ≥ 00 | | <u> </u> | | 2026 SED CONCEN | | | | ∢αΣΖ Ω | ZZQZZ | ∑ X m ≥ 00 | 00000 | 0 00 00 00 | | ON END
AA3Y | 97 | 1979
1979
1980
1978 | 1979 | 1979 | | | | | | OW BEGIN | 1961 | 1975
1975
1975
1969
1952 | 1973
1947
1944
1952 | 1973
1975
1959
1965
1968 | 1951
1974
1974
1971
1967 | 1972
1972
1941
1972
1976 | 1976
1974
1976
1976 | 1976
1976
1976
1976 | | MISA8
Rotqird230 | 013 | 013
024
004
004 | 014
004
004 | 004
124
014
014 | 004
000
012
024 | 000 | | | | DRAINAGE
AREA | 30.50 | 38.30
38.30
92.40
262.00
77.00 | | 1.20
1.49
7850.00
14100.00 | 14700.00
14900.00
2730.00 | 203.00
207.00
2088.00 | | | | 30 39YT
3TI2 | NS. | N N N N | X X X X X X X X X X X X X X X X X X X | X X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | A S S S S S S S S S S S S S S S S S S S | MS MS MS NS | 3 3 3 S | | YTNUOD | | 119
119
091 | 149
161
045
045 | 045
045
079
017
015 | 015
015
015
015 | 049
241
073
147
105 | 001
007
147
007
017 | 007
001
001
001 | | 3TAT2 | | | 03
03 | 037
037
045
045
045 | 045
045
045
045
045 | 045
013
045
013
013 | 045
045
013
045
013 | 045
045
045
045 | | LONGITUDE | 0805420 | 0804606
0805212
0805409
0820642 | 0821210
0814557
0814152
0814056 | 0813545
0813720
0810300
0803732
0800950 | 0800925
0795947
0795120
0800825
0802330 | 0810755
0831802
0831822
0824920
0824536 | 0823542
0824446
0824832
0824728
0824856 | 0824626
0825142
0823831
0823735 | | LATITUDE | 51150 | 50813
50813
50359
50021 | 835
408
229
935 | 352234
351500
335935
334500
332700 | 332715
332618
332405
332315
330140 | 325010
345405
344850
342125
341128 | 340121
341520
341904
341928
342113 | 342213
340842
340412
340724 | | STATION NAME AND LOCATION | IRWIN CREEK NEAR CHARLOTTE, N | MCALPINE SUGAR OR AL ARCHDALE KU
MCALPINE CREELDW MCMULLEN OR N
SUGAR CREEK NEAR FORT MILL S C
COVE CREEK NEAR LAKE LURE, N.C. | SILVER CREEK NEAR MILL SPRING N C
SECOND BROAD RIVER AT CLIFFSIDE, N.C.
BROAD RIVER NEAR BOILING SPRINGS, N.C.
FIRST BROAD RIVER NEAR CASAR, N. C. | LITTLE HARRIS CREEK AT SR 1821 NEAR CAMPBELL
SUGAR BRANCH NEAR BOILING SPRINGS N C
CONGAREE RIVER AT COLUMBIA, SC
SANTEE RIVER NEAR FORT MOTTE S C
LAKE MARION NEAR PINEVILLE, S.C. | SANTEE RIVER NR. PINEVILLE S. C. CRAWL CREEK NR PINEVILLE, S.C. SANTEE RIVER BELOW ST. STEPHENS, SC. LAKES M-M DIV CANAL NR PINEVILLE S. C. EDISTO RIVER NR GIVHANS S.C. | COOSAWHATCHIE RIVER NR HAMPTON S.C. TUCKALUGE CR1 CHATTOOGA RIVER NEAR CLAYTON, GA. HARTWELL RE DISCHARGE GA COLDWATER CREEK NR RUCKERSVILLE | SAVANNAH R AT TROTTERS SHOALS
SAVANNAH RIVER NR IVA
CEDAR CREEK AT HIGHWAY 181
SAVANNAH RIVER AT HIGHWAY 181
SAVANNAH R BELOW HARTWELL DAM | BIG GENEROSTEE C AT S C HWY 187
BEAVER DAM C NR ELBERTON
SAVANNAH R AT CALHOUN FALLS
ROCKY R NR CALHOUN FALLS | | HYDROLOGIC
Unit
Code | 03050103 |
03050103
03050103
03050103
03050105 | 03050105
03050105
03050105 | 03050105
03050100
03050110
03050111 | 03050112
03050112
03050112
03050201 | 03050208
03060102
03060102
03060103 | 03060103
03060103
03060103
03060103 | 03060103
03060103
03060103
03060103 | | MEDIA | | | | | | | | | |----------------------------|--|---|--|---|---|---|--|--------------| | NOTE 032 | 0000 | 0000 | 0000 | 00000 | 0000 | 00000 | 0000 | | | OSGANIZATION
SGDO | USCE
USCE
USGS
USGS | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
FLO51
USGS | USGS
USGS
FL051
FL051 | | | SUSP DISCHARGE | 0.0 | 0 L I U | Z I C O | WIIIŒ | IUMIA | III Y | Σα | | | 3512 TRAN TAM 036 | | 8 60 | <u> </u> | | | ∢ | <u> </u> | | | NACH SED CONCEN | 22000 | B 0 0 0 | ωΣIαν
ωΣ | WIIIW | A I E D I | III Y | Σ < | | | | n m m m m m m | 4 0 | <u> </u> | <u> </u> | 74774 | <u> </u> | | | | OW END
RABY | 197 | 197 | 197 | 197 | 197 | | | | | OW BEGIN | 1976
1976
1976
1963 | 1958
1967
1969
1937
1970 | 1968
1938
1937
1937
1937 | 1906
1977
1941
1957 | 1964
1906
1937
1970
1968 | 1937
1937
1957
1961
1956 | 1956
1977
1969
1971 | | | BASIN
BOT41A3230 | 000
400 | 0000
4 4 4 4 4 | 0 1 4
0 0 0 4
0 0 0 4 | 8 8 8
4 4 4 4 | 88888
24444 | 0000
4 4 4 4 4 | 904 | | | 1 | 88 | 8888 | 8888 | 88888 | 88888 | 888 8 | 8 | | | DRAINAGE | 1.20 | 291.
87.
473.
646. | 9850.00
2650.00
398.00
1090.00 | 4400.
11.
456.
378. | 72.20
2240.00
13600.00
210.00 | 1110.00
2790.00
646.00 | 700. | | | 40 34YT
3TI2 | X X X X X X X X X X X X X X X X X X X | SKE | SSE | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | A A A A A A A A A A A A A A A A A A A | S K K | | | YTNU02 | 001
001
105
105 | 317
003
033
251
051 | 051
103
103
059
133 | 175
151
151
217
217 | 169
021
305
305
127 | 267
025
229
089
003 | 003
031
089
127 | | | 3TAT2 | 045
045
013
013 | 013
013
013
013 | 0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0 | 013
013
013
013 | 013
013
012
012 | 2000
210
210
210 | | | LONGITUDE | 0823748
0823638
0824343
0831323 | 0824440
0813700
0815750
0813905
0810845 | 0810922
0811545
0812458
0832522
0831622 | 0825341
0841444
0840053
0835454 | 0834325
0833714
0814941
0815018
0813620 | 0821039
0815203
0820317
0814114 | 8888 | | | LATITUDE | 341245
341525
340540
342935
335827 | 3323640
332305
330705
325600
320858 | 320955
323130
321129
335648
333452 | 323240
332934
332948
333652
333824 | 330559
325019
313916
313400
312537 | 320442
311316
312704
304416
302610 | 302131
302901
303648
291005 | | | STATION NAME AND LOCATION | ROCKY R NR LOWNDESVILLE
ROCKY R BELOW LAKE SECESSION
BEAVER DAM CREEK NEAR MIDDLETON
TOMS CREEK TRIB (NFBR SWS NO. 14) NR AVALON,
BROAD RIVER NEAR BELL, GA. | LITTLE RIVER NEAR WASHINGTON, GA.
UPPER THREE RUNS NEAR NEW ELLENTON,
BRIER CREEK NEAR WAYNESBORD, GA.
BRIER CREEK AT MILLHAVEN, GA.
SAVANNAH R AT R MILE 20 GA | SAVANNAH R AT R MILE 21.6 GA
SAVANNAH RIVER NEAR CLYO, GA
OGEECHEE RIVER NEAR EDEN, GA.
MIDDLE OCONEE RIVER NEAR ATHENS, GA.
OCONEE RIVER NEAR GREENSBORO, GA. | OCONEE RIVER AT DUBLIN, GA.
PATES CREEK AT BUSTER LEWIS RD NEAR FLIPPEN,
SOUTH RIVER NEAR MCDONDUGH, GA.
YELLOW RIVER NEAR COVINGTON, GA.
ALCOVY RIVER ABOVE COVINGTON, GA. | FALLING CREEK NEAR JULIETTE, GA.
OCMULGEE RIVER AT MACON, GA.
ALTAMAHA RIVER AT DOCTORTOWN, GA.
PENHOLOWAY CREEK AT U.S. 341 NR JESUP,GA.
ALTAMAHA RIVER AT EVERETT CITY, GA. | OHOOPEE RIVER NEAR REIDSVILLE, GA.
SATILLA RIVER AT ATKINSON, GA.
LITTLE SATILLA RIVER NEAR OFFERMAN, GA.
ST MARYS R AT GA LINE US 17
MIDDLE PRONG ST MARYS RI AT TAYLOR FL | ST MARYS RIVER NR MACCLENNY, FLA.
Dunns creek nr Oceanway, Florida
Amelia River at Buoy 20
St Johns P. Astor-Fla Hwy 40 | | | HYDROLOGIC
Unit
Code | 03060103
03060103
03060103
03060104
03060104 | 03060105
03060106
03060108
03060108 | 03060109
03060109
03060202
03070101 | 03070102
03070103
03070103
03070103 | 03070103
03070108
03070106
03070106 | 03070107
03070201
03070202
03070204 | 03070204
03070204
03070205
03090101 | | | #072 @32
AIG3M | ۵۵۷۵۵ | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | |----------------------------|--|--|--|---|--|---|---|--| | NOITAZINADRO
3000 | FL051
FL051
FL051
FL051
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | FLOS1
FLOS1
FLOS1
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | 4 4 4 4 | S | | | | | | | IZ TRAS TAM 038 | বৰবৰ | | | | 4 | 444 | | | | SUSP PART SIZE | | | | | | | | | | | V | 444I4 | A A N A A | N | 4444 | 44 | 4444 | | | OW END
YEAR | 197 | | 197 | 197: | | | | | | NID38 WO
AA3Y | 1968
1968
1970
1971 | 1954
1952
1956
1952
1954 | 1954
1956
1948
1978 | 1971
1978
1975
1971 | 1971
1972
1978
1978
1971 | 1971
1971
1973
1945
1956 | 1956
1956
1968 | | | BASIN
DESCRIPTOR | 014 | 0004
124
004
024 | 004 | | | 00
4 4 | 0
4
4
4
4
4
1 | | | DRAINAGE
AREA | 297.00 | 248.00
968.00
25.70
1331.00
241.00 | 2043.00
126.00
3066.00 | | | 68.00
14.70 | 165.00
182.00
221.00
184.00 | | | 10 79YT
3TI2 | 3 3 3 3 3
0 0 0 0 0 | N N N N N N N N N N N N N N N N N N N | 3 3 3 3 3 S | \$ 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | SES | N N N N N N N N N N N N N N N N N N N | M M M M | | | COUNTY | 127
009
117
117 | 097
009
097
009 | 117
069
069
097
009 | 095
069
095
095
095 | 095
069
069
083 | 083
107
069
069
069 | 690
690
690 | | | 3TAT2 | 00000
2222 | 012
012
012
012 | 012
012
012
012 | 012
012
012
012 | 00000 | 012
012
012
012 | 0
0
0
1
2
1
0
0
1
2
1 | | | LONGITUDE | 08 11922
0804550
08 11012
08 12350 | 0805318
0804508
0805440
0805222
0810651 | 08 10208
08 1292 1
08 12258
0805601 | 0805230
0814802
0812248
0812246
0812208 | 0812215
0812215
0813205
0813448
0815305 | 0815406
0814718
0814043
0814425
0814526 | 0814921
0815153
0815222
0814106 | | | LATITUDE | 285013
280957
283917
284111
273826 | 280427
280504
281246
282210
284040 | 284250
285237
290029
282025
282110 | 282117
283542
283749
283811
283822 | 283824
283824
285449
285738
290453 | 292222
292910
284020
282651
282739 | 283533
283656
284439
284320 | | | STATION NAME AND LOCATION | ST JOHNS R US 17-92
ST JOHNS R FR L WASHINGTON
BIG ECONLOCKHATCHEE R SR #419
LIT WEKIVA RI AT SR #434
ST. JOHNS HEADWATERS NEAR VERO BEACH; FLA. | JANE
GREEN CREEK NEAR DEER PARK, FLA.
ST. JOHNS RIVER NEAR MELBOURNE FLA
WOLF CREEK NEAR DEER PARK, FLA.
ST. JOHNS RIVER NR COCOA, FLA.
ECONLOCKHATCHEE RIVER NR. CHULUOTA, FLA. | ST. JOHNS RIVER ABOVE LAKE HARNEY, FLA.
BLACKWATER CREEK NR CASSIA, FLA.
ST. JOHNS RIVER NR DELAND, FLA.
10B TAYLOR CREEK BL S-164 NR COCOA FLA
09E TAYLOR CREEK AT HWY 532 NR COCOA FLA | OGE TAYLOR CREEK AT LAKE POINSETT NR COCOA
PALATLAKAHA R BLW LK WILSON NR CLERMON
LAKE CHARITY HOLDING POND AT MAITLAND FLA
OGE RUNDFF TO LK CHARITY AT MAITLAND FLA.
OGE RUNDFF TO LK FAITH AT MAITLAND FLA. | RUNDFF TO LK HOPE AT MAITLAND, FLA
RAINFALL AT LAKE HOPE AT MAITLAND, FLA
BLACK WATER CR AT LK NORRIS RD NR CASS
BLACK WATER CREEK AT SR42 NR ALTOONA
OKLAWAHA R AT SR 464 | OKLAWAHA RIVER AT SR 316
OKLAWAHA R. DWNSTRM OF RODMAN DA
LK APOPKO BEAUCLAIR CA BRF NT RANG
BIG CREEK NR CLERMONT, FLA.
LITTLE CREEK NR CLERMONT, FLA. | PALATLAKAHA R AT CHERRY LK OUT NR GROVELAND,
PALATLAKAHA RIVER NR MASCOTTE, FLA.
PALATLAKAHA R AT STRUCT M-1, NR OKAHUMPKA, F
APOPKA-BEAUCLAIR CANAL NR ASTATULA, FLA. | | | HYDROLOGIC
Unit
Code | 03080101
03080101
03080101
03080101 | 03080101
03080101
03080101
03080101 | 03080101
03080101
03080101
03080101 | 03080101
03080101
03080101
03080101 | 03080101
03080101
03080101
03080101 | 03080102
03080102
03080102
03080102 | 03080102
03080102
03080102
03080102 | | | MEDIA | | | | | | | | |----------------------------|---|---|--|--|--|--|---| | 80T2 032 | 00000 | 00000 | 0000 | 0000 | | 00000 | 000¢ | | MOITASMADRO
BODD | uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | FLO51
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
FLO51
FLO51 | USGS
USGS
USGS
FLO51
FLO51 | USGS
USGS
USGS
USGS | | SUSP DISCHARGE | | шш | m∢ | ব ববৰ | বৰ | | шш∢ | | SUS THAN 42US | | | ⋖ | | 44 | 44 | | | NED CONCEN | | пподд | m m Z 4 | 44444 | 442 | Σαα | mmIv. | | GN3 WO
AA3Y | | | | | | | 67.9 | | MD38 WD
RA3Y | 1958
1956
1969
1969 | 1958
1968
1942
1978 | 1972
1968
1968
1962
1965 | 1975
1964
1974
1972 | 1972
1961
1956
1971 | 1954
1975
1975
1970 | 1962
1970
1940
1973 | | MIZA8
ROTAIRD230 | 4100
4100
4100 | 004
124
124 | 0 1 4
0 0 1 4
0 0 0 4 | 004
004 | 004 | 014 | 0004
421
421
611 | | DRA INAGE
AREA | 879.00
1018.00
1196.00
1367.00 | 54.30
2747.00
2762.00 | 7094.00 | 3.51
6.27
25.80 | 19.80
33.40 | | 89.20
1607.00
2899.00 | | 179E 0F | M M M M M M M M M M M M M M M M M M M | N N N N N | N N N N N | N N N N N | ESEEE | X X X X X X X X X X X X X X X X X X X | E E E E | | COUNTY | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 107
107
107
069
069 | 107
107
107
107 | 031
031
031
031 | 031
109
127
009 | 061
111
111
097
055 | 097
093
093 | | 3TAT2 | 0
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 012
012
012
012 | 0000 | 0012 | 2200 | | LONGITUDE | 0815305
0815940
0815940
0815940 | 0815012
0814815
0814400
0814453 | 0813749
0814350
0814335
0813732
0813345 | 0814156
0814049
0812842
0813453
0815147 | 0815033
0812139
0810249
0804405
0802850 | 0802410
0802512
0802552
0812538
0812132 | 08 12 70 4
08 11 15 3
08 05 7 4 6
09 05 55 4 5 | | LATITUDE | 290455
291100
291250
293220 | 293228
293030
292900
283009
283113 | 294454
293240
293245
293848
301119 | 301935
302730
301407
301527
301948 | 302425
295050
290301
282407
275127 | 273854
272812
273115
281605
273137 | 281814
274814
271332
271333
271233 | | STATION NAME AND LOCATION | OKLAWAHA R AT MOSS BLUFF, FLA. OKLAWAHA RIVER NR OCALA, FLA. OKLAWAHA RIVER NR CONNER, FLA. OKLAWAHA RIVER AT EUREKA, FLA. ORANGE CREEK AT ORANGE SPRINGS, FLA. | DEEP CREEK NR RODMAN, FLA.
OKLAWAHA R AT RODMAN DAM NR ORANGE SPRINGS.
OKLAWAHA R AT ST HWY 19, NR SALT SPRINGS. FL
PALATLAKAHA R AT LK LOUISA O NR CLERMO | ST JNS R US HWY 17 CITY OF PALATKA CROSS FL BARGE CA AB BUCKMAN LOCK NR PALATKA CROSS FL BARGE CA AT BUCKMAN LOCK NR PALATKA ST. JOHNS RIVER AT PALATKA, FLA. JULINGTON CREEK NR GREENLAND, FLA. | MCCOY CREEK AT JACKSONVILLE, FLA.
CEDAR CREEK NR PANAMA PARK, FLA.
PABLO CREEK AT JACKSONVILLE, FLA.
POTTSBURG CREEK NR BOWDEN, FLORIDA
MCGIRTS CREEK NR WHITEHOUSE, FLORIDA | TROUT RIVER NR DINSMORE, FLORIDA
MOULTRIE CREEK AT SHWY 207 NR ST AUGUSTINE,
SPRUCE CREEK NR SAMSULA, FLA.
BENNETT CAUSEWAY RT 528 INDIAN R
CONFLUENCE SEBASTIAN R IND R | MAIN CANAL AT VERO BEACH, FLA. BELCHER CANAL AT JOHNSON ROAD CANAL AT JUNCTION OF 603 AND INDRIO ROAD SHINGLE CR AT US HWY 17-92 BR DO ARBUCKLE CR AT ARBUCKLE CR RD | SHINGLE CREEK AT AIRPORT NR KISSIMMEE, FLA.
KISSIMMEE RIVER BL S-65 NR LAKE WALES, FL
KISSIMMEE R AT S-65E NR OKEECHOBEE, FLA.
KISSIMMEE R AT S-65E NR OKEECHOBEE FLA. | | HYDROLOGIC
Unit
Code | 03080102
03080102
03080102
03080102
03080102 | 03080102
03080102
03080102
03080102 | 03080103
03080103
03080103
03080103 | 03080103
03080103
03080103
03080103 | 03080103
03080201
03080201
03080202 | 03080203
03080203
03080203
03090101
03090101 | 03090101
03090101
03090101
03030101 | | SED STOR | 200 | 00000 | مممد | ٥٥٥٥ | مەمە | 0 00 | 0000 | | |----------------------------|---|--|--|--|---|---|--|--| | NOITAZINADRO
BGDD | FLO51
USGS
USGS
FLO51
USGS | USGS
USGS
FLO51
FLO51
FLO51 | FLO51
FLO51
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | א הה | m | | 4 4 W | | | αZ | | | ISIS 1844 14M 038 | 4 4 | 444 | 4 4 | | | | | | | BSIS TRAM MSUS | | | | | <u>и иии</u> | ш шш | mmm | | | ZOZE ZED CONCEN | 9 E | m∢ | 0 4 0 | 44400 | <u> </u> | 00 | œI w | | | OW END
RA3Y | 1978 | 1973 | 1975 | 1979
1975 | • | 1979 | | | | OW BEGIN | 1973
1966
1958
1974 | 1966
1948
1969
1971
1973 | 1973
1973
1963
1975 | 1960
1971
1967
1945 | 1939
1941
1970
1961
1962 | 1963
1941
1939
1939 | 1940
1977
1956
1957 | | | MISAB
Rotairora | 124
014 | 00 4 4 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 013 | 0
4
4
4
4
4 | 0
4
4
4
4
4
4
4
4 | 0
4
4
4
4
4 | 014
014 | | | DRAINAGE
AREA | 15.70
98.70
311.00 | | | 146.00 | | | 83.00 | | | TYPE OF | ************************************** | S S S S S S S S S S S S S S S S S S S | SES | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | A S S S S S S S S S S S S S S S S S S S | AS S AS | | | COUNTY | 093
093
043
043 | 043
093
085
025
025 | 025
025
111
111 | 085
099
099
099 | 099 | 22222 | 0000 | | | 3TAT2 | 0 12
0 0 12
0 0 12
0 0 10 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 |
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 012
012
012
012 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 012
012
012
012 | | | LONGITUDE | 0804756
0805344
0804920
0811854 | 0810025
0805221
0801715
0800904
0802529 | 0804334
0801700
0802033
0801543 | 0801706
0801030
0800332
0802645 | 0801758
0801750
0800728
0800757 | 0801142
0802735
0802510
0802629 | 0801348
0801348
0802630
0801651 | | | LATITUDE | 271235
272339
271703
265556 | 270535
270853
270630
254905
255627 | 254542
252820
272016
271755
271541 | 270639
265620
263840
262820
262345 | 262120
261345
261351
261220
261022 | 260805
261348
261650
260843
260640 | 260539
260539
260340
260351 | | | STATION NAME AND LOCATION | TAYLOR CREEK US-441 S
TAYLOR CREEK NR BASINGER, FL
TAYLOR CREEK AB OKEECHOBEE, FLA.
FISHEATING CREEK S OF PALMDALE
FISHEATING CREEK AT PALMDALE, FLA. | INDIAN PRAIRIE CANAL AT S-72 NR OKEECHOBEE. 10B KISSIMMEE RIVER AT LAKE OKEECHOBEE FLA ST LUCIE LOCK STRUCTURE ON ST LU BISCAYNE BAY MIAMI CA BRIDGE FL HWY 27 | TAMIAMI C WTR CONTR STRUCT S-12C BISCAYNE BAY NAVY MARKER 2 RIM DITCH @ S-49 SL108 THE SAVANNAHS AT WALTON F RIM DITCH NEAR WALTON FLA | ST LUCIE CA AT LOCK NR STUART FLA
LDXAHATCHEE RIVER NEAR JUPITER
WEST PALM BEACH CANAL AT WEST PALM BEACH FLA
HILLSBORD CANAL AT S-6 NEAR SHAWAND
10B EVERGLADES STA 1-15 NR DELRAY BEACH FL | 10B HILLSBORD CANAL AT S-39 NR DEERFIELD BCH
CYPRESS C CA AT S38 NR POMPANO B
POMPANO CA AT POMPANO BEACH FLA
CYPRESS CREEK C AT S-374, NR POMPANO BEACH,
MIDDLE RIVER C AT S-36 NR FT LAUDERDALE FLA | PLANTATION ROAD C AT S-33 NR FT. LAUDERDALE
N NEW RIVER CA BL S-11C NR FT. LAUDERDALE
EVERGLADES STA 2-17 NR ANDYTOWN FLA
N NEW R CA AT 20 MI BEND
10B N NEW R CA AB HOL LAT NR FT LAUD FLA | NDRTH RIVER CANAL NEAR FT LAUDERDALE FLA
NORTH RIVER CANAL NEAR FT LAUDERDALE FLA
SOUTH NEW RIVER CANAL AT S-9 NEAR DAVIE
108 SO NEW R CA AB S-13A NR DAVIE FLA | | | HYDROLOGIC
Unit
CODE | 03090102
03090102
03090103
03090103 | 03090103
03090103
03090202
03090202 | 03090202
03090202
03090202
03090202
03090202 | 03090202
03090202
03090202
03090202 | 03090202
03090202
03090202
03090202
03090202 | 03090202
03090202
03090202
03090202
03090202 | 03090202
03090202
03090202
03090202 | | | MEDIA | r | | | | | | | | |----------------------------|---|--|--|---|--|---|--|---------------------------------------| | 8012 G32 | ٥٥٥٥ | 00 00 | 00 00 | 0000 | | 0000 | | · · · · · · · · · · · · · · · · · · · | | ORGANIZATION
CODE | USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | 2026 OISCHWIGE | u | .m. m | w ww | ш п А | | | | | | BEIS THAN TAM OBB | | | | | | 0 | 0 0 | | | SUSP PART SIZE | m m m | | | | w_ | шшшш | ш | | | NISNOS USS BAILS | L | O A O A O | A A Q M M | 7
A B A | 000 0 | 00 4 | <u> </u> | | | DW END
AA3Y | | 197 | | 197 | | 197 | 197 | | | OW BEGIN | 1977
1961
1960 | 1940
1950
1939
1960 | 1977
1968
1957
1967 | 1968
1966
1967
1968 | 1972
1972
1970
1970
1969 | 1969
1969
1969
1969 | 1972
1969
1970
1971 | | | MISAB
ROTAIRD230 | 014 | 014 | 014 | 014 | 0
4
4
4
4
4
4
4
4
4
4 | 00000
4 4 4 4 4 | 0 1 4 4 1 0 0 1 4 4 1 0 0 1 4 1 0 0 1 4 1 0 0 1 4 1 0 0 1 1 1 1 | | | DRAINAGE
AREA | | | | | | | | | | 40 34YT
3TI2 | A N N N N N N N N N N N N N N N N N N N | S S S S S S S S S S S S S S S S S S S | NS N | N N N N N N N N N N N N N N N N N N N | N K K K K K K K K K K K K K K K K K K K | A S S S S S S S S S S S S S S S S S S S | SSES | | | COUNTY | 011
011
011 | 025
025
025
025
025
025 | 021
021
025
025
025 | 025
025
025
025
025 | 025
025
025
011
011 | 0000 | 9999 | | | 3TAT2 | 210
210
210 | 2 2 2 2 2 2 | 012
012
012
012 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 012
012
012
012 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 012
012
012 | | | LONGITUDE | 0801232
0800919
0800819 | 0802550
0804620
0802252
0801715
0811530 | 0811530
0805850
0804318
0801948 | 0801952
0802055
0802051
0803131 | 0803950
0804845
0801545
0801453
0800843 | 0801108
0800858
0800947
0801031 | 0801328
0801402
0801412
0801328 | | | LATITUDE | 260357
250313
255750 | 255600
261945
255331
254938
254829
255310 | 255310
255105
254855
254543
254011 | 253234
252920
252813
251914
254542 | 254620
255600
255741
260031 | 260514
260702
260717
260743
260807 | 260807
260807
260807
260808 | | | STATION NAME AND LOCATION | SOUTH NEW RIVER CANAL AT S-13 NR DAVIE, FLA
HOLLYWOOD CANAL AT DANIA
SNAKE CREEK CAT N.W. 67TH AVE NR HIALEAH, F
BISCANNE CANAL AT S-28 ND MIAMI FLA | LITTLE RIVER CANAL AT 527 AT MIAMI, FLA MIAMI CA AT S8 NR LK HARBOR FLA PENSUCO CAN AT PENSUCO FL MIAMI CA AT WATER PLT HIALEAH FLA MIAMI CANAL AT N.W. 36TH STREET, MIAMI, FLA TAMIAMI CANAL OUTLETS, MONROE TO CARNESTOWN, | TAMIAMI CANAL DUTLETS, MONROE TO CARNESTOWN, TAMIAMI CANAL DUTLETS, 40-MILE BEND TO MONRO EVERGLADES 3-65S NEAR MIAMI, FLA. TAMIAMI CANAL NR. CORAL GABLES, FLA SNAPPER CREEK C AT S-22, NR, SOUTH MIAMI, FL | | L-67A O.5 MI. N OF TAMIAMI CA NR MIAMI, FLA
10B L-28 EAST CA NR PINECREST FLA
SNAKECREEKCANAL NEAR HIALEAH FLA
DAVIE ROAD CANAL AT PEMBROKE PINES FLA
10B DANIA CUTOFF CA W OF FECRR BR AT DANIA | N NEW RIV CA AT SW 31 AVE FT LAUDERDALE NEW RIVER AT SW 4TH & 7TH AVE FT LAUDERDALE 108 N FORK NEW R BRWD BLVD AT FT LAUDERDAL 108 N FORK NEW RIVER AT FT LAUDERDALE FLA 108 PLAT CA AT HWY 441 IN PLANTATION | 108 PLAT CA AT SUNRISE BLVD NR LAUD HILL PLANTATION CA & NW 65TH AVE PLANTATION, FLA PLANTATION CA AT NW 65TH AVE AT PLANTATION F PLANTATION CA AT NW 47 AVE BRIDGE PLANTATION | | | HYDROLOGIC
Unit
Code | 03090202
03090202
03090202
03090202 | 03090202
03090202
03090202
03090202
03090202 | 03090202
03090202
03090202
03090202
03090202 | 03090202
03090202
03090202
03090202 | 03090202
03090202
03090202
03090202 | 03090202
03090202
03090202
03090202 | 03090202
03090202
03090202
03090202 | | | MEDIA | | | | 000 | 0000 | 00000 | | · · · · · · · · · · · · · · · · · · · | |----------------------------|--|--|--|---|---|--|--|---------------------------------------| | MOTZ G32 | | 0 0 | | 000 | 0000 | 00000 | 000 | | | MD)TAXMADRO
3000 | sesn
sesn
sesn | USGS
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
FLO5
USGS
USGS
USGS | USGS
FLO5
FLO5
USGS
USGS | USGS
FLO5
FLO5
FLO5 | USGS
USGS
USGS
USGS | | | ZOZE GIZCHYBOE | 535. | 33 33333 | 2223 | m
2 m 2 2 2 2 | | <u> </u> | α 4 | · · · · · · · · · · · · · · · · ·
· · | | SIZ TAA9 TAM 038 | | | | 4 W | 44 | 4444 | | | | SSIZ TRAM MEUZ | L | и ш | | ш | | | ш | | | ZOZE ZEO CONCEN | 000 | 00 00 | 00044 | α αщο | O I 4 | ш | ZIWA | | | OW END
PABY | 1979 | 1972
1972
1975 | 1979
1979
1979 | | | | | | | DW BEGIN | 1972
1970
1970 | 1966
1969
1969
1970 | 1970
1972
1972
1975 | 1975
1973
1977
1977 | 1971
1971
1972
1974 | 1951
1951
1951
1970 | 1961
1958
1962
1965 | | | MISA8
Rotqirjs30 | 014
014 | 0 0000
4 4 6 4 4 4 4 | 410
410
410 | 014 | 0 14
0 14
0 14 | | | | | DRAINAGE
AREA | | | | | | | 1367.00
229.00
107.00 | | | TYPE OF | 3 3 3 3
0 0 0 | A A NA A A A A A A A A A A A A A A A A | A S A S A S A S A S A S A S A S A S A S | MS A A S | N S A S A S A S A S A S A S A S A S A S | S E S E S E S E S E S E S E S E S E S E | MS AS | | | YTNUOD | 021
011 | 20000 | 021
021
099
111 | 111
099
011
021
021 | 021
071
043
043
071 | 071
027
049
027
015 | 027
115
115
057 | | | 3TAT2 | 012
012
012 | 99999 | 012
012
012
012 | 012
012
012
012 | 012
012
012
012 | 0
1
2
1
2
1
0
0
1
2
1
0
0
1
2
1
0
1
0
1 | 0
0
0
0
1
0
1
0 | | | LONGITUDE | 0803810
0801723
0805330 | 0800935
0800935
0800716
0801217
0801249 | 0803205
0802300
0802100
0802713 | 0802626
0800830
0805850
0812100 | 0813524
0813638
0810518
0811811 | 0814155
0815235
0814742
0815918
0815117 | 0815234
0821850
0821850
0820704 | | | LATITUDE | 260850
260919
260945 | 26 1240
26 1348
26 1349
26 1938
26 1938 | 262000
262400
264100
271911
271927 | 272321
262030
255105
255800
261147 | 261335
264248
265023
264722
264248 | 264325
271319
273840
271158
265756 | 271319
271425
271425
274747 | | | STATION NAME AND LOCATION | 10B MIAMI CA AT ALLIGATOR ALLEY
MIDDLE RIVER CANAL NR LAUDERHILL FLA
OB L-28 INTERCEPTOR BL STR4 AT ANDYTOWN F | 10B MIDDLE RIVER CANAL AT LAUDERFILL FLAT
10B CA-13 FEEDER CA AT 10TH AVE FT LAUDERD
10B L-28 BORROW CA AB S-140 NR ANDYTOWN FL
10B POMPANO CA AT SR 7 AT MARGATE FLA
HILLSBORD CANAL AT US 441 AT DEERFIELD
L-3 CANAL 7 MI WEST OF S-8 NR ANDYTOWN | 10B NDRTH NEW RIVER CANAL AB S7 NR ANDYTOW 10B HILLSBORD CA AB SIO NR ANDYTOWN FLAW PALM BEACH CANAL E OF S-5A(E) NR LOXAHATCH C-24 AT SR 709 NR FT PIERCE FLAN FK ST LUCIE R NR PRIMA VISTA BLVD NR FT PI | 35S39E33 SL41 JCT 10MI CR-TRIB 6MI SW FT PIE HILLSBORD C CONT STRUC W DEERFIE TAMIAMI CANAL DUTLETS, 40-MILE BEND TO MONRO BARRON RIVER NR EVERGLADES, FLA. | 10B GDLDEN GATE TRIB CA NR NAPLES FLA
CALODS R SR 78B BR
CALODSAHATCHEE R MODRE HAVEN LOC
CALODSAHATCHEE CANAL AT ORTONA LOCK NR LA BE
CALODSAHATCHEE RIVER AT ALVA FLA | CALOOSAHATCHEE RIVER AT S-79, NR. OLGA, FLA PEACE RIVER BR FLA HWY #70 PEACE RIVER BR FLA HWY #664 HOR CK SR 72 BR SHELL CR 6 MI E OF SR 764 | PEACE RIVER AT ARCADIA, FLA.
MYAKKA RIVER NR SARASOTA, FLA.
MYAKKA RIVER NR SARASOTA, FLA.
SOUTH PRONG ALAFIA RIVER NR LITHIA, FLA. | | | HYDROLOGIC
Unit
Code | 03090202
03090202
03090202 | 03090202
03090202
03090202
03090202
03090202 | 03090202
03090202
03090202
03090202 | 03090202
03090204
03090204
03090204 | 03090204
03090205
03090205
03090205 | 03090205
03100101
03100101
03100101 | 03100101
03100102
03100102
03100204 | | | MEDIA | | | | | | | ~ | | |----------------------------|--|---|--|---|---|--|---|--| | SED SLOW | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | MOITASIDA
BODD | USGS
FLO51
USGS
USGS
USGS | FLO51
FLO51
USGS
USGS
USGS | USGS
USGS
FLO51
FLO51
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
FLO51 | USGS
FLO51
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHANCE | 00 | | | IZmmm | шæ | X mXA | mX44 | | | BSIZ TRAS SZUZ | ∀ | 44 | 4 4 | | < | ⋖ | · | | | ZORE ZEO CONCEN | I 00m | 444 | 44 W | IZwww | шшшк | и шха | mxaa | | | GN3 WO
RA3Y | | 1978
1977
1973 | 1973 | 1979 | | | 1976 | | | DW BEGIN | 1956
1973
1975
1975 | 1971
1972
1977
1977 | 1973
1973
1973
1964
1958 | 1950
1976
1968
1963 | 1969
1969
1969
1966 | 1956
1972
1937
1970
1967 | 1956
1967
1976 | | | BASIN
Descriptor | | | | 014 | 124 | 900 | | | | DRAINAGE
AREA | 335.00
220.00
60.00 | | 130.00 | 1825.00
2020.00
2020.00 | 350.00 | 805.00
1260.00
50.00 | 2430.00 | | | TYPE GF
3T12 | 3 3 3 3 3 S S S S S S S S S S S S S S S | N E E S | N N N N N N N N N N N N N N N N N N N | X X X X X X X X X X X X X X X X X X X | A S S A S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S
A S A S A S A S A S A S A S A S | N N N N N N N N N N N N N N N N N N N | A S A S A S A S A S A S A S A S A S A S | | | COUNTY | 057
057
057
057
057 | 057
057
081
057
103 | 103
103
017
101
105 | 083
017
083
075
075 | 075
075
075
123
065 | 123
047
065
047
047 | 023
047
047
047 | | | 3TAT2 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
2
3 | 0
0
0
0
1
2
1
2
1
0
0
1
2
1
2
1
2
1
2
1 | 012
012
012
012 | 012
012
012
012 | 012
013
013
012 | 012
012
012 | | | LONGITUDE | 0821241
0821241
0821357
0821357
0821357 | 0822736
0823606
0823433
0823150
0824245 | 0824431
0824437
0823826
0820944
0814908 | 0822059
0822059
0822653
0823701 | 0823642
0823700
0823820
0831918
0834809 | 0835508
0824534
0823338
0824402
0824140 | 0824418
0824800
0824725
0824724 | | | LATITUDE | 275219
281117
280859
280859 | 275121
275442
273643
274111
274624 | 274914
274932
290116
283312
282138 | 285919
285919
290257
290035
290035 | 290131
290130
290115
294711
302202 | 301352
301940
304050
303240
302920 | 301932
302214
302430
302505 | | | STATION NAME AND LOCATION | ALAFIA RIVER AT LITHIA, FLA.
HILLSBORDO R OLD CRYSTAL SPRING R
HILLSBORDUGH RIVER NR ZEPHYRHILLS, FLA.
HILLSBORDUGH RIVER NR ZEPHYRHILLS, FLA.
FLINT CREEK NR THONOTOSASSA, FLA. | HILLSBORD BAY 3/4 MI E MACDILL AFB
OLD TAMPA BAY CRT OF HWD FRNKLN BR
BISHOPS HARBOR ENTRANCE
COCKROACH BAY ENTRANCE
BEAR CREEK AT 58TH ST N AT ST PETERSBURG, FL | 10J JOES CREEK @ 54TH AVE N AT ST PETE FLA
10J JOES C AT SCB POL PLANT AT ST PETE FLA
WITHLACOOCHEE R, DOWN INGLIS RES
WITHLACOOCHEE R HWY 575 BR
WITHLACOOCHEE RIVER NR EVA, FLA. | WITHLACOOCHEE RIVER NR HOLDER, FLA.
WITHLACOOCHEE RIVER NR HOLDER, FLA.
BLUE RUN AT DUNNELLON, FLA.
WITHLACOOCHEE R AT INGLIS DAM NR DUNNELLON,
WITHLACOOCHEE R BL INGLIS DAM NR DUNNELLON, | BARGE CANAL ABOVE INGLIS LOCK NR INGLIS, FLA BARGE CANAL AT INGLIS LOCK NR INGLIS, FLA. WITHLACODCHEE R BYPASS CH BEL STR NR INGLIS, STEINHATCHEE RIVER NEAR CROSS CITY, FLA. AUCILLA R AT US 19-27 | AUCILLA RIVER NR SCANLON, FLA.
SUWANNEE RIVER & US 41 & SR 136
SUWANNEE RIVER AT FARGO, GA.
ROCKY CREEK NR BELMONT, FLA.
HUNTER CREEK NEAR BELMONT FLA | SUWANNEE RIVER AT WHITE SPRINGS, FLA.
SWIFT CREEK AT FACIL FLA
OCCIDENTAL SAMPLING SITE #6
OCCIDENTAL SAMPLING SITE #4 | | | HYDROLOGIC
Unit
Code | 03100204
03100204
03100205
03100205 | 03100206
03100206
03100206
03100206 | 03100207
03100207
03100208
03100208 | 03100208
03100208
03100208
03100208 | 03100208
03100208
03110102
03110103 | 03110103
03110201
03110201
03110201 | 03110201
03110201
03110201
03110201 | | | MEDIA | | | | | | | | | |----------------------------|--|--|--|--|--|---|--|---| | SED STOR | ۵۵۵۵ | 00000 | 00 00 | 00000 | 00000 | 00000 | 00 | | | ONDANIZATION
SODE | 2021
1265
1265
1265
1265 | 00000 | USGS
USGS
USGS
USGS
USGS | FLOS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USCE
USCE | | | SUSAHOSIO 42/15 | A A A | ших к | XX IQ | mmtk | 0 2 | NAAXA | 44 | | | BED MAT PART SIZE | | ٧ | Ш | ۷ | | | | | | SUSP PART SIZE | 4444 | | X G m I O | Z X Z Z | AXOAR | NAAXA | ~ ~ Z O | | | | 000000 | மை | 4
TG T C | V 80 | 4.4 8 | 7 404 | 9 7 8 | · | | OW END
RA3Y | 1976
1976
1976 | 197 | 197, | 197 | 195
197
197 | 197
197
197 | 197 | • | | DW BEGIN | 1976
1976
1976
1976 | 1937
1954
1976
1973
1954 | 1957
1966
1966
1963
1963 | 1964
1941
1958
1968
1941 | 1958
1968
1937
1976
1976 | 1976
1976
1976
1969
1976 | 1976
1976
1963
1956 | | | BASIN
BOT91R3230 | | 000
4 4 | | 00
4
4 | 014 | 8000 | £003 | | | DRAINAGE
AREA | | 663.00
1400.00
208.00
7880.00 | 575.00
535.00
102.00 | 150.00
315.00
153.00 | 72.00
1450.00
.32 | 36.00
3.10
86.80
2.60 | 34.79 | | | 3T12 | X X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | N N N N N | N N N N N | N N N N N N N N N N N N N N N N N N N | M M M M M M M M M M M M M M M M M M M | NS N | | | COUNTY | 047
047
047
047 | 019
101
075
029
121 | 001
129
129
129
073 | 063
137
137
137
187 | 135
121
121
067
089 | 097
121
121
121 | 089
121
149
285 | | | 3TAT2 | 012
012
012
012 | | 012
012
012
012 | 012
013
013
013 | 013
013
013
013 | 013
013
013
013 | 013
013
013 | | | LONGITUDE | 0824709
0824803
0824630
0824630 | 0831133
0830200
0833032
0825724
0825540 | 0822535
0840900
0840900
0842940
0842303 | 0845142
0833809
0833204
0833714
0835623 | 084 1005
084 16 10
084 27 16
084 27 27
084 1757 | 0842015
0842216
0842404
0842428
0842428 | 0842015
0842528
0850600
0851050 | | | LATITUDE | 302512
302548
302743
302744 | 303
214
515
112 | 295518
301600
301600
300745 | 304232
343437
343649
343227
343141 | 340144
340302
335133
334940
335053 | 334955
334707
334811
334910
334918 | 335414
335135
331645
325235 | | | STATION NAME AND LOCATION | OCCIDENTAL SAMPLING SITE #7
OCCIDENTAL SAMPLING SITE #5
OCCIDENTAL #27 SPILLWAY
OCCIDENTAL \$PILLWAY #22
HINTED CDEEK MINE | | SANTA FE RIVER AT WORTHINGTON SPRINGS, FLA. ST. MARKS RIVER NEAR NEWPORT, FLA. ST. MARKS RIVER NEAR NEWPORT, FLA. SOPCHOPPY RIVER NR SOPCHOPPY, FLA. OCHLOCKONEE RIVER NR HAVANA, FLA. | UIM WOODRUF D WATER INTUSPHS STA
CHATTAHOOCHEE RIVER NEAR LEAF, GA.
SOOUE RIVER AT ST RT 17 AT CLARKSVILLE, GA.
CHATTAHOOCHEE RIVER NEAR CORNELIA, GA.
CHESTATEE RIVER AT ST RT 52 NEAR DAHLONEGA. | CHATTAHDOCHEE RIVER AT ST RT 120 NR DULUTH,
BIG CREEK NEAR ALPHARETTA, GA.
CHATTAHDOCHEE RIVER AT ATLANTA, GA.
CHATTAHOOCHEE R TRB (COBB CO WPC) ATLANTA, G
N FK P'TREE C TRB (MEADOWCLF D) NR CHAMBLEE. | N.F. P'TREE CR AT BUFORD HWY NR ATLANTA, GA. CLEAR CREEK AT PIEDMONT PARK AT ATLANTA, GA. TANYARD BRANCH AT 26TH ST EXT AT ATLANTA, GA PEACHTREE CREEK AT ATLANTA, GA. WOODALL CR AT DEFOORS FERRY ROAD AT ATLANTA. | NANCY CR TR (W NANCY CR DR) NR CHAMBLEE, GA. NANCY CREEK AT RANDALL MILL ROAD AT ATLANTA, CHATT R FRANKLIN GA CHATT R WEST POINT HWY 29 GA | | | HYDROLOGIC
Unit
Code | 03110201
03110201
03110201
03110201 | 03110202
03110202
03110202
03110205
03110205 | 03110206
03120001
03120001
03120003 | 03120004
03130001
03130001
03130001 | 03130001
03130001
03130001
03130001 | 03130001
03130001
03130001
03130001 | 03130001
03130001
03130002 | | | | | | | | · | | | | | |----------------------------|--|---|---|---|---|--|--|--|--| | AOTZ G32 | 00 | 000 | 0000 | 00000 | 000 | ٥٥٥٥ | 00000 | 0000 | | | MOITA SINADRO
3000 | USGS
USGS
USGS | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGE
USGS
USGS
USGS | USCE
USGS
USGS
USGS
USGS |
USGS
USGS
FLO51
USGS
FLO51 | USGS
FLO51
FLO51
USGS | | | 2024 DIZCHYGGE | ⋖ | ⋖ | ∢ I | ~ × ~ | 1 000 | E E E | m X X | ΣΥ | | | ISIZ TAAR TAM 038 | | | | כ כ | | · · · · · · · · · · · · · · · · · · · | 4 4 | 4 4 | | | BSIZ TRAS SUZ | 44 | 444 4 | 4444 | αχα | | | ¥ | · | | | SOUTH SEED CONCERN | 44 | 444 4 | AAIA | α×α | 10000 | ≻ Ш Ш 乙 ▼ | m X X | ΣY | | | DW END | 1977 | 1977 | 97 | 1979 | 1975
1975 | 1968 | 1978 | | | | OM BEGIN | 1976
1976 | 1976
1976
1976 | 1977
1976
1937
1976 | 1968
1970
1941
1978 | 1965
1951
1937
1937 | 1967
1938
1969
1906 | 1941
1938
1973
1961 | 1959
1971
1975
1961 | | | BASIN
DESCRIPTOR | | | 900 | 014
014
124
014 | 004 | 0004 | 004 | 000 | | | DRAINAGE
AREA | . 85
. 60 | 17.00 | 246.00 | 2060.00
37.00
2430.00 | 342.00
272.00
101.00
1850.00 | 2900.00
197.00
5310.00
188.00 | 620.00
485.00
17200.00 | 781.00 | | | TYPE OF | A A S | A A A A | N A A A | MS AN S | MS SW
SW
SW
SW | AS SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
SA
S | AS SW
SW
SW
SW | N W W W W W W W W W W W W W W W W W W W | | | COUNTY | 121 | 067
067
067 | 121
121
097
121 | 121
045
045
017
145 | 053
061
255
077
293 | 193
193
307
095
007 | 007
087
045
063
013 | 013
045
005
005 | | | 3TAT2 | 013
013 | 013
013
013 | 0000 | 013
013
001
013 | 013
013
013
013 | 013
013
013
013 | 013
013
012
012 | 20022 | | | LONGITUDE | 084
084 | 0843301
0843158
0843218 | 0843720
0843346
0843653
0843807 | 0844025
0845542
0845404
0851104
0850922 | 0844912
0850300
0842545
0843125
0841357 | 0840300
0840238
0843253
0840839 | 0843252
0844418
0850200
0845133
0850951 | 0850955
0850200
0851841
0853324 | | | LATITUDE | 334744
334739 | 335345
335028
334627
334427 | 334401
334435
334622
334036 | 333924
333146
332837
325148
325102 | 322448
313600
331439
331910
324317 | 321800
321753
320313
313539
313317 | 312258
310223
294935
304203
303200 | 303202
294100
294630
302304 | | | STATION NAME AND LOCATION | PROCTOR C TRB (HOLLYWOOD RD WPC) AT ATLANTA.
PROCTOR CREEK AT ST RT 280 AT ATLANTA, GA. | NICKAJACK CR (USAF PLANT 6 DUTFALL) SMYRNA, NICKAJACK CR AT COOPER LAKE DR NR MABLETON, CHATTAHOOCHEE R TRB NO.4 (S COBB WPC) ATL, G CHATTAHOOCHER R TRR NO.6 (UIDY WPC) NR ATL | NORTH FORK UTOY CR AT BEECHER RD AT ATLANTA, UTOY CREEK AT ST RT 70 NEAR ATLANTA, GA. SWEETWATER CREEK NEAR AUSTELL, GA. CHATTAHOOCHEE R TRB NO.5 (CMP C WPC) NR ATL, | CHATTAHOOCHEE RIVER NEAR FAIRBURN, GA.
SNAKE CREEK NEAR WHITESBURG, GA.
CHATTAHOOCHEE RIVER NEAR WHITESBURG, GA.
CHATTAHOOCHEE RIVER (LANETT INT) AT LANETT.
CHATT R AB LONG CANE CR JCT NR WEST POINT, G | UPATOI CREEK NEAR COLUMBUS, GA.
CHATT R FT GAINES GA
FLINT RIVER NEAR GRIFFIN, GA.
LINE CREEK NEAR SENDIA, GA.
FLINT RIVER NEAR COLLODEN GA | FLINT R AT MONTEZUMA GA
FLINT RIVER AT MONTEZUMA, GA.
KINCHAFOONEE CREEK AT PRESTON, GA.
FLINT RIVER AT ALBANY, GA. | ICHAWAYNOCHAWAY CREEK AT MILFORD, GA.
SPRING CREEK NEAR IRON CITY, GA.
APALACHICOLA R BUDY 40 MILE 11A
APALACHICOLA RIVER AT CHATTAHOOCHEE FLA
CHIPOLA R HWY 274 SW OF ALTHA | CHIPOLA RIVER NR ALTHA, FLA.
APALA BAY SEC C
ST JOE BAY 3 MI S OF CITY RAMP
ECONFINA CREEK NEAR BENNETT, FLA. | | | HYDROLOGIC
UNIT
CODE | 03130002 | 03130002
03130002
03130002 | 03 130002
03 130002
03 130002
03 130002 | 03130002
03130002
03130002
03130002
03130002 | 03130003
03130004
03130005
03130005 | 03130006
03130006
03130007
03130008 | 03130009
03130010
03130011
03130011 | 03130012
03130014
03140101
03140101 | | | SED STOR
AIGEM | 00000 | 00000 | 00000 | 0 000 | ٥ | ٥٥ | ۵ | | |----------------------------|---|---|---|--|---|---|--|--| | MOITAZINABRO
BOOD | USGS
FL051
USGS
FL051
FL051 | FLO51
USGS
FLO51
FLO51
USGS | FLO51
FLO51
USGS
USFS
USGS | USGS
USCE
USGS
USGS
USGS | USCE
USCE
USCE
USCE
USCE | USGE
USGS
USGE
USCE
USCE | USGE
USCE
USCE
USCE | | | SUSP DISCHARGE | 4 4 | O 4 | OI | 0 I0I | 7 | g | ហ | | | IR THAN TAM CHE | 4 44 | 4 44 | বব | | | | | | | SIE TAAR GEUS | | | | | | 9 | <u>ი</u> | | | ZOZE ZED CONCEN |
υ
• • | <u> </u> |
O∢I | UEINI | ZZZZ0 | - OEEOO | ∑ 00 0 0 | | | OW END
AA3Y | 1975 | | 1968 | | 1974 | 197 | | | | OM BEGIN | 1959
1969
1958
1970
1970 | 1968
1958
1970
1973
1966 | 1955
1968
1952
1973
1960 | 1941
1963
1941
1941
1960 | 1961
1961
1961
1961 | 1961
1962
1962
1961
1951 | 1962
1971
1971
1972 | | | MISAB
ROTGIRDS30 | | | 900 | 004
014 | 400 | 014 | 014 | | | DRAINAGE
AREA | 624.00 | 394.00 | 3817.00 | 682.00
238.00
856.00
34.50 | 605.00 | 15100.00 | 22000.00 | | | TYPE OF
STIE | E E S S S S S S S S S S S S S S S S S S | SE S | N N N N N | N N N N N N N N N N N N N N N N N N N | M M M M M M M M M M M M M M M M M M M | N N N N N N N N N N N N N N N N N N N | 3 3 3 3
0 0 0 0 | | | YT NUDO | 091
091
113
033 | 033
033
033
091
131 | 033
033
113
313
213 | 313
213
123
129
055 | 015
015
015
015 | 101
101
047
131
099 | 099
057
057
057 | | | 3TAT2 | 012
012
012
012 | 012
012
012
012 | 012
012
013
013 | 013
013
013
013 | 013
013
013
013 | 88888 | 001
028
028
028 | | | LONGITUDE | 0863745
0864400
0865820
0870830 | 0872409
0872625
0872200
0860000 | 0871403
0871142
0871400
0850155 | 0845542
0844125
0843031
0845137
0850916 | 0844430
0845900
0844610
0845000
0842947 | 0862432
0862430
0865413
0872400
0873045 | 0873045
0882500
0882642
0882350 | | | LATITUDE |
304510
305002
304230
302200 | 303610
304125
302530
302530 | 305754
303251
305725
344110
344300 | 344000
343615
344018
343435
343404 | 340950
341300
340913
340800 | 322442
322441
323458
320700
313248 | 313248
342600
341555
341220 | | | STATION NAME AND LOCATION | YELLOW RIVER AT MILLIGAN, FLA. BLACKWATER RI AT HWY 4 NW BAKER BIG COLDWATER CREEK NR MILTON, FLA. ESCAMBIA BAY SEC C BACKGR STA E BAY SEC C BACKGR STA | PERDIDO R HWY 184 BR MUSGOGEE
PERDIDO RIVER AT BARRINEAU PARK, FLA.
PERDIDO BAY SEC C BACKGROUND STA
CHOCTAWHATCHEE A PINEY PT FLASH LI
CHOCTAWHATCHEE RIVER NR BRUCE, FLA. | ESCAMBIA RIVER HWY 4 BRIDGE ESCAMBIA RI AT HWY 90 BR ESCAMBIA RIVER NEAR CENTURY, FLA. STOVER CR 2 CONTROL HOLLY CREEK NEAR CHATSWORTH, GA. | CODASAUGA RIVER AT TILTON, GA. COOSAWATTEE R CARTERS GA COOSAWATTEE RIVER NEAR ELLIJAY, GA. COOSAWATTEE RIVER NEAR PINE CHAPEL, GA. WEST ARMUCHEE CREEK NEAR SUBLIGNA, GA. | ETOWAH R BL ALLATOONA DAM GA
ETOWAH R KINGSTON GA
ETOWAH R CARTERSVILLE HWY 41 GA
ETOWAH R CARTERSVILLE HWY 61 GA
ETOWAH RIVER AT CANTON, GA. | ALABAMA R MONTGOMERY AL ALABAMA RIVER NEAR MONTGOMERY AL MULBERRY CREEK AT JONES AL ALA R NR MILLERS FERRY ALA R AT CLAIBORNE | ALABAMA RIVER AT CLAIBORNE AL
TOMBIGBEE R NR MARIETTA MS
TOMBIGBEE R NR FULTON MS
TOMBIGBEE R AT BEANS FERRY MS | | | HYDROLOGIC
Unit
Code | 03140103
03140104
03140104
03140105 | 03140106
03140106
03140107
03140203 | 03140305
03140305
03140305
03150101 | 03150101
03150102
03150102
03150102 | 03150104
03150104
03150104
03150104 | 03150201
03150201
03150201
03150203 | 03150204
03160101
03160101 | | | AIGSM. | | ٥٥٥ | 000 | ٥ | ۵ | | ······································ | | |----------------------------|---
---|--|---|---|---|--|-------------| | | W 10 10 10 10 | · · · · · · · · · · · · · · · · · · · | | | | *** *** *** *** | *** *** *** | | | MOITA SIMABRO | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USGS
USGS
USGS | USGS
USGS
USGS
USCE
USCE | USGS
USCE
USCE
USCE
USCE | USGE
USGE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE | | | SUSP DISCHARGE | 33333 | | | 22222 | 22222 | 2222 | 2222 | | | 3512 TAA9 TAM 638 | | | | | | | | | | SUSP PART SIZE | | | | | | | | | | | 8 | ∞∞ mm≥ | <u> </u> | ω ΣΣΣΣ
ω | SEE NO | EEEEE | Z Z O Z | | | OW END
RABY | 196 | . = | | 197 | 197 | | | | | OM BECIN | 1971
1973
1972
1971 | 1973
1973
1975
1975 | 1971
1974
1973
1973 | 1973
1976
1976
1976 | 1971
1974
1977
1977 | 1977
1977
1977
1977
1977 | 1977
1977
1973
1976 | | | BASIN
BOTGIRDS30 | | 900 | 000
4 | 004 | 004 | · | | | | DRAINAGE
AREA | | 66.80 | 612.00
1924.00
4451.00 | 230.00 | 787.00 | | | | | TYPE OF | X X X X X X X X X X X X X X X X X X X | A S S A S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S A S S A S S A S S A S S A S A S S A | A A A A A A A A A A A A A A A A A A A | A S S A S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S A S S A S S A S A S S A | A W W W W | MS M | A A A A A A A A A A A A A A A A A
A A | | | YTNUDO | 057
057
095
095 | 057
087
141
141 | 057
095
087
095
095 | 081
075
095
095
095 | 095
095
017
017 | 025
025
025
025
025 | 025
087
087
087 | | | 3TAT2 | 028
028
028
028 | 028
028
028
028
028 | 028
028
028
028 | 028
001
028
028
028 | 028
028
028
028
028 | 028
028
028
028
028 | 028
028
028
028 | | | LONGITUDE | 0882326
0882550
0883050
0883107
0883107 | 0882353
0882900
0881732
0881600
0881922 | 0882642
0883303
0882740
0883740 | 0884143
0880747
0881354
0881717
0882724 | 0882545
0881855
0885300
0884735 | 0884355
0885555
0885115
0884555 | 0884905
0883745
0881855
0882342 | | | LATITUDE | 340518
340540
340040
333914 | 340735
333300
344142
343953
343134 | 341553
335907
332940
340332
335910 | 341408
335508
335339
335258
333948 | 334024
334724
340005
335310
335030 | 334747
335030
334705
334030
333625 | 333526
332850
333355
333050 | | | STATION NAME AND LOCATION | BULL MOUNTAIN C NR SMITHVILLE MS
TOMBIGBEE R AT BARRS FERRY MS
TOMBIGBEE R AT BIGBEE MS
TOMBIGBEE R AT ABERDEEN MS
TOMBIGBEE R AT COLUMBUS MS | TOMBIGBEE R AT IRONWOOD BLUFF MS TOMBIGBEE R AB COLUMBUS MS BURGESS CREEK NR PADEN, MS. BLACK BRANCH AT PADEN, MS. MACKEYS CREEK NR DENNIS, MS. | TOMBIGBEE RIVER NR FULTON, MS. TOMBIGBEE RIVER NR AMORY, MS. TOMBIGBEE RIVER NR COLUMBUS, MS. TOWN C NR NETTLETON MS TOMBIGBEE R NR AMORY MS | TOWN CREEK AT EASON BOULEVARD AT TUPELO, MIS BUTTAHATCHEE RV NR SULLIGENT AL BUTTAHATCHEE RV NR GATTMAN MS BUTTAHATCHEE RV NR GREENWOOD MS BUTTAHATCHEE RV NR GREENWOOD MS | BUTTAHATCHEE R AT HAMILTON MS
BUTTAHATCHEE RIVER NEAR ABERDEEN, MISS.
CHUQUATONCHEE CR NR OKALONA MS
CHUQUATONCHEE CR E BUENA VISTA MS
CHUQUATONCHEE CR NR EGYPT MS | CHUQUATONCHEE CR NR PRAIRIE MS
HOULKA CR W TREBLOC MS
HOULKA CR NR MCCONDY MS
HOULKA CR N ABBOTT MS
CHUQUATONCHEE CR NR WEST POINT MS | LINE CR NR CEDAR BLUFF MS
CATALPA CR NR MAYHEW MS
LUXAPALLILA C AT STEENS MS
LUXAPALLILA CR NR COLUMBUS WW MS | | | HYDROLOGIC
Unit
Code | 03160101
03160101
03160101
03160101 | 03160101
03160101
03160101
03160101 | 03160101
03160101
03160101
03160102 | 03160102
03160103
03160103
03160103 | 03160103
03160103
03160104
03160104 | 03160104
03160104
03160104
03160104 | 03160104
03160104
03160105
03160105 | | | ROTZ GBZ
AIGBM | ٥ | ٥٥ | 00 40 | 000 | 00000 | 00000 | 00000 | 0000 | | |----------------------------|--|--|---|--|---|--|---|---|--| | ORGANIZATION
SCOO | USGS
USCE | USCE
USGS
USGS | USGS
USGS
USCE
USGS
USGS | USCE
USCE
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | α | ш | n AA | αmα | बबबबब | বৰবৰ | 40 m44 | 444 m | | | SED MAT PART SIZE | | | | | | | | | | | BZIS 1849 92U2 | | < | ∢₩ | | | | | < | | | SUSP SED CONCEN |
 | о ш | ∑ 00 ∢ ∢ | 8822日本 | ARAAA | 44444 | A Z M A 3 | 4444 | | | OW END
AA3Y | 1975 | 1975
1975
1980 | 1980 | 1975 | 1979 | | 1977
1977 | 1977
1977
1977 | | | DW BEGIN | 1964 | 1971
1973
1978 | 1978
1961
1973
1963 | 1973
1966
1966
1963 | 1962
1978
1965
1962
1967 | 1967
1967
1963
1962 | 1965
1965
1962
1975 | 1975
1975
1975
1975 | | | MIZAB
Rotqirəzəd | 8 | | 900 | 00
4
4 | 014 | 888 | 888 | | | | DRAINAGE
AREA | 309.00 | 7230.00 | 7230.00
8700.00
753.00
55.60 | 812.00
1140.00
24.00 | 13.00
26.00
188.00
213.00 | 4.70
115.00
134.00
3.30 | 85.00
90.10
80.90
.50 | .35
11.60
2.41 | | | TYPF OF
SITE | A S | AS AS | A S S A S A S S A | MS A | MS AN SW | A S A S A S A S A S A S A S A S A S A S | MS MS | N N N N N N N N N N N N N N N N N N N | | | COUNTY | 107 | 119
087
063 | 063
119
063
093
057 | 119
103
119
043 | 043
043
127
127 | 127
127
127
127 | 127
133
073
073
073 | 073
073
073
073 | | | 3TAT2 | 02 8 | 001
028
001 | 88888 | 00
00
00
00
00
00
00 | 88888 | 88888 | 88888 | 8888 | | | LONGITUDE | 980 | 0880900
0882355
0880916 | 0880915
0880924
0880651
0874047
0873727 | 088 1745
088 1057
088 3340
088 1745
0865 137 | 0870014
0865839
0871837
0871525
0870941 | 0873314
0872659
0872302
0872130 | 0872315
0872356
0864845
0864936 | 0864956
0865159
0865154
0865200 | | | LATITUDE | 333335 | 324900
332034
325108 |
325108
324930
330212
335547
334125 | 325506
324936
330608
325506 | 335710
335340
335635
335430
335305 | 335405
335329
334856
334550
334417 | 334020
341707
334425
334521
334532 | 334534
334341
334343
334345 | | | STATION NAME AND LOCATION | LUXAPALLILA CREEK AT STEENS, MISS.
TOMBIGBEE R NR COCHRANE AL | TOMBIGBEE R AT GAINESVILLE AL
TOMBIGBEE RIVER BL COLUMBUS, MISS
TOMBIGBEE R AT GAINESVILLE L&D NR GAINESVILL | TOMBIGBEE R BL GAINESVILLE L&D NR GAINESVILL TOMBIGBEE RIVER AT GAINESVILLE AL SIPSEY R NR PLEASANT RIDGE NEW RIVER NEAR WINFIELD AL ELLIS CREEK NEAR BERRY AL | NOXUBEE R NR GEIGER AL
NOXLBEE R AT GAINESVILLE AL
NOXUBEE RIVER AT MACON, MISS.
NOXUBEE RIVER NEAR GEIGER AL
MARRIOTT CREEK NEAR GARDEN CITY AL | DORSEY CREEK NEAR ARKADELPHIA AL
DORSEY CREEK BELOW ARKADELPHIA AL
TRIBUTARY TO SPRING CREEK NEAR MANCHESTER AL
BLACKWATER CREEK NEAR MANCHESTER AL
BLACKWATER CREEK NEAR JASPER AL | TRINITY CREEK NEAR CARBON HILL AL CHEATHAM CREEK NEAR CARBON HILL AL LOST CREEK NEAR JASPER AL LOST CREEK NEAR OAKMAN AL BLACK BRANCH NEAR OAKMAN AL | WOLF CREEK NEAR OAKMAN AL
SIPSEY FORK NEAR GRAYSON AL
TURKEY CREEK AT MORRIS AL
TRIB TO TURKEY CREEK DOWNSTREAM FROM MORRIS
TURKEY CREEK UPSTEAM FROM KIMBERLY AL | TRIBUTARY TO TURKEY CREEK NEAR KIMBERLY AL CROOKED CREEK NEAR MT OLIVE AL TRIBUTARY TO CROOKED CREEK NEAR MT OLIVE AL CROOKED CREEK DOWNSTREAM FROM MT. OLIVE, AL | | | HYDROLOGIC
UNIT
CODE | 03160105 | | 03160106
03160106
03160107
03160107 | 03160108
03160108
03160108
03160109 | 03160109
03160109
03160109
03160109 | 03160109
03160109
03160109
03160109 | 03160109
03160110
03160111
03160111 | 03160111
03160111
03160111 | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | |----------------------------|---|---|--|---|---|--|--|---| | NOT2 G32
AIG3M | 0000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | MDITASINADNO
3000 | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 888444 | বৰমবৰ | ααααα | X O O A A | वववव | ND AA | 0 04 | | | SEIZ TRAN TAM CIRE | | | · · · · · · · · · · · · · · · · · · · | | | | | | | SUSP PART SIZE | m & d d d | 44444 | 44440 | V ~ ~ ~ | | ~ | 0101 | | | | 334774 | 4444 | 0 | XMOAA | 44444 | жыши | 0404 | | | OW END
AA3Y | | | 197 | | | | | | | DW BEGIN | 1975
1967
1967
1967 | 1978
1976
1961
1976
1975 | 1978
1978
1977
1976
1978 | 1978
1975
1978
1977 | 1957
1978
1978
1976
1967 | 1978
1975
1966
1976
1976 | 1977
1976
1978
1977 | | | NISA8
ROT9183230 | | 004 | | 004 | 900 | 004 | | | | DRAINAGE
AREA | 16.20 | 15.00
5.32
37.40 | 3.64 | 2.49
8.23
29.00 | 108.00 | .72
15.05
219.00
2.71 | 6.13 | | | 40 34YT
3712 | A S S S S S S S S S S S S S S S S S S S | N N N N N N N N N N N N N N N N N N N | MS MS | M M M M M M M M M M M M M M M M M M M | MS M | MS M | M M M M M M M M M M M M M M M M M M M | | | COUNTY | 073
073
073
073 | 127
125
125
125
125 | 125
125
125
025
125 | 125
125
125
125
125 | 125
057
057
125 | 125
125
125
125
125 | 125
125
125
125 | | | STATE | 9888
11111 | 88888 | 88888 | 88888 | 88888 | 88888 | 8888 | | | LONGITUDE | 0865200
0865600
0870614
0871152 | 0871752
0872437
0872907
0872818
0872451 | 0871523
0871737
0872358
0872721
0872830 | 0872751
0872826
0872739
0872758
0872758 | 0872655
0873403
0873818
0873025
0873434 | 0873222
0873343
0873550
0873224
0873346 | 0873406
0872911
0873045
0873930 | | | LATITUDE | 334410
333837
332901
332738 | 333424
333401
333117
332902
332701 | 331932
332117
331548
332507
332326 | 332318
332223
332138
331538 | 331345
334245
334209
333602
333358 | 333233
333233
332845
333032 | 332825
332355
332432
333147 | | | STATION NAME AND LOCATION | 1 CROOKED CREEK NEAR MORRIS AL
1 FIVEMILE CREEK AT CARDIFF AL
2 ROCK CREEK NEAR HOPKINS AL
2 MUD CREEK NEAR OAK GROVE AL
2 UNNAMED TRIB TO WALKER COUNTY SHOAL CREEK AL | TRIB TO UNNAMED TRIB TO WALKER CO SHOAL CREE
LITTLE YELLOW CREEK NEAR WHITSON AL
BLUE CREEK NEAR DAKMAN AL
BLUE CREEK NEAR WINDHAM SPRINGS AL
BLUE CREEK NEAR SPENCER HILL AL | HANNAH MILL CREEK NEAR BURCHFIELD AL
CANE CREEK NEAR BURCHFIELD AL
TRIBUTARY TO ROCKY BRANCH NEAR PETERSON AL
TRIBUTARY TO YELLOW CREEK NR WINDHAM SPRINGS
YELLOW CREEK ABOVE NORTHPORT AL | TRIBUTARY TO YELLOW CREEK NEAR NORTHPORT AL YELLOW CREEK NEAR NORTHPORT AL TRIB TO YELLOW CK AB WATERMELON RD NR TUSCAL CYPRESS CREEK NEAR HOLT AL HURRICANE CREEK NEAR CEDAR COVE AL | HURRICANE CREEK NEAR HOLT AL
UNNAMED TRIB TO CANE CREEK NEAR PEA RIDGE AL
ELLIS CREEK NEAR CLEVELAND AL
LITTLE TYRO CREEK NEAR SANDTOWN AL
TYRO CREEK NEAR NEW LEXINGTON AL | DRY BRANCH NEAR SAMANTHA AL
BEAR CREEK NEAR SAMANTHA AL
NORTH RIVER NEAR SAMANTHA AL
JOHNSON BRANCH NEAR UTLEY AL
CRIPPLE CREEK NEAR SAMANTHA AL | CRIPPLE CREEK EAST OF SAMANTHA AL
TRIBUTARY TO TURKEY CREEK NEAR TUSCALOOSA AL
TURKEY CREEK NEAR TUSCALOOSA AL
BARBEE CREEK NEAR NEW LEXINGTON AL | | | HYDROLOGIC
Unit
Code | 03160111
03160111
03160112
03160112 | 03160112
03160112
03160112
03160112 | 03160112
03160112
03160112
03160112 | 03160112
03160112
03160112
03160112 | 03160112
03160112
03160112
03160112 | 03160112
03160112
03160112
03160112 | 03160112
03160112
03160112
03160112 | ٠ | | Wiles | T | | | | | | | | | |----------------------------|---|---|--|---|---|--|--|--|---------------------------------------| | NOT2 032
AIG3M | | 0000 | 40000 | 00000 | 00000 | 00000 | 00000 | 0000 | · | | NOITASINADRO
3000 | | USGS
USGS
USGS
USGS
USCE | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USCE | | | SUSP DISCHARGE | | ۷Z | 37073 | 0 ∢ 0 0 | < ₪ 0 | r Z ∢ ſΩ | V | ш ш | | | BED MAT PART SIZE | · | | | | | | | | | | 2026 PART SIZE | | 044 | υ
ΣΣΣΣΣ | <u> </u> | 4ZE0Z | EXAE | Z Z W C X | <u>м мм</u>
« м | | | | | 40440 | 22222 | S S A E O | ស សស | 57454 | വവ | 4 | | | OW END
FABY | | | 197
197
197
197 | 197
197
197 | 197
197
197 | 197 | 197
197
197 | 197 | - | | OW BEGIN | | 1977
1978
1977
1978 | 1969
1969
1969
1970
1969 | 1969
1972
1972
1972
1970 | 1973
1965
1969
1969 | 1969
1978
1978
1969 | 1969
1958
1972
1972
1969 | 1966
1971
1969
1973 | | | BASIN
0ESCRIPTOR | | | 988 | 8888 | 000 | 88 8 | 88 8 | 000
4 4 4 | | | , | | 88 | 88888 | 8888 | 88 | 8 88 | 88 8 | 88 | | | DRAINAGE
AREA | | 5800.00
5800.00 | 18500.
239.
51.
342.
913. | 1660.00
490.00
2680.00
752.00 | 304.
240. | 100.00
612.00
3120.00 | 3510.00
6690.00
361.00 | 52.
556. | | | 30 39YT
3T12 | | N A A A A A A A A A A A A A A A A A A A | AS AS AS | NS N | NS AS | N A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | N N N N | · · · · · · · · · ·
· · · · · · · · · | | COUNTY | | 125
065
065
065
025 | 023
075
075
075
023 | 153
153
153
041
031 | 067
067
035
031
035 | 035
061
067
111 | 041
039
059
059
035 | 111
039
059
087 | | | 3TAT2 | | 88888 | 001
028
028
028
028 | 028
028
028
028
028 | 028
028
028
028
028 | 028
028
028
028
028 | 028
028
028
028
028 | 028
028
028
028 | | | LONGITUDE | | 0873848
0875039
0875037
0874927 | 0880745
0884524
0884035
0884515
0884910 | 0884012
0884100
0883110
0883252
0892425 | 0891932
0891800
0892453
0892600 | 0891335
0890655
0890433
0890646 | 0884830
0884620
0883346
0883632
0891212 | 0890100
0882741
0883240
0891805 | | | LATITUDE | | 333027
324644
324646
324558
313114 | 314530
322110
322208
321755
321032 | 314143
314046
314138
310854
314225 | 313709
312620
312532
312920
312344 | 311540
315758
314707
311957 | 310610
305242
302218
302258
310308 | 310130
304832
302535
301125 | | | STATION NAME AND LOCATION | | BARBEE CREEK NEAR SAMANTHA AL BLACK WARRIOR RIVER BL WARRIDR DAM NR EUTAW BLACK WARRIOR RIVER AT WARRIOR DAM NR EUTAW BLACK WARRIOR R BL WARRIOR L&D NR SAWYERVILL TOMBIGBEE R JACKSON AL | TOMBIGBEE R BL COFFEEVILLE L&D NR COFFEEVILL OKATIBBEE CREK NR MERIDIAN, MS. SOWASHEE CR AT MERIDIAN, MISS OKATIBBEE CREEK AT ARUNDEL, MS. CHICKASAWHAY RIVER AT ENTERPRISE, MS. | CHICKASAWHAY RIVER AT WOOD CHICKASAWHAY RIVER NR WAYN BUCKATUNNA CREEK NEAR DENHCHICKASAWHAY RIVER AT LEAK LEAK RIVER NR COLLINS, MS. | LEAF RIVER NEAR ELLISVILLE, MISS.
LEAF RIVER AT EASTABUCHIE, MS.
BOWIE CREEK NR HATTIESBURG, MS.
OKATOMA C AT SANFORD MS
BOWIE RIVER NR GLENDALE, MS. | LEAF RIVER NR PALMER, MS. TALLAHALA CREEK AT WALDRUP, MS. TALLAHALA CREEK NR SANDERSVILLE, MS. TALLAHALA CREEK NR RUNNELSTOWN, MS. | LEAF RIVER NR MC LAIN, MS. PASCAGOULA RIVER NR BENNDALE, MS. PASCAGOULA RIVER AT HWY 90 AT PASCAGOULA, MI WEST PASCAGOULA RIVER AT HWY 90 AT GAUTIER, BLACK CREEK NR BROOKLYN, MS. | CYPRESS CREEK NR JANICE, MS.
ESCATAWPA RIVER NEAR AGRICOLA MS
ESCATAWPA RIVER AT MOSS POINT, MS.
MISS SND BL ST LOUIS B,IWW MI 55 | • | | HYDROLOGIC
UNIT
CODE | | 03160112
03160112
03160113
03160113 | 03160203
03170001
03170001
03170002 | 03170002
03170002
03170003
03170004 | 03170004
03170004
03170004
03170004 | 03170005
03170005
03170005
03170005 | 03170005
03170006
03170006
03170007 | 03170007
03170008
03170008 | | | MOT2 G32
AIG3M | 22200 | 0000 | 0000 | 00400 | | |----------------------------|--|--|---|--|--| | ORGANIZATION
GODE | uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USCE
USGS | USGS
USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | Σ ⊢α | 1
1
1
1 | α / μ | | | BEO MAT PART SIZE | | | | | | | SUSP SED CONCEN | | | ш_ | ш | | | | | ₹೫₹№ | | α Σ m Σ m | | | OW END
FA3Y | 1966
1966
1966 | 197
197
197 | 197
197
197 | 1966 | | | OW BEGIN | 1964
1964
1964
1973 | 1964
1974
1968
1974
1969 | 1969
1964
1968
1968 | 1944
1970
1965
1969
1952 | | | MIZAB
ROTGIRJZ30 | 000
400 | 004 | 004
004 | 0004 | | | DRAINAGE
AREA | 92.40 | 308.00
1347.00
3430.00 | 3790.00
5040.00
5690.00 | 6630.00
130.00
1210.00 | | | TYPE OF
SITE | 3333 | M M M M M M M M M M M M M M M M M M M | N N N N N N N N N N N N N N N N N N N | MS M | | | COUNTY | 047
047
047
059 | 047
045
079
121
049 | 049
029
077
071
091 | 059
109
147
147 | | | 3TAT2 | 028
028
028
028 | 028
028
028
028
028 | 028
028
028
022
028 | 022
028
028
028
022 | | | I ONGITUDE | 0890210
0885440
0890210
0885833 | 0891629
0891824
0893135
0900350 | 0901436
0900825
0900516
0893945
0895050 | 0894915
0894425
0900730
0901220 | | | LATITUDE | 302917
303035
302917
302917
302456 | 302901
301904
324225
322347
321030 | 321035
315230
313312
300952
311416 | 304735
303223
310650
310120
303745 | | | STATION NAME AND LOCATION | TCHOUTALABOUFFA R NR BILOXI MISS
TUXACHANIE C NR BILOXI MISS
BILOXI R NR LYMAN MISS
BACK BAY OF BILOXI NEAR BILOXI, MISS.
BACK BAY OF BILOXI AT OCEAN SPRINGS, MISS. | WOLF RIVER NR LANDON, MS.
ST. LOUIS BAY AT HWY 90 AT BAY ST. LOUIS, MI
PEARL RIVER NEAR CARTHAGE, MISS.
PEARL RIVER AT BARNETT RE NEAR JACKSON, MISS
PEARL R AB BYRAM MS | PEARL RIVER AT BYRAM, MS. PEARL R NR GEORGETOWN MS PEARL RIVER NEAR MONTICELLO, MISS. RIGOLETS O.5 MI W OFLIT RIGOLETS PEARL RIVER NEAR COLUMBIA, MISS. | PEARL RIVER NR BOGALUSA
HOBOLDCHITTD CREEK NR PICAYUNE, MS.
MCGEES C AT TYLERTOWN MISS
BOGUE CHITTO NR LEHR MS
BOGUE CHITTO NEAR BUSH, LOUISIANA | | | HYDROLOGIC
Unit
Code | 03170009
03170009
03170009
03170009 | 03170009
03180001
03180002
03180002 | 03180002
03180003
03180004
03180004 | 03180004
03180004
03180005
03180005 | | | A1G3M | | | | | | | | | | |----------------------------|-------------|--|---|--|---|---|---|--|---| | NOT2 G32 | | | <u> </u> | 40000 | <u> </u> | 0000 | 00000 | 2000 | | | NOITAXINA2RO
3000 | | uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | uses
uses
uses
uses
uses | USGS
USFS
USFS
USFS
USFS | USFS
USFS
USGS
MNO1 | M W W W W W W W W W W W W W W W W W W W | | | SUSP DISCHARGE | | | ∢ | | | | ш | | | | BED MAT PART SIZE | | ΣΣΣΣΣ | Σ ΣΣΣ | 20000 | বববছৰ | ⋖ | | | | | ZOZE EVEL SIZE | | ZZZZZ | Σ ΣΣΣ | 20000 | 44424 | ⋖ | w | ~~~ | · | | | | Z Z Z Z Z | ΣαΣΣΣ | ₹ 0000 | 00020 | <u> </u> | mmmxx | XXXX | | | ON3 WO
RA3Y | | | | | | 197 | | | \ | | OW BEGIN | | 1978
1977
1977
1977 | 1977
1964
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1968
1975
1974
1974 | 1974
1974
1968
1979
1979 | 1979
1979
1979 | | | NIZAB
Rotqirəzəd | | | | | | | 900 | | | | DRAINAGE
AREA | 40 | | | | | | 140.00 | | | | TYPE OF | _6_ | X X X X X X X X X X X X X X X X X X X | NS NA SW | S S W
D S W
D R | NS NA SW | N N N N N N N N N N N N N N N N N N N | N M M M | A A A A | | | COUNTY | <u></u> | 021
139
127 | 115
109
075
075
007 | 117
131
133
079
079 | 007
007
031
031 | 031
031
031 | 031
031
075
075
075 | 075
075
075
075 | | | 3TAT2 | Ш | 026
026
026
026
029 | 029
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055
055 | 055
027
027
027
027 | 027
027
027
027
027 | 027
027
027
027 | | | LONGITUDE | S | | 0874635 | | | 0905400
0904231
0901030
0900938 | 0900933
0900934
0911200
0912053
0911933 | 0912349
0912333
0912244
0912041 | | | LATITUDE | _AKES | | 453525 | | | 475100
473823
474830
474920 | 474830
474900
472015
471918
471840 | 471943
471507
471516
471556 | · | | STATION NAME AND LOCATION | GREAT L | ST JOSEPH R AT ST JOSEPH MI
GRAND R AT GRAND HAVEN, MI
AUSABLE R. CSCOCA MI
HURON R BL ROCKWOOD MI
ST CLAIR R AT PORT HURON MI | RIVER RAISIN AT MONROE MI
MENOMINEE RIVER NEAR PEMBINE, WI
MENOMINEE R AT MARINETTE
PESHTIGO R AT PESHTIGO
THUNDER BAY AT ALPENA MI | SHEBOYGAN R AT SHEBOYGAN, WI
MENOMONEE R AT F NR MENOW FALL WI
MENOMONEE R AT R CT AT MEN FALL WI
W DENVER STM SEW AT 91 AT MILWAUKE
MARTHA WASH DRAIN AT WAUWATOSA WI | N FISH C NR ASHLAND WI
NORTH FISH C NR INO WI
BOIS BRULE R NR CLOVERLAND WI
AMNICON R WEIR WI
POKEGAMA R NR S SUPERIOR WI | POKEGAMA R NR DEWEY WI
SAWBILL L T62N,R4W 20 MI N TOFTE
POPLAR R.9MI.E TOFTE MINN
KIMBALL CK TRIB.10 MI.NE GD.MAR.
UNNAMED CK 10 MI.NE GRAND MARAIS | KADUNCE CK TRIB. 10 MI.NE GND.MAR
KADUNCE CK TRIB. 10 MI.NE GND.MAR
BAPTISM RIVER NEAR BEAVER BAY, MN
EAST BRANCH BEAVER RIVER < | LITTLE
THIRTYNINE CREEK < WEST BRANCH BEAVER RIVER < BEAVER RIVER < BEAVER RIVER < | | | HYDROLOGIC
Unit
Code | | 04002200
04002200
04002200
04002200
04002200 | 04002200
040023 K
04002300
04002300 | 04002600
04002600
04002600
04002600 | 04002700
04002700
04002700
04002700 | 04002900
04010101
04010101
04010101 | 04010101
04010101
04010102
04010102 | 04010102
04010102
04010102
04010102 | | | VIG3W | | | | | | | | | |----------------------------|--|--|---|---|--|---|---|---------------------------------------| | MOT2 G32 | 22 | 0000 | 0 000 | 00000 | 00000 | 0000 | 0000 | | | NOITAXINABSO
3003 | MNO18
MNO18
USFS
USGS | USGS
USGS
USFS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | ыx | α 4 3 | 0 0 0 0 | D O O Q W | 42444 | 44444 | 0001 | | | 3512 TAAR TAM G38 | | | Σ | ≻Σ | | | ΣΣ> | ~~~~~ | | SUSP SED CONCEN | ω∢ | ∀ 0 | DUKE | > E W | шш | <u> </u> | ΣΣ≻ | | | | <u> </u> | 0 ω ω
α∢⊼≯Ω | 00000 | 9 0 0 E | V Z A A A | <u> </u> | 00 K | | | OW END | | 197 | 1979 | 197
197
197 | 196 | 197: | 197
197
197 | | | OM BECIN | 1979
1979
1974
1958 | 1978
1973
1975
1976
1976 | 1975
1975
1927
1978
1975 | 1974
1975
1975
1973 | 1967
1964
1970
1977
1977 | 1977
1977
1977
1977 | 1974
1975
1974
1974 | | | MIZAB
ROTAIR3230 | 0 14 | | 900 | 900 | 888
444 | 900 | %
8
8
8
8 | | | DRAINAGE
AREA | 3430.00 | . 06 | 8.83 | 5.18
.64
6.27
422.00 | 4.01
120.00
181.00 | 35.20 | 5.90
.57
21.50
83.40 | | | TYPE OF | A A A A A A A A A A A A A A A A A A A | ***** | N N N N N N N N N N N N N N N N N N N | SSSSS | N N N N N N N N N N N N N N N N N N N | N N N N N | A S A S A S A S A S A S A S A S A S A S | | | YTNUOD | 075
075
137
137 | 031
031
075
017 | 017
017
031
031 | 031 | 031
031
007
007 | 007
007
077
007 | 007 | | | 3TAT2 | 027
027
027
027
055 | 055
055
027
027 | 027
027
027
055
055 | 055
055
055
055 | 055
055
055
055 | 0 55
0 55
0 55
0 55
0 55 | 055
055
055
055 | · · · · · · · · · · · · · · · · · · · | | LONGITUDE | 0911754
0912430
0920715
0922507 | 0920807
0920824
0913936
0922855
0922930 | 0922745
0922746
0922320
0921446
0921347 | 0921405
0921418
0921402
0921154
0920538 | 0914255
0913543
0913607
0912108 | 0912154
0912113
0912137
0912153
0905702 | 0910618
0910339
0910347
0904226 | | | LATITUDE | 471543
471059
472830
464212 | 463509
463444
472054
463103 | 463056
463055
463130
463301
462943 | 463013
463012
463033
463328
463800 | 463851
463216
464220
463912
463906 | 463902
463823
463836
463838
464120 | 463328
463427
463257
461614 | | | STATION NAME AND LOCATION | BEAVER RIVER <
SPLIT ROCK RIVER <
ST LOUIS RIVER7MISE AURORA MINN
ST. LOUIS RIVER AT SCANLON, MN
NEMADJI RIVER NEAR DEDHAM, WI | NEMADJI RIVER NEAR BOYLSTON, WI
BLACK RIVER NR. BOYLSTON, WIS.
CLOQUET R.22MI.N.TWO HARBORS
ELIM CREEK NEAR HOLYOKE, MN | SKUNK CREEK BELOW ELIM CREEK NEAR HOLYOKE, M
SKUNK CREEK BELOW ELIM CREEK NR HOLYOKE, MN
DEER CREEK NEAR HOLYOKE, MN
NEMADJI RIVER NEAR DEWEY, WI
LITTLE BALSAM CREEK AT PATZAU, WI | LITTLE BALSAM CREEK NEAR PATZAU, WI
LITTLE BALSAM CREEK TRIBUTARY NEAR PATZAU, W
LITTLE BALSAM CREEK NEAR FOXBORO, WI
BALSAM CREEK NR. PATZAU, WIS.
NEMADJI RIVER NEAR SOUTH SUPERIOR, WI | PEARSON CREEK NEAR MAPLE, WI
BOIS BRULE RIVER AT BRULE, WI
BOIS BRULE RIVER NEAR LAKE SUPERIOR, WI
MIDDLE CREEK NEAR IRON RIVER, WI
MIDDLE CREEK AT HATCHERY NEAR IRON RIVER, WI | MIDDLE CREEK AT TOWN ROAD NEAR IRON RIVER, W
SCHACTE CREEK SPRING NEAR IRON RIVER, WI
SCHACTE CREEK NEAR IRON RIVER, WI
SCHACTE CREEK AT TOWN ROAD NEAR IRON RIVER.
SIOUX RIVER NEAR WASHBURN, WI | PINE CREEK AT MOQUAH, WI
PINE CREEK TRIBUTARY AT MOQUAH, WI
PINE CREEK NEAR MOQUAH, WI
BAD RIVER NEAR MELLEN, WI | | | HYDROLOGIC
Unit
Code | 040 10 102
040 10 102
040 1020 1
040 1020 1 | 04010201
04010201
04010202
04010301
04010301 | 04010301
04010301
04010301
04010301 | 04010301
04010301
04010301
04010301 | 04010301
04010301
04010301
04010301 | 04010301
04010301
04010301
04010301 | 04010301
04010301
04010301
04010302 | | | AIG3M | | | | | | | | | |----------------------------|--|--|--|---|--|---|--|--| | MOT2 G32 | 0000 | 00000 | 00000 | 00400 | 0000 | | | | | ORGANIZATION
CODE | USGS
USGS
USGS
USGS | N | USES
USES
USES
USES
USES | USGS
USGS
WIOO
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | Qm×mr | э Б м ∑ м | αш | 4 | Σ | | Z | | | 3512 TRAY TAM G38 | | | | шш | ш | | | | | 2025 SANT SIZE | <u>ωα</u> 3 | | <u>αω≻≻</u> | > ww | <u> </u> | 000000 | 0000 | | | | омхиг |) Emmem | Z & w > > | SC SC
VAAEE | សលល | >>> E> | <u> </u> | | | OW END
YEAR | | | | 197
197
197 | 197
197
197 | | 1967 | | | OW BEGIN | 1972
1972
1976 | | 1975
1963
1969
1980
1980 | 1964
1975
1964
1960
1977 | 1960
1972
1972
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1964 | | | MISAB
ROTGIRDS30 | 90 | 5 6 88 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00 0
4 00 4 | 88 8
44 4 | | 8 | | | DRAINAGE
AREA | 1 1 | 0000 | 13.20
80900.00
106.00 | 418.00
.84
127.00 | 110.00
526.00
705.00 | | 389.00 | | | TYPE OF
STI2 | A 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | N N N N N | ************************************** | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | MS MS MS | NS N | | | СОПИТК | 051
003
001 | 003
131
131
131
061
095 | 031
083
033
071 | 117
089
131
061 | 061
071
071
041
083 | 000
041
041
041 | 041
041
041
071 | | | 3TAT2 | 0055
0055
0055 | பையைய | 027
026
026
055
055 | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055 | | | LONGITUDE | 0902430
0904145
0905605 | 0904113
0891000
0891225
0883121 | 0900917
0890842
0842517
0874555 | 0874535
0875538
0881800
0873323 | 0873323
0873811
0874255
0883328
0881800 | 0884913
0884907
0884445
0882605 | 0882802
0885018
0884314
0881557 | | | LATITUDE | 462309
462915
462934
462934 | 63637
62300
64315
65828
63430 | 474734
475523
462929
440805 | 434425
432628
432800
442730 | 442730
441416
440626
452216
445153 | 453902
454022
453857
453042
452900 | 452533
460130
460029
455731 | | | STATION NAME AND LOCATION | ALDER CREEK NEAR UPSON, WI
BAD RIVER NEAR ODANAH, WI
WHITE RIVER AT RESERVOIR NR SANBORN, WIS. | BAD RIVER AT ODANAH, WI PAULDING#2CG T46N R39W S15 ONTONAGON R NR ROCKLAND, MICH STURGEON R NEAR CHASSELL, MI TAHQUAMENON RIVER NR TAHQUAMENON PARADISE, M | KODONCE CREEK 8 MI.E G MARAIS
WASHINGTON CREEK AT WINDIGO, MICH.
ST MARYS RIVER ABOVE SAULT STE MARIE, MICH.
BRANCH RIVER NEAR BRANCH, WI
PIGEON R AT EVERGREEN PK AT SHEBOYGAN,WI | SHEBOYGAN RIVER AT SHEBOYGAN, WI
MILWAUKEE RIVER TRIBUTARY NEAR FREDONIA, WI
KOHLSVILLE R
E KEWAUNEE RIVER NEAR
KEWAUNEE, WI
KEWAUNEE RIVER NEAR KEWAUNEE, WI | KEWAUNEE RIVER NR KEWAUNEE, WIS. EAST TWIN RIVER AT MISHICOT, WI MANITOWOC RIVER AT MANITOWOC, WI NB OCONTO R NR CARTER WI OCONTO RIVER NEAR GILLETT, WI | SB PESHTIGO R NR ARGONNE WI
NB PESHTIGO R NR ARGONNE WI
OTTER C NR ARGONNE WI
PESHTIGO R NR BLACKWELL WI
RAT RIVER NR WABENO WI | OTTER C NR CARTER WI
ELVOY C NR NELMA WI
ALLEN C BL CONFLUENCE GASPARDO C
BRULE RIVER NEAR FLORENCE, WI | | | HYDROLOGIC
Unit
Code | 04010302
04010302
04010302 | 04010302
04020102
04020102
04020104 | 04020300
04020300
04020300
04030101 | 04030101
04030101
04030101
04030102 | 04030102
04030102
04030102
04030104 | 04030105
04030105
04030105
04030105 | 04030105
04030106
04030106 | | | · · · · · · · · · · · · · · · · · · · | | | | | | | *** <u>**********************************</u> | |---------------------------------------|---|---|---|---|---|---|---| | ROTE GBZ
AIGBM | 00400 | ۵ | 0000 | 0000 | 0 4 0 0 0 | 00000 | ۵۵۵ | | OMGANIZATION
CODE | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | SUSP DISCHARD | Σ | 4 | 4 4 W Z 4 | ш | 0 0 | 7 M A | C Z Z | | 2 TRAS TAM 038 | | | | | Σ | ⋖ | NN | | SIZ TAAR REUZ | _ | <u> </u> | Σ | m Z d d | 200 | O m 4 | NNB | | SUSP SED CONCI | <u>გ</u> ₹ ₹ ₩ ८ | <u> </u> | A A M Z A | m ⊼ A A A | Z B D m D | A m A m A | C E E E | | OW END
RA3Y | 197 | 1967 | 1967
1967
1969 | 1964
1964
1969 | 1971
1964
1971 | 1973
1975
1978 | | | OM BECIN | 1963
1971
1954
1960 | 1967
1977
1977
1977
1977 | 1966
1967
1977
1977 | 1955
1961
1961
1961 | 1960
1963
1963
1962 | 1953
1956
1973
1966
1965 | 1977
1977
1977
1977 | | MISAB
Bothirdead | 004
014
004
124 | 904 | 000
4 4 4 | 0024
004
004
004 | 000
014
000
014 | 124
004
024 | 900 | | DRAINAGE
AREA - | 131.00
528.00
3110.00
133.00
316.00 | 16.20 | 10.20
253.00
4020.00
2.43 | 450.00
46.00
2.80
7.45 | 34.40
128.00
8.42
9.25
23.60 | 124.00
870.00
16.00
73.70
1430.00 | | | TYPE OF | * * * * * * * * * * * * * * * * * * * | N N N N N N N N N N N N N N N N N N N | A S A S A S A S A S A S A S A S A S A S | MS SW
SW
SW
SW | A A A A A A A A A A A A A A A A A A A | MS SW
SW
SW
SW | 3 3 3 3
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | YTNUDO | 037
037
109
103
043 | 041
041
041
037
037 | 037
037
075
075
041 | 041
103
103
103 | 103
103
103
103 | 103
041
077
047
047 | 041 | | 3TAT2 | 055
055
055
026
026 | 0055
0055
0055
0055 | 0055
0055
0055
0055 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
055
055
055 | 0055
0055
0055 | | LONGITUDE | 0882747
0881331
0874632
0880009 | 0885500
0885201
0884108
0883948 | 0883140
0883340
0875904
0873940
0885802 | 0871205
0875311
0875347
0875409
0875552 | 0875321
0874530
0873621
0874126 | 0872600
0871249
0893443
0890509
0885708 | 0885440
0885749
0885952
0885950 | | LATITUDE | 454549
455016
453556
463325 | 454955
455600
455226
455534
454748 | 454530
454440
452946
451920
453042 | 454520
462957
462800
462822
462648 | 462508
462340
462222
462440 | 461710
455431
435352
434109
435714 | 452952
452918
452846
452844 | | STATION NAME AND LOCATION | POPPLE RIVER NEAR FENCE, WI
PINE R BELOW PINE R POWERPLANT NEAR FLORENCE
MENOMINEE RIVER NEAR PEMBINE, WI
PESHEKEE RIVER NEAR CHAMPION, MICH.
MICHIGAMME RIVER NEAR WITCH LAKE, MICH. | PINE RIVER AT PINE RIVER CAMPGROUNDS, WIS. NB PINE R AB DAM NR ALVIN WI PINE R NR LONG LK WI STEVENS C NR TIPLER WI POPPLE R AT POPPLE R WI | POPPLE RIVER NR. FENCE, WIS. S. BR. POPPLE RIVER NR. FENCE, WIS. PIKE RIVER AT AMBERG, WI MENOMINEE RIVER NEAR MCALLISTER, WI GLISKE CREEK NEAR MOLE LAKE, WI | FORD RIVER NR HYDE, MICH. MIDDLE BRANCH ESCANABA RIVER AT HUMBOLT, MIC
LAKE LORY OUTLET NR HUMBOLDT, MICH. MCKINNON LAKE OUTLET NR HUMBOLDT, MICH. LAKE LORY OUTLET NE REPUBLIC, MICH. | BLACK RIVER NR REPUBLIC, MICH.
M BR ESCANABA RIVER NR ISHPEMING, MICH.
GREEN CREEK NR PALMER, MICH.
ELY CREEK NR NATIONAL MINE, MICH.
SCHWEITZER CREEK NEAR PALMER, MICH. | EAST BRANCH ESCANABA RIVER AT GWINN, MICH ESCANABA RIVER AT CORNELL, MICH LAWRENCE CREEK NEAR WESTFIELD, WI GRAND RIVER NEAR KINGSTON, WI FOX RIVER AT BERLIN, WI | SWAMP CREEK NEAR CRANDON, WI
SWAMP CREEK ABOVE RICE LAKE, AT MOLE LAKE, W
SWAMP CREEK BELOW RICE LAKE, AT MOLE LAKE, W
SWAMP C NR MOLE LK WI | | HYDROLOGIC V
Unit
Code | 04030106
04030106
04030106
04030107 | 04030108
04030108
04030108
04030108 | 04030108
04030108
04030108
04030108 | 04030109
04030110
04030110
04030110 | 04030110
04030110
04030110
04030110 | 04030110
04030110
04030201
04030201 | 04030202
04030202
04030202
04030202 | | WEDIY . | | | | | | | | · · · · · · · · · · · · · · · · · · · | |----------------------------|---|---|--|--|---|---|---|---------------------------------------| | MOT2 G32 | ۵۵ | | 00000 | 00000 | 00000 | 00000 | 0000 | | | NDITAZINADNO
3000 | U S G S
U S G S
U S G S | 000000000000000000000000000000000000000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 44 | α ব ব ব | m m X X G | α α∢ | 4 4 | ⋖ | ∢ шш | · · · · · · · · · · · · · · · · · · · | | 3512 TAA9 TAM 038 | | ш ш | | ш ш | шш | <u> </u> | > 111.40 | | | SUSP PART SIZE | <u> </u> | mm RAAAm | ш п Х Х СС
пі | Ж | AMAMM MM | шп ▲ п п | ∀ Β Β Β Ν | · · · · · · · · · · · · · · · · · · · | | UWZI | ıo | / m 10 | r 66 | | ~ D | ന വ | 60 60 | | | ON3 WD
RA3Y | 197 | *** | <u> </u> | | 197 | 197 | 197 | · · · · · · · · · · · · · · · · · · · | | DW BEGIN | 1977 | 957 997 997 996 996 996 996 | 1964
1960
1978
1978 | 1972
1961
1961
1966 | 1961
1971
1966
1968
1977 | 1968
1977
1973
1968
1968 | 1969
1966
1964
1974 | S | | BASIN
DESCRIPTOR | 004
004 | | 004
004
004 | 003
004
004 | 00
4
00 | 80
80
80
80
80 | 8
8
8
8
8
8
8
8
8
8 | | | | 8.8. | 8 828 8 | 88888 | 888 | 8 9 | 8 2 4 | 8888 | | | DRAINAGE
AREA | 460.
812. | 95
40
14
14 | 20047 | 49.
57. | 38.
138. | 54.
43.
148. | 432.
120.
696.
19. | | | TYPE OF | 3 3 S | AS A | N N N N N N N N N N N N N N N N N N N | NS N
S N
S N
S N | AS S A S S A S S A S S A S A S A S A S | AS A A S | AS AS | | | YTNUO3 | 067
067
078 | 115
115
135
073
087
097 | 135
009
127
091
091 | 079
079
079
101 | 101
059
047
131 | 039
039
117
131 | 089
089
079
131 | | | 3TAT2 | 0 5 5
0 5 5
0 5 5
0 5 5 | 055
055
055
055 | 10.10.00.00.00 | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055 | | | JOE | | | 10 10 10 0 | 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | 23
32
38 | | | LONGITUDE | 34630
34400
33918 | 44 44 71 71 71 | 0000 | 000000 | 9 2 0 2 5 6 1 3 3 | 0881118
0881118
0880043
0880339 | 53
54
54 | | | 9 | 8 8 8 0
8 8 0
9 8 8 0 |
889
880
880
880
880
880
880
880
880
880 | 088
088
087
086 | 087
087
087
087
087 | 087,
087,
088(
088 | 8888 | 087
087
087
088 | | | ш | 20 44 20 | | | 30
25
25
55
05 | | | | | | LATITUDE | 1 8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 5523
4 5 5 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4505
3049
4301
3102 | 13301
13503
13603
12858 | 32822
31923
30600
31317 | | | LAT | 4 4 4
N N 4 | 44 4444 | 44444 | 4444 | 44444 | 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 4 4 4
6 6 6 6 | · | | STATION NAME AND LOCATION | | EMBARRASS RIVER NEAR EMBARRASS, WI
EMBARRASS R NR EMBARRASS WI
WOLF RIVER AT NEW LONDON, WI
LITTLE WOLF RIVER NEAR GALLOWAY, WI
LITTLE WOLF RIVER AT ROYALTON, WI
FIMMORROW RIVER AT AMHERST, WIS. | α IZU | DAK CREEK AT SOUTH MILWAUKEE, WI
ROOT RIVER NEAR FRANKLIN, WI
ROOT RIVER NEAR FRANKLIN, WI
ROOT RIVER CANAL NEAR FRANKLIN, WI
ROOT RIVER AT RACINE, WI | ROOT RIVER AT RACINE, WI
PIKE RIVER NEAR RACINE, WI
GRAND R. AT CO. HWY. H, NR. KINGSTON, WIS.
MILWAUKEE RIVER AT KEWASKUM, WI
MILWAUKEE R AT KEWASKUM WI | EAST BRANCH MILWAUKEE RIVER NEAR NEW FANE, WE B MILWAUKEE R AT NEW FANE WIN. BR. MILWAUKEE RIVER NR. CASCADE, WIS. NORTH BRANCH MILWAUKEE RIVER NEAR FILLMORE, N B MILWAUKEE R NR FILLMORE WI | MILWAUKEE RIVER AT WAUBEKA, WI
CEDAR CREEK NEAR CEDARBURG, WI
MILWAUKEE RIVER AT MILWAUKEE, WI
MENDMONEE RIVER AT GERMANTOWN, WI | | | HYDROLOGIC
Unit
Code | 04030202
04030202
04030202 | | 04030202
04030204
04040001
04040001 | 04040002
04040002
04040002
04040002 | 04040002
04040003
04040003
04040003 | 04040003
04040003
04040003
04040003 | 04040003
04040003
04040003
04040003 | | | W. 65 | | | | | | | | | |----------------------------|---|---|--|--|--|---|--|--| | NOTE GB2 | 0000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | ORQANIZATION
3000 | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | MIOO1
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | О Ф Ш Ш ц | | mmO A | шАшА | 44444 | шшааа | 4 4 4 | | | BED MAT PART SIZE | A | | | | | | ` | | | BSIS TRAS SUS | σ ακαν | ννααα | N A A M | | | | | | | SUSP SED CONCEN | ОАппп | , ммммм | шшОшА | E 4 4 4 4 | 44444 | বৰৰৰ | 4444 | | | ON3 WD
RA3Y | 1974 | 97
97
97 | 1978 | 1975
1975
1978 | | | 1974 | | | OW BEGIN | 1976
1973
1974
1974 | 1974
1974
1973
1973
1962 | 1974
1974
1974
1963
1965 | 1968
1973
1974
1974 | 1973
1973
1974
1974 | 1973
1974
1974
1974 | 1973
1973
1975
1973 | | | BASIN
DESCRIPTOR | 88888 | | 000
000
000
014 | 904 | 004 | 004
004 | | | | DRAINAGE
AREA | 32.00
32.00
34.70
8.66.64 | | 1.94
1.83
133.82
25.00
1120.00 | ъ. 10 | 4.19 | 20.20
24.60 | | | | TYPE OF | NS N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | NS N | | | COUNTY | 131
131
133
079 | 0770 | 079
079
079
079 | 4
059
059
059
059 | 059
059
059
059
059 | 059
059
059
059 | 059
059
059
059 | | | 3TAT2 | 055
055
055
055
055
055 | 055
055
055
055 | 055
055
055
055
055 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026 | | | LONGITUDE | 0880721
0880758
0880614
0880357 | 0880130
0880334
0880246
0880010 | 0875928
0875859
0875714
0875212
0874440 | 0853821
0843538
0843701
0843721 | 0843755
0843728
0843732
0843822
0843826 | 0843754
0843116
0843132
0843302
0843302 | 0843535
0843353
0843535
0843535 | | | LATITUDE | 431254
431132
441020
431030 | 30827
30728
30317
30238
30244 | 430302
430234
430135
425530
450249 | 415435
415317
415418
415423
415348 | 415401
415426
415458
415545
415604 | 415631
415631
415638
415627
415704 | 415744
415902
415808
415808 | | | STATION NAME AND LOCATION | JEFFERSON PARK DRAIN AT GERMANTOWN, WI
MENOMONEE RIVER AT MENOMONEE FALLS, WI
MENOMONEE RIVER AT MENOMONEE FALLS, WI
MENOMONEE RIVER AT BUTLER, WI | NOVES CREEK AT MILWAUKEE, WI
LITTLE MENOMONEE RIVER AT MILWAUKEE, WI
UNDERWOOD CREEK AT WAUWATOSA, WI
HONEY CREEK AT WAUWATOSA, WI
MENOMONEE RIVER AT WAUWATOSA, WI | SCHOONMAKER CREEK AT WAUWATOSA, WI
HAWLEY ROAD STORM SEWER AT WAUWATOSA, WI
MENOMONEE RIVER AT FALK CORP AT MILWAUKEE, W
OAK CREEK AT SOUTH MILWAUKEE, WI
PESHTIGO RIVER AT PESHTIGO, WI | ST JOSEPH R AT CONSTANTINE RD BRDG
BAW BEESE LAKE INLET AT M-99 NR HILLSDALE. M
BAW BEESE LK OUT AT LKVW RD AT HILLSDALE, MI
BAW BEESE LK OUT AT GRSWLD RD AT HILLSDALE.
KING LK INLET AT CAMBRIA RD AT HILLSDALE. | KING LAKE OUTLET AT M-99 AT HILLSDALE, MICH. KING LK OUT AT STEAMBURG RD AT HILLSDALE, MI ST. JOSEPH RIVER AT SOUTH ST AT HILLSDALE, M ST. JOSEPH R AT FAYETTE ST AT HILLSDALE, MIC ST. JOSEPH R AT FAYETTE ST AT HILLSDALE, MIC | WINDNA LK OUT AT HILLSDALE ST AT HILLSDALE, BEEBE CREEK AT MAUCK RD NEAR NORTH ADAMS, MI BEEBE CREEK AT KNOWLES RD NR NORTH ADAMS, MI BEEBE CREEK AT STATE RD NEAR NORTH ADAMS, MI BEEBE C AT LK PLEASANT RD NR NORTH ADAMS, MI | BEEBE CREEK AT MILNES RD NEAR HILLSDALE, MIC
BEEBE C TRIB AT BARKER RD NR NORTH ADAMS, MI
BEEBE C TRIB AT MILNES RD NEAR HILLSDALE, MI
UNNAMED TRIB TO BEEBE CR TRIB NR N. ADAMS, M | | | HYDROLOGIC
Unit
Code | 04040003
04040003
04040003 | 04040003
04040003
04040003
04040003
04040003 | 04040003
04040003
04040003
04040003 | 04050001
04050001
04050001
04050001 | 04050001
04050001
04050001
04050001 | 04050001
04050001
04050001
04050001 | 04050001
04050001
04050001
04050001 | | | ANTZ 032 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | 0000 | | |----------------------------|--|---|---|--|--|---|--|--| | ORGANIZATION
3000 | uses
uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | MIOO1
USGS
USGS
USGS | | | SUSP DISCHARGE | A PE | $\alpha < \alpha < m$ | は手ばらぬ | 4 m Z m R | OZANE | OKXX | *** | | | ISIS TRAN TAM 038 | | | | | | | | | | BEIS THAN NEUS | ш | | ш | ш | ш ш | × | ш | | | SUSP SED CONCEN | AAAAA | ααααα | \alphamxaa | AMSAR | OZAAm | OKXXX | ΣΧΧΧ | | | ON END
Ragy | | | | | 1974 | 1979 | 1975
1972
1972
1972 | | | OW BEGIN | 1973
1973
1974
1973 | 1974
1974
1976
1974
1974 | 1973
1974
1974
1973
1973 | 1974
1973
1974
1973
1973 |
1973
1974
1974
1973
1973 | 1978
1978
1963
1979 | 1973
1971
1972
1971 | | | MIZAB
Rotqiaj230 | 004
004 | 900 | 00
4
4 | 88 8
44 4 | 80
44
4 | 000
014
014 | 8 8 | | | DRAINAGE
AREA | 10.80
42.40
62.40 | 66.50 | 9.44 | 20.60
23.20
4.66 | 10.90 | 106.00
142.00
594.00
3666.00 | 139.00 | | | TYPE OF
STIE | X X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N A A A A A A A A A A A A A A A A A A A | N A A A A A A A A A A A A A A A A A A A | A S A S A S A S A S A S A S A S A S A S | | | YTNUOO | 059
059
059
059 | 059
059
059
059 | 059
059
059
059 | 059
059
025
059 | 023
023
059
025
025 | 151
113
039
021
139 | 139
025
025
025 | | | 3TAT2 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 018
018
018
026
026 | 026
026
026
026 | | | LONGITUDE | 0843535
0843640
0843548
0843820
0843931 | 0843952
0844020
0844234
0844316
0844413 | 0844552
0844142
0844155
0844420
0844420 | 0844504
0844647
0844822
0844950
0844715 | 0845010
0845004
0845004
0845038 | 0850635
0852832
0855055
0861535 | 0860643
0844811
0844819
0844739 | | | LATITUDE | 415802
415838
415759
415715 | 415858
415937
415858
420054
420158 | 420237
415558
415521
415747
415851 | 415908
420145
420304
420421
420032 | 420238
420407
420420
420604
420751 | 413804
412854
413536
414945
424621 | 424803
420850
420934
421211 | | | STATION NAME AND LOCATION | TR TO BEEBE C TR AT MILNES RD NR HILLSDALE.
HALF MOON LK OUT,N ADAMS RD,NR JONESVILLE. M
BEEBE CREEK TRIB AT BALL RD NR HILLSDALE, MI
BEEBE CREEK NEAR HILLSDALE, MICH.
ST JOSEPH RIVER AT MOORE RD NR HILLSDALE. MI | ST JOSEPH RIVER AT US-12 AT JONESVILLE, MICH ST. JOSEPH R BELDW STP AT JONESVILLE, MICH. BUTTERNUT CREEK NEAR JONESVILLE, MICH. ST. JOSEPH R AT STERLING RD NR LITCHFIELD, M ST. JOSEPH R AT MILL POND AT LITCHFIELD, MIC | ST. JOSEPH RIVER AT LITCHFIELD, MICH. SAND C TRIB BELOW MECHANIC RD NR HILLSDALE. SAND CREEK AT SAND LAKE RD NR JONESVILLE. MI SAND CREEK AT US-12 NEAR ALLEN, MICH. SAND C TRIBUTARY AT BEULOW RD NEAR ALLEN, MI | SAND CREEK AT JONESVILLE RD NR ALLEN, MICH. SAND CREEK AT LITCHFIELD, MICH. SAND CREEK AT STORMS RD NEAR LITCHFIELD, MIC ST. JOSEPH R AT S CO LINE RD NR LITCHFIELD, SOAP CREEK AT MCLAINE RD NEAR LITCHFIELD, | SOAP CREEK AT LITCHFIELD RD NR LITCHFIELD. M SOAP CREEK AT ELY RD NEAR LITCHFIELD, MICH. SOAP CREEK AT S CO LINE RD NR LITCHFIELD. MI ST. JOSEPH R AT T DRIVE SOUTH NEAR HOMER. MI ST JOSEPH RIVER AT CLARENDON, MICH. | PIGEON CREEK NR ANGOLA, IND.
NB ELKHART RIVER AT COSPERVILLE. IND.
ELKHART RIVER AT GOSHEN, IND.
ST. JOSEPH RIVER AT NILES, MICH.
BLACK R AT HOLLAND MI | BLACK R AT R AVE BRDG AT HOLLAND
SOUTH BRANCH KALAMAZOO RIVER AT HOMER, MICH.
SOUTH BRANCH KALAMAZOO RIVER BELOW HOMER, MI
SOUTH BRANCH KALAMAZOO RIVER NEAR ALBION, MI | | | HYDROLOGIC
UNIT
CODE | 0405000 1
0405000 1
0405000 1
0405000 1 | 04050001
04050001
04050001
04050001 | 04050001
04050001
04050001
04050001 | 04050001
04050001
04050001
04050001 | 04050001
04050001
04050001
04050001 | 04050001
04050001
04050001
04050001 | 04050002
04050003
04050003 | | | NO. | | | | | | | | | |---------------------------------------|--|--|---|---|--|---|---|-------------| | AOT2 G32
AIG3M | 00000 | 00000 | 00000 | <u> </u> | <u> </u> | 00400 | OOTO | | | NOITA SINADRO
3000 | USGS
USGS
USGS
WIOO1
WIOO1 | MIOO1
MIOO1
USGS
USGS | USGS
MIOO1
USGS
USGS
USGS | MIOO1
USGS
USGS
MIOO1
MIOO1 | MI001
MI001
MI001
MI001 | MI001
MI001
MI001
USGS | MI001
MI001
MI001 | | | SUSP DISCHARGE | X 4 m | ۷ ۹ | А мм | ∢ Z | | | | | | 35.12 TAA4 42U2
35.12 TAA4 TAM G38 | Σ | | ⋖ | 4 | | z | | | | ZOZE ZED CONCEN | X 4 Z Z Z | 22244 | ▼ ₹ ∀ ¥ W W | MAXEE | 2222 | EEEEZ | Z Z W Z | | | OW END | 1972
1971
1975 | 1975
1978
1975
1975 | 1975
1975
1976 | 1975
1975
1975 | 1975
1975
1975 | 1975
1975
1974 | 1975 | | | OW BEGIN | 1971
1971
1973
1973 | 1971
1971
1963
1962 | 1962
1971
1976
1973
1973 | 1963
1963
1979
1973 | 1963
1966
1970
1963
1971 | 1972
1972
1963
1973 | 1972
1973
1963
1972 | | | MISA8
ROTGIRDS30 | 004 | 904 | 004 | 0004 | | 004 | | | | DRAINAGE
AREA | 151.00 | 355.00
1230.00 | 1385.00 | 2840.00
5230.00 | | 2567.00 | | | | AD AMYT
ATIZ | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | SEESE | N N N N N N N N N N N N N N N N N N N | SEEEE | N N N N | | | YTMUOD | 025
075
005
065 | 065
093
065
065 | 067
067
059
059
059 | 139
067
139
015
081 | 105
105
105
121 | 121
121
721
721 | 121 | | | 3TAT2 | 026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026 | | | LONGITUDE | 0844455
0844141
0861153
0841853
0843257 | 0842855
0840451
0840201
0842840 | 0845445
0845518
0843238
0844156
0844206 | 0861432
0850413
0855721
0851405
0852910 | 0862732
0861636
0861648
0862523
0861728 | 0860542
0861846
0862629
0862339
0861225 | 0852651
0845320
0862004
0861209 | | | LATITUDE | 421425
421406
423850
424224
424318 | 423824
423937
423808
424340
424502 | 425120
430002
425604
425552
425634 | 430332
425820
430053
423658
425709 | 435708
440606
435640
43230
431007 | 431254
432532
434653
434548
431600 | 433807
442006
431344
431547 | | | STATION NAME AND LOCATION | SOUTH BRANCH KALAMAZOO RIVER AT ALBION, MICH
NORTH BRANCH KALAMAZOO RIVER NEAR ALBION, MI
KALAMAZOO RIVER AT SAUGATUCK, MICH.
RED CEDAR R AT ZIMMER RD BRDG
RED CEDAR R AT ELM ST BRDG IN LANS | SYCSMORE C AT HOLT RD BRDG M B RED CEDAR R AT OLD US 16 BRDG RED CEDAR R AT BOWEN RD BRDG RED CEDAR RIVER AT EAST LANSING, MICH GRAND RIVER AT LANSING, MICH | GRAND RIVER AT PORTLAND, MICH MAPLE R AT M-21 BRDG LAKE ADAMS OUT AT DEWEY RD NR NORTH ADAMS, M S SAND LK OUTLET AT BACON RD NR HILLSDALE, M M SAND LK OUT AT MECHANIC RD NR HILLSDALE, M | GRAND R AT THE MOUTH GRAND RIVER AT IONIA, MICH. GRAND RIVER AT EASTMANVILLE, MICH. THORNAPPLE R AT MCKEOWN RD HASTING THORNAPPLE R GRAND R DR BRDG NR AD | PERE MASQUETTE R AT LUDINGTON MI
BIG SABLE R AT QUARTERLINE RD BRDG
PERE MARQUETTE R AT SCOTTVILLE RD
WHITE R NR WHITEHALL MI
BLACK C NR MOUTH | BLACK CR AT EVANSTON RD BRIDGE WHITE R AT NORTHBOUND US31 PENTWATER R AT PENTWATER MI N BR PENTWATER R AT US 31 BRDG MUSKEGON RIVER AT US-31 NR MUSKEGON, MICH. | MUSKEGON R BL BIG RAPIDS
MUSKEGON R AT M55 BRDG
MUSKEGON R AT S BANK OF DUTLET
MUSKEGON R AT NORTHBOUND US31 | | | HYDROLOGIC
UNIT
CODE | 04050003
04050003
04050004
04050004 | 04050004
04050004
04050004
04050004 | 04050004
04050005
04050005
04050005 | 04050006
04050006
04050006
04050007 | 04060101
04060101
04060101
04060101 | 04060101
04060101
04060101
04060101 | 04060102
04060102
04060102
04060102 | | | SED STOR
MEDIA | 0000 | 2 0000 | 00000 | 00000 | ۵۵۵۵۵ | 00000 | 4400 | · · · · · · · · · · · · · · · · · · · | |----------------------------|---|--|--|---|---
--|---|---------------------------------------| | | | | | | | | | | | NOITAZINADRO
CODE | MIOO1 | USFS
USFS
USFS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
MIOO
USGS
MIOO
USGS | USGS
MIOO1
MIOO1
USGS | USGS
MIOO
WSGS
MIOO | MIOO1
MIOO1
USGS | | | SUSP DISCHARGE | ¥ Z ⊃ Z 3 | 20000 | 0 C C C C | X m ₹
⊃Σ⊃Σ⊃ | ZZZZO | Z ZZ Z | Z Z D D | | | BED MAT TAM COR | | | | <u> </u> | | | ω <u>-</u> | | | 3512 TRAY 42U2 | ш | αα | አ አ | X Z O | Z | ш | ш | | | SUSPER SED CONCEN | X X X X | | M M M N N | X X Z M Z | Z Z W W A | ZEONZ | Z Z W Z | | | OW END
RA3Y | 1975 | 97 | 1970
1970
1970 | 1975 | 1975 | 1975 | 1975 | | | OW BEGIN | 1972
1966
1973
1973 | 1971
1971
1971
1965
1965 | 1967
1966
1965
1973
1974 | 1974
1973
1973
1973 | 1979
1966
1973
1973 | 1978
1963
1973
1966
1963 | 1963
1963
1972
1977 | | | NISAB
ROT41R3230 | | | 004 | 004 | | 014 | 00
4
4 | | | DRAINAGE
AREA | 2420.00 | | 2000.00 | 1450.00 | | 1540.00 | 137.00
125.00 | | | TYPE OF | 3 3 3 3 3
0 0 0 0 0 | N N N N N N N N N N N N N N N N N N N | M M M M M M M M M M M M M M M M M M M | MS WS SW | MS MS NA SW | N S M S M S M S M S M S M S M S M S M S | MS SW
SW
SW | | | YTNUOD | 121
123
121
101 | 165
085
085
085 | 165
165
101
101
153 | 153
031
031
007 | 007
039
069
069
039 | 069
011
011
011 | 017
063
083
063 | | | 3TAT2 | 026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
055
026 | | | LONGITUDE | 0860902
0854830
0860211
0861924 | 0854600
0854100
0853500
0854100 | 0854234
0854540
0855347
0861909
0861435 | 0861454
0842821
0842852
0832616
0840840 | 0832616
0844540
0832603
0832030
0843738 | 0832628
0835048
0834113
0840112 | 0835351
0832727
0875712
0831430 | | | LATITUDE | 431606
432500
441454 | 41100
40700
40400
40646
40705 | 441016
441045
441247
441502
455818 | 455706
453843
453802
450416
445209 | 450415
444642
442610
442626
443955 | 442609
440205
440254
440421
435906 | 433406
434403
444908
435622 | | | STATION NAME AND LDCATION | MOSQUITD CR, END OF MILL IRON RD
MUSKEGON R AT BRDG ST BRDG NEWAGGO
MUSKEGON R NR BRIDGETON, MICH.
MANISTEE R AT MAPLE STREET BRDG | PINE R 2MI.SW HOXEYVILLE, MICH. PINE R 6MI N.LUTHER.MICH. PINE R 3MI.S BRISTOL,MICH. PINE RIVER NEAR LUTHER, MICH. SILVER CREEK NEAR LUTHER, MICH. | POPLAR CREEK NEAR HOXEVVILLE, MICH. PINE RIVER NEAR DUBLIN, MICH. PINE RIVER NEAR WELLSTON, MICH. MANISTEE R AT MANISTEE, MICH. MANISTIQUE RIVER ABOVE MANISTIQUE, MICH. | MANISTIQUE RIVER AT MANISTIQUE, MICH
CHEBOYGAN R AT US-23 BRIDGE
CHEBOYGAN R AT LINCOLN AVE AT CHEBOYGAN, MIC
THUNDER BAY R- DAM ABOVE 9TH ST
HUNT CREEK NEAR LEWISTON, MICH. | THUNDER BAY RIVER AT ALPENA, MI
AUSABLE R AT CO RD 612 BRDG W FRED
AU SABLE R AT REA RD BRIDGE
VAN ETTEN CR. AT M-171 BRIDGE
AU SABLE R AT KEYSTONE LNDG NR GRAYLING, MIC | AU SABLE R NEAR AU SABLE, MI
RIFLE R AT STATE ROAD
AU GRES R. AT US-23 BRIDGE
RIFLE RIVER NEAR STERLING, MICH.
PINE R NR STANDISH MI | KAWRAWLIN R AT KAWRAWLIN MI
SEBEWAING R AT SEBEWAING MI
PENSAUKEE RIVER NEAR PENSAUKEE, WI
PIGEON R NEAR CASEVILLE, MI | | | HYDROLOGIC
UNIT
CODE | 04060102
04060102
04060102
04060103 | 04060103
04060103
04060103
04060103 | 04060103
04060103
04060103
04060103 | 04060200
04070004
04070006
04070006 | 04070006
04070007
04070007
04070007 | 04070007
04080101
04080101
04080101 | 04080102
04080103
04080103
04080103 | | | MEDIA | | | | | · | | | | | |----------------------------|---|---|--|---|--|--|---|---|-------------| | NOTE GB2 | | 20000 | | 00000 | 00000 | 00000 | 00000 | 8800 | | | MOITAS INADAO
3000 | | M M M M M M M M M M M M M M M M M M M | MI0001
MI0001
MI0001 | USGS
USGS
USGS
USGS | MI001
MI001
MI001
MI001 | MIOO1
MIOO1
USGS
USGS
MIOO1 | MIOO
USGS
MIOO
USGS
MIOO | MI001
MI001
MI001
USGS | | | SUSP DISCHARGE | | | | 44 04 | | 44 | и п | Σ | | | 3512 TRAY TAM 038 | | | | | · | | | | | | SUSP PART SIZE | | EZZZZ | | 44 | 2222 | <u> </u> | Z N Z Z | MZZZ | | | | | ນ ເ ນ ເນ ແ | | <u> </u> | | | מ אט | ט ט ט | | | ON3 WO
RA3Y | | 197 | 197
197
197
197 | 197
197
197
197 | 1975
1975
1975 | 197
197
197
197 | 197 | 197 | | | NIGER WD
RAFY | | 1963
1973
1967
1967 | 1971
1971
1971
1972
1972 | 1975
1953
1966
1967
1971 | 1969
1971
1973
1973 | 1971
1971
1953
1967
1972 | 1971
1960
1973
1973
1973 | 1963
1963
1973
1967 | | | NISA8
ROTAIR3230 | | | | 0000
4444 | | 014
014 | 00
4 | 004 | | | DRAINAGE
AREA | | | | 81.20
368.00
538.00
637.00 | | 956.00
1188.00 | 841.00 | 222400.00 | | | 40 39YT
4TI2 | | N S R R R | N N N N N N N N N N N N N N N N N N N | SEEE | N K K K K K K K K K K K K K K K K K K K | N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | | | YTNUOD | | 111
111
057 | 073
049
093
145 | 049
155
155
145
049 | 049
049
049
087 | 087
145
049
145 | 157
145
017
145
011 | 069
069
069
147 | | | 31AT2 | | 026 | 026
026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026 | | | LONGITUDE | l | 0842317
0842317
0844127 | 0844453
0835024
0835739
0840620
0841042 | 0834808
0835645
0841052
0840620 | 0834849
0835138
0833914
0833703
0831904 | 0831904
0835207
0834610
0835713 | 0832629
0834453
0835331
0835747
0833410 | 0833138
0831929
0833124
0823649 | | | LATITUBE | | 4340147
433452
434757
432058 | 33801
24822
23537
31303
30304 | 424856
424925
430054
431517
430049 | 430302
430703
430404
430626
431028 | 430456
431408
430220
431830 | 432702
431940
433605
432446
440837 | 441534
442427
441550
425919 | | | STATION NAME AND LOCATION | | MILLUW K AI US 29 BKDG TITTABAWASSEE R MAPLETON TITTABAWASSEE R CURTIS RD EDENVILL PINE R AT HARRISON RD BRDG DINE D BI CT I DITS | CHIPPEWA R
SHIAWASSEE
SHIAWASSEE
SHIAWASSEE | SHIAWASSEE RIVER AT LINDEN, MICH. SHIAWASSEE RIVER AT BYRON, MICH. SHIAWASSEE RIVER AT DWOSSO, MICH. SHIAWASSEE RIVER NEAR FERGUS, MICH. | FLINT R AT ELMS RD BRIDGE FLINT R AT MOUNT MORRIS RD FLINT R AT CARPENTER RD BRDG FLINT R AT GENESEE RD BRDG FLINT R AT KLAN RD BRDG | S B FLINT R AT MAYFIELD RD BRDG
FLINT R AT E BURT RD BRIDGE
FLINT RIVER NEAR FLINT, MICH.
FLINT RIVER NEAR FOSTERS, MICH. | CAS R AT WELLS RD BRDG WAHJAMEGA
CASS RIVER AT FRANKENMUTH, MICH.
SAGINAW R AT MIDLAND ST BRIDGE
SAGINAW RIVER AT SAGINAW, MICH.
WHITNEY DRAIN E B AUGRES R US 23 | TAWAS R AT TAWAS CITY MI
AUSABLE R AT DSCODA MI
TAWAS R AT US 23 AT TAWAS CITY
ST CLAIR RIVER AT PORT HURON, MICH. | | | HYDROLOGIC
Unit
Code | | 04080104
04080201
04080201
04080202 | 04080202
04080203
04080203
04080203
04080203 | 04080203
04080203
04080203
04080203 | 04080204
04080204
04080204
04080204
04080204 | 04080204
04080204
04080204
04080204
04080205 | 04080205
04080205
04080206
04080206
04080300 | 04080300
04080300
04080300
04090001 | | | |
 | | | | | | | | |----------------------------|---|---|---|---
---|--|---|-------------| | ROT2 G32
AIG3M | 04000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | OROANIZATION
CODE | USGS
MIOO1
USGS
USGS
MIOO1 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
MIOO1 | MIOO1
USGS
MIOO1
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | и
и
и | wzzz | ZZZZ | 0 0Z | 65 m m m m | M 2 2 M | m 52.01 | | | ISIS TAA9 TAM G38 | | | | | | ΣΣ | W | | | 3212 TAA9 92U2 | ш ш | m 4 4 Z | Z < Z Z | <u> </u> | ∢ m m m m | α w Σ | шшс | | | 2026 SED CONCEN |
00
0.2 m m ≥ | 444
mmsss | 4444
SSS S | ZNZNZ | о
2 m m 2 m | 4 r
m 4 u
m 4 u m ₹ | ъ
л л я с | | | OW END
RABY | 197 | 1974
1974
1974 | 1974
1974
1974
1974 | 197 | 197 | 1974 | 1976 | | | OM BEGIN | 1960
1963
1960
1973
1966 | 1957
1969
1973
1973
1973 | 1973
1967
1973
1973
1973 | 1967
1947
1972
1966
1968 | 1953
1952
1965
1936 | 1949
1949
1943
1943 | 1965
1968
1965
1949 | | | BASIN
DESCRIPTOR | 00
4
00
4 | 904 | | %
8
8
8
8
8
8 | 004
024
004
004 | 00000
444444 | 000
4 4 4 | | | 1 | 8 88 | 8 | | 8 88 | 88888 | 88888 | 888 | | | DRAINAGE
AREA | 480.00
444.00
734.00 | 228800.00 | | 522.
1042.
532. | 762.
410.
332.
2318.
346. | 6330.
428.
428.
88. | 771.00
774.00
1251.00 | | | TYPE OF | AS AS AS | AS S AS S | NS N | A S S S S S S S S S S S S S S S S S S S | NS N | N N N N N N N N N N N N N N N N N N N | NS N | | | YTNUOD | 147
099
099
099
163 | 163
163
163
163
163 | 163
163
163
163
063 | 161
161
161
115
179 | 003
171
137
039
063 | 095
143
143
033 | 175
147
147
143 | | | STATE | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 026
026
026
026
026 | 018
039
039
039 | 680
680
680
680
680 | 680
680
680 | | | LONGITUDE | 0823705
0830023
0825700
0825435
0830744 | 0825731
0825731
0832808
0832802 | 0832723
0832644
0832558
0832441
0831624 | 0835440
0835440
0840433
0833152
0851019 | 0850603
0842547
0841558
0842357
0834117 | 0834246
0832141
0832129
0830021
0832056 | 0832056
0831256
0831142
0830932 | | | LATITUDE | 430532
423214
423440
423545
421650 | 422050
422050
422402
422333
422306 | 422303
422219
422213
422200
435638 | 422313
422310
421004
415738
404430 | 405916
413016
405655
411415
410321 | 412658
412658
412658
404813 | 405522
410149
410239
411828 | | | STATION NAME AND LOCATION | BLACK RIVER NEAR FARGD, MICH RED RUN R 14 MILE RD BRIDGE WARREN CLINTON RIVER NEAR FRASER, MICH CLINTON RIVER AT MOUNT CLEMENS, MICH. RIVER ROUGE AT W.JEFFERSON AVE. | DETROIT R AT DETROIT MICH DETROIT R AT DETROIT, MICH. MIDDLE R ROUGE AB PHOENIX LK NR PLYMOUTH, MI MIDDLE R ROUGE BL PHOENIX LK NR PLYMOUTH, MI MIDDLE R ROUGE AB WILCOX LK AT PLYMOUTH, MI | MIDDLE R ROUGE BL WILCOX LK AT PLYMOUTH, MIC
MIDDLE R ROUGE AT HAGGERTY RD AT PLYMOUTH, M
MIDDLE R ROUGE AB NEWBURGH LK AT PLYMOUTH, M
MIDDLE R ROUGE BL NEWBURGH LK NR PLYMOUTH, M
PIGEON R AT M25 BRDG AT CASEVILLE | HURON R AT N. TERRITORIAL RD BR
HURON RIVER NEAR DEXTER, MICH.
R RAISIN AT SHARON VALLEY RD BR
RIVER RAISIN NEAR MONROE, MICH
WABASH RIVER AT BLUFFTON, IND | ST. MARYS RIVER NEAR FORT WAYNE, IND.
TIFFIN R AT STRYKER OH
AUGLAIZE R NR FORT JENNINGS OH
AUGLAIZE R NR DEFIANCE OH
BLANCHARD R NR FINDLAY OH | MAUMEE R AT WATERVILLE OH
PORTAGE R AT WOODVILLE OH
PORTAGE R AT RAILROAD BRIDGE AT WOODVILLE OH
SANDUSKY R NR BUCYRUS OH
TYMOCHTEE C AT CRAWFORD OH | TYMOCHTEE C AT CRAWFORD OH
SANDUSKY R AT ST JOHNS BRIDGE NR MEXICO OH
SANDUSKY R NR MEXICO OH
SANDUSKY R NR FREMONT OH | | | HYDROLOGIC
UNIT
CODE | 04090001
04090003
04090003
04090003 | 04090004
04090004
04090004
04090004 | 04090004
04090004
04090004
04090004 | 04090005
04090005
04100002
04100002 | 04 100004
04 100006
04 100007
04 100007
04 100008 | 04 100009
04 100010
04 100011
04 100011 | 04100011
04100011
04100011 | | | MEDIA | | | | | | | | |----------------------------|---|---|---|---|---|--|--| | MOTZ GBZ | 40000 | | 00400 | 00000 | 00000 | 00000 | 0000 | | ORGANIZATION
3000 | usas
usas
usas
usas
usas | USCE
USCE
USCE
USCE
USCE | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USCE
USCE | | SUSP DISCHARGE | IMKK | | 0 | | 00 | 3 O M I K | mХ | | 3512 TAA9 TAM G38 | | ΣΣΣΣ | | | | | | | BZIS TAA9 92UZ | ∑ < w < w | Z Z Z Z | <u>m 0 0</u> | 0 0 | 0 0 11 11 | max | ш юю | | SUSP SED CONCEN | | Z Z Z Z D | 00000 | 00000 | 00000 | 30mI¤ | m X O O | | OW END
RA3Y | 1975 | | | | | 1974 | | | OM BEGIN | 1947
1950
1950
1961 | 1977
1977
1976
1976
1976 | 1964
1976
1977
1976
1976 | 1976
1977
1976
1977
1976 | 1977
1976
1977
1965
1947 | 1972
1977
1950
1964
1965 | 1964
1958
1977
1976 | | MISAB
BOTGIRDS30 | 00000
44444 | 014 | 124
014
014 | 410
410
410 | 014
004
124 | 003
024
000
4 | 400 | | DRAINAGE
AREA | 1257.00
371.00
262.00
396.00
267.00 | 59.20 | 404.00
29.30
30.70 | 17.70
494.00
27.20 | 17.70
83.90
707.00 | 35.30
22.60
246.00
121.00
581.00 | 432.00 | | FYPE OF | X X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | SEEEE | N N N N N N N N N N N N N N N N N N N | A S S S S S S S S S S S S S S S S S S S | MS M | 3 3 3 3
S S S S S | | YTNUDO | 44
443
0093
0093 | 133
133
153
035
153 | 153
153
153
153 | 153
153
153
153 | 453
035
035
035 | 035
035
085
007
085 | 007 | | 3TAT2 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 6880 | 680
680
680
680
680 | 680
680
680
680
680 | 680
680
680
680 | 680
680
680
680 | 0398 | | LONGITUDE | 0830733 0823625 0821901 08820617 0815314 0 | 0811000
0812030
0813245
0813510
0813118 | 08 13250
08 13254
08 13254
08 13502
08 13502 | 0813507
0813507
0813300
0813344 |
0813344
0813532
0813532
0813139
0813748 | 0814318 (0813251 (0812413 (0810248 (08102448 (0810248 (0810248 (0810248 (0810248 (08102448 (0810444848 (08104448 (08104448 (08104448 (08104448 (08104448 (08104448 (0 | 0803615 0
0785610 0
0785204 0
0784550 0 | | LATITUDE | 411942
411806
412255
412259 | 412040
411005
410804
411930
410540 | 410808
410820
410820
410947 | 411228
411228
411429
4111429 | 411709
411902
411902
412304
412343 | 412701
413428
413751
415120
414426 | 415537
422750
425142
425840 | | STATION NAME AND LOCATION | 1 SANDUSKY R AT FREMONT OH
2 HURON R AT MILAN OH
2 VERMILION R NR VERMILION OH
1 BLACK R AT ELYRIA OH
1 ROCKY R NR BEREA OH | CUYAHOGA R AT HIRAM RAPIDS OHIO CONGRESS LAKE OUTLET CUYAHOGA R AT OLD PORTAGE OHIO CUYAHOGA R BRECKSVILLE CHAFFEE RD L CUYAHOGA R BL OHIO CA AT AKRON OH | 2 CUYAHOGA R AT OLD PORTAGE OH
2 MUD BK AT AKRON-PENINSULA ROAD NR AKRON OH
2 MUD BK NR AKRON OH
2 YELLOW C AT BATH ROAD NR BOTZUM OH
2 YELLOW C NR BOTZUM OH | FURNACE RN AT WHEATLEY ROAD NR EVERETT OH LEUNAHOGA R AT PENINSULA OH CUYAHOGA R AT PENINSULA OH BRANDYWINE C NR JAITE OH | BRANDYWINE C AT JAITE OH CHIPPEWA C AT RIVERVIEW ROAD NR BRECKSVILLE CHIPPEWA C NR BRECKSVILLE OH IINKERS C AT BEDFORD OH CUYAHOGA R AT INDEPENDENCE OH | BIG C AT CLEVELAND OH
3 EUCLID C NR EUCLID OH
3 CHAGRIN R AT WILLDUGHBY OH
3 ASHTABULA R NR ASHTABULA OH
4 GRAND R NR MADISON OH | CONNEAUT C AT CONNEAUT OH CATTARAUGUS CREEK AT GOWANDA NY BUFFALO R1 AT BUFFALO ELLICOTT C AT WILLIAMSVILLE NY | | HYDROLOGIC
Unit
Code | 04100011
04100012
0410001
04110001 | 04110002
04110002
04110002
04110002 | 04110002
04110002
04110002
04110002 | 04110002
04110002
04110002
04110002 | 04110002
04110002
04110002
04110002 | 04110002
04110003
04110003
04110004 | 04120101
04120102
04120103
04120104 | | AIGSM | | | | | | | | ····· | |----------------------------|---|--|--|--|--|---|--|-------| | 8012 032
Autom | 0000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | ···· | | MOLEALINADRO
BOOD | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | OYAAA | চাৰ্বৰৰ | VIVA | αα∢ш∑ | ΣΣΖ | OYOOZ | IXIM | | | IZ TAA9 TAM 038 | | | | | | | | | | BAIR TRAG ARUR | 4 4 4 4 | <u>~</u> | α | α Ζα | Z Z O Z Z | KKKK | XAXX | · | | SUSP SED CONCEN | GX444 | MAAAA | AIAAA | хаап∑ | Z Z Z Z Z | 02002 | IXIM | | | OW END
RA3Y | 1976
1972
1972 | 1977
1972
1972
1972
1972 | 1972
1977
1972
1972
1976 | 1977
1976
1972
1977
1979 | 1977
1977
1977
1977 | 1977
1976
1977
1977
1977 | 1977
1977
1977
1977 | | | NIGBE WO
RABY | 1963
1970
1954
1964 | 1972
1964
1954
1954 | 1964
1975
1964
1964 | 1969
1964
1964
1964 | 1974
1974
1976
1977 | 1974
1954
1959
1964 | 1974
1974
1954
1964 | | | BASIN
DESCRIPTOR | 024
004
004 | 000
000
004
000 | 00
4
00
4
00
4 | 000
4
4
4 | 004
004 | | 014 | | | DRAINAGE
AREA | 171.00
265000.00
47.70
11.50
30.30 | 289.00
7.76
22.00
21.90
26.00 | 21.90
577.00
14.20
11.20 | 40.60
41.20
981.00
19.20 | 90.00
20.80
5.00
21.99 | 35.90
153.00
181.00
7.45 | 32.60
58.60
68.80
333.00 | | | 3712
3712 | N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N S A S A S A S A S A S A S A S A S A S | S X X X X X X X X X X X X X X X X X X X | N M M M M M M M M M M M M M M M M M M M | N N N N N N N N N N N N N N N N N N N | | | YTNUOD | 037
063
003
003 | 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 003 | 003
003
121
051 | 051
051
101
101
051 | 051
051
051
051 | 051
051
051
051 | | | 3TAT2 | 036
036
036
036 | 036
036
036
036 | 036
036
036
036 | 036
036
036
036 | 036
036
036
036 | 036
036
036
036
036 | 036
036
036
036 | | | LONGITUDE | 0781120
0790347
0775030
0775543 | 0775727
0775843
0775731
0775917
0780054 | 0780238
0780436
0780628
0780554
0780554 | 0780748
0780812
0780547
0780233 | 0774216
0774122
0773506
0773735 | 0774144
0774255
0774607
0774420 | 0775514
0775201
0774945
0775026 | | | LATITUDE | 425951
431540
420029
420403
420506 | 420720
420730
421002
421015 | 421831
421746
421853
422004
422137 | 422614
422823
422754
423413
423007 | 423208
423120
423113
423216
423216 | 423312
423340
423940
423449
424103 | 423519
423817
424050
424413 | | | STATION NAME AND LOCATION | TONAWANDA CREEK AT BATAVIA
NIAGARA R(L ONTARIO) AT FOI
CRYDER CREEK AT PAYNESVILL
FORD BROOK AT STANNARDS NY
CHENUNDA CREEK AT STANNARD | GENESEE RIVER AT WELLSVILLE NY 2 BRIMMER BROOK NEAR WELLSVILLE NY 2 VANDERMARK CREEK NEAR SCIO NY 2 KNIGHT CREEK AT SCIO NY 2 PHILLIPS CREEK NEAR BELMONT NY | BAKER CREEK NEAR ANGELICA NY 2 GENESEE RIVER AT TRANSIT BRIDGE NEAR ANGELIC 2 WHITE CREEK NEAR BELFAST NY 2 WIGWAM CREEK AT BELFAST NY 2 CRAWFORD CREEK AT ORAMEL NY | GENESEE RIVER AT HOUGHTON NY COLD CREEK AT HUME NY RUSH CREEK AT FILLMORE NY GENESEE RIVER AT PORTAGEVILLE NY SUGAR CREEK NEAR CANASERAGA NY | CANASERAGA CREEK ABOVE DANSVILLE NY 2 STONY BROOK AT STONY BROOK STATE PARK NY 2 MILL CREEK AT PATCHINVILLE NY 2 MILL CREEK AT PERKINSVILLE NY 5 MILL CREEK AT PERKINSVILLE NY | MILL CREEK AT DANSVILLE NY 2 CANASERAGA CREEK NEAR DANSVILLE NY 2 CANASERAGA CREEK AT GROVELAND NY 2 BRADNER CREEK NEAR DANSVILLE NY 2 WEST DITCH AT MOUTH NR SONYEA NY | 2 KESHEQUA CREEK AT NUNDA NY
2 KESHEQUA CREEK AT TUSCARORA NY
2 KESHEQUA CREEK AT SONYEA NY
2 CANASERAGA CREEK AT SHAKERS CROSSING NY | | | HYDROLOGIC
UNIT
CODE | 04120104
04120104
04130002
04130002 | 04 130002
04 130002
04 130002
04 130002 | 04130002
04130002
04130002
04130002 | 04130002
04130002
04130002
04130002 | 04 130002
04 130002
04 130002
04 130002 | 04 130002
04 130002
04 130002
04 130002 | 04 130002
04 130002
04 130002
04 130002 | | | WEDIY | | | | | | | |----------------------------|--|--
--|---|---|---| | NOT2 032 | 00000 | 00000 | 00000 | 00000 | 00400 | 000 | | ORGANIZATION
SGOO | nses
nses
nses
nses
nses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS | | 2024 DIZCHYNGE | WIIW | IZZZI | Zmaai | ΠХNΙ | IΣ | WII | | 3512 TAAR TAM G38 | | | | | | | | SUSP SED CONCEN | EHE A M | XXXXX | AAA A | AXA D | ZIWOP | WII | | | 4 4 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | NA NA NA | L L 4 U 10 | 2 4
0 7 7 8 | 400 | W 1 1 | | OW END
RABY | 197
197
197
197 | 197
197
197
197 | 197
197
197
197 | 197 | 197
196
196 | | | OW BEGIN | 1972
1953
1953
1975 | 1974
1964
1974
1964
1974 | 1974
1954
1970
1964
1954 | 1953
1969
1976
1964
1955 | 1966
1966
1967
1957
1954 | 1959
1959
1959
1959 | | NISA8
BOTGIRJ230 | 004 | 8 | 014
004
124 | 004
024 | 004
004
124 | 000
444 | | | .00
.05
.05 | 86.568 | 58888 | 88888 | 4888 | 888 | | DRAINAGE
AREA | 1417.
7.
8
8 | 16.
80.
10. | 204.
204.
2206.
21. | 2457.
2457.
142.
128. | 38.
1382.
5100.
1876. | 299000.
973.
616. | | TYPE OF
SITE | 3 X X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | 3 3 3 3 3 S | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | 3 3 3
0 0 0 | | YTNUDO | 055
051
051
051 | 121
121
121
121
037 | 037
055
055
037
037 | 055
055
045
065 | 053
075
075
075
045 | 680
680 | | 3TAT2 | 036
036
036
036 | 036
036
036
036 | 036
036
036
036 | 036
036
036
036 | 036
036
036
036 | 036 | | LONGITUDE | 0773845
0775021
0774003
0774105 | 0780715
0780816
0780337
0780236
0780230 | 0775700
0774730
0774052
0780400 | 0773740
0773659
0773137
0760430
0753709 | 0754951
0760011
0761220
0763020
0755530 | 0744743
0752245
0744645 | | LATITUBE | 430723
424600
425314
425334 | 424139
424439
425054
425055 | 425847
430036
430526
420537
430602 | 431050
431326
430927
434848 | 430702
431535
431620
432706
435908 | 450022
443558
445149 | | STATION NAME AND LOCATION | ERIE(BARGE)CANAL AT ST HWY 383 AT ROCHESTER
GENESEE RIVER AT JONES BRIDGE NR MOUNT MORRI
LITTLE CONESUS CREEK NEAR SOUTH LIMA NY
LITTLE CONESUS CREEK NEAR EAST AVON NY
GENESEE RIVER AT AVON NY | DATKA CREEK AT ROCK GLEN NY
DATKA CREEK AT WARSAW NY
DATKA CREEK AT PEARL CREEK NY
PEARL CREEK AT PEARL CREEK NY
DATKA CREEK NEAR PAVILION CENTER NY | MAD CREEK NEAR LE ROY NY
DATKA CREEK AT GARBUTT NY
GENESEE R AT BALLANTYNE BRIDGE NEAR MORTIMER
SPRING CREEK AT PUMPKIN HILL NY
BLACK CREEK AT CHURCHVILLE, N.Y. | GENESEE RIVER AT ROCHESTER NY
GENESEE RIVER(CHARLOTTE DOCKS)AT ROCHESTER N
042320502 IRONDE. C AT BRNCFT BLVD. ROCHESTE
SANDY CREEK NEAR ADAMS, N. Y.
EAST BRANCH FISH CREEK AT TABERG NY | | ST LAWRENCE R AT CORNWALL ONT NR MASSENA, NY OSWEGATCHIE RIVER NEAR HEUVELTON, N.Y. ST REGIS RIVER AT BRASHER CENTER NY ST REGIS RIVER AT BRASHER CENTER NY | | HYDROLOGIC
Unit
Code | 04 130003
04 130003
04 130003
04 130003
04 130003 | 04130003
04130003
04130003
04130003 | 04130003
04130003
04130003
04130003 | 04130003
04130003
04140101
04140102 | 04 140202
04 140202
04 140202
04 140203
04 150101 | 04150301
04150302
04150306 | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | |----------------------------|------|---|--|--|--|--|--|--| | AIG3M | | 40000 | 00000 | 00000 | 00000 | 00000 | 00 00 | ۵۵۵۵ | | MOITANIADRO
BOOD | | USGS
USFS
USGS
USGS
USGS | 2 USGS
PA001
A USGS
A USGS
A USGS | USGS
USGS
USGS
USGS
USGS | USGS
PAOO1
USGS
USGS
USGS | USGS
USFS
USFS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | | SUSP OISCHARGE | | 77 | N 444 | 44444 | U NU4 | N N N | NOHNE | 3000 | | 3512 TAA9 TAM 038 | | Σ | | | | | | | | SUSP FART SIZE | | Z A N N N | U Z A A A
⊞ | বৰবৰ | H H A | 2 4 A D C | X I O Z | 3000
m 4 X K | | OW END
YEAR | | 1975 | 1975 | 1975
1975
1975
1975 | 1975 | 1975 | | 1978 | | OW BEGIN | | 1977
1974
1979
1979 | 1957
1962
1974
1974 | 1974
1974
1974
1974 | 1930
1962
1979
1937 | 1975
1975
1975
1934 | 1979
1963
1979
1979 | 1963
1965
1963 | | BASIN
DESCRIPTOR | | 004 | 004 | · · · · · · · · · · · · · · · · · · · | 00 00
00 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0004 | 004 | 124
0004
0004 | | DRAINAGE
AREA | | 24.10 | 321.00 | | 300.00
31.10
1028.00
166.00 | 5.69 | 528.00
29.60
87.40
451.00 | 172.00
11500.00
29.20
2.86 | | TYPE OF | _8 | X X X X X | N N N N N | N N N N N | N N N N N | N N N N N N N N N N N N N N N N N N N | SESSES | 3 S S S S S S S S S S S S S S S S S S S | | YTMUOD | | 007
083
083
083 | 123
123
039
039 | 039
039
039 | 121
049
039
121 | 121
047
047
047
065 | 005
005
065
063
063 | 129
003
083
083 | | STATE | -0- | 021
042
042
042 | 042
042
042
042 | 042
042
042
042
042 | 042
042
042
042 | 0
4
4
4
4
4
0
4
0
4
0
0
0
0
0
0
0
0
0
0 | 042
042
042
042 | 042
042
054
054
054 | | LONGITUDE | EGIC | 0784502
0784040
0785403
0790633 | 0791903
0790800
0794636
0794348
0794348 | 0793955
0794248
0794210
0793957
0794031 | 0794144
0795238
0800254
0795722
0795248 | 0795059
0790330
0790200
0784335
0791233 | 0793430
0792340
0785058
0790637
0785508 | 0792027
0794622
0795700
0795740 | | LATITUBE | | 414856 (
415616 (
405901 (
414921 (| 415109
415617
414438
414628
413959 | 414211
414018
413746
413725 | 412854
415723
414126
412615 | 412520
412530
412540
413556
411950 | 405859
405940
405749
405010 | 401733
403352
385605
385610 | | STATION NAME AND LOCATION | OHO | OHIO R AT MARKLAND DAM KY
TURNIP RUN 3NNE WESTLINE PA B1
WEST BR AT BRADFORD PA
WILLOW C AT WILLOW BAY RECREATION AREA PA
BROWNS RUN AT WARREN, PA. | BROKENSTRAW CREEK AT YOUNGSVILLE, PA.
CONEWANGO C 61035 BRDG
OIL CR AT CENTERVILLE, PA.
BRITTON RUN AT GLYDEN, PA.
OIL CR NR HYDETOWN, PA. | SHIRLEY RUN NR BUELL CORNERS, PA.
MCLAUGHLIN CR AT HYDETOWN, PA.
OIL CR AT TITUSVILLE, PA.
OIL CR AT TITUSVILLE, PA.
CHURCH RUN AT TITUSVILLE, PA. | DIL CREEK AT ROUSEVILLE, PA. FRENCH C AT T 700 BRDG WOODCOCK C AT BLOOMING VALLEY, PA. FRENCH CREEK AT UTICA, PA. SUGAR CREEK AT SUGARCREEK, PA. | PATCHEL RUN NEAR FRANKLIN, PA.
MUDDY FORK-BLO DAMG 4SE MARIENVL
MUDDY FORK AT MOUTH-6SE MARIENVL
WILSON RN AT DAHOGA, PA
CLARION RIVER AT COOKSBURG, PA. | HALING RN AT VAN BUREN, PA
REDBANK CREEK AT ST. CHARLES, PA.
EB MAHONING C NR BIG RUN, PA
LITTLE MAHONING CREEK AT MCCORMICK, PA.
STONY CREEK AT FERNDALE, PA. | LOYALHANNA CREEK AT KINGSTON, PA.
ALLEGHENY R AT NEW KENSINGTON, PA.
ROARING CREEK AT NORTON W VA
GRASSY RUN AT NORTON W VA | | HYDROLOGIC
Unit
Code | | 05001900
05010001
05010001
05010001 | 05010001
05010002
05010003
05010003 | 05010003
05010003
05010003
05010003 | 05010003
05010004
05010004
05010004 | 05010004
05010005
05010005
05010005 | 05010006
05010006
05010006
05010006 | 05010008
05010009
05020001
05020001 | | AIGEM | ۵۵۵۵۵ | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | |----------------------------|---|--
--|---|--|---|--|--| | ORGANIZATION
CODE | USGS
USGS
USGS
USGS
USGS
USGS | PA001
PA001
PA001
PA001 | PA001
PA001
PA001
PA001 | PAOO1
PAOO1
PAOO1
USCE
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHANGE | 04404 | | | | | 0 | 004 | | | SEE MAT TAM GSB | | | | | | | | | | SUSP PART SIZE | 08804 | 77744 | | | | | ш 4 | | | | 2 25 24 | ZZZYY | XXXXX | <u> </u> | | MKAXD | 00X X | | | OW END
PABY | 197 | | | | · | | 197 | | | OW BEGIN | 1960
1979
1978
1954 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1970
1970 | 1974
1974
1974
1974 | 1974
1975
1975
1975 | 1973
1972
1975
1968 | | | BASIN
BOT4IR3230 | 410
410 | | | | | 00 4 | | | | DRAINAGE
AREA | 916.00
1.06
1.55
8.32 | | | | | 115.00
138.00 | 5.06
151.00
161.00
972.00 | | | 40 34YT
3T12 | A S S S S S S S S S S S S S S S S S S S | N N N N N N N N N N N N N N N N N N N | MS MS | MS M | M S M S M S M S M S M S M S M S M S M S | MS MS MS | A A A A A A A A A A A A A A A A A A A | | | YTNUOD | 001
083
033 | 051
051
051
051 | 051
051
051
051 | 051
051
051
077
093 | 083
083
083
083 | 083
083
083
083 | 083
083
083
077 | | | 3TAT2 | 054
054
054
054 | 042
042
042
042 | 042
042
042
042 | 042
042
054
054 | 054
054
054
054
054 | 054
054
054
054
054 | 054
054
054
054 | | | LONGITUDE | 0800225
0794012
0794111
0803425 | 0793822
0793704
0793704
0793433
0793500 | 0793546
0793634
0793728
0793516
0793516 | 0793539
0793601
0793704
0794005
0793530 | 0794130
0794127
0794126
0794119
0794124 | 0793956
0795210
0794417
0794416
0794141 | 0794149
0794614
0794602
0794000 | | | LATITUBE | 390900
385524
385523
391825 | 395048
394744
394744
394651 | 394630
394609
394559
394549 | 394648
394631
394403
392100
390200 | 385512
385507
385517
385518
38552 | 385552
383700
384841
384827
385410 | 385427
385447
385758
392050 | | | STATION NAME AND LOCATION | TYGART VALLEY RIVER AT PHILIPPI, W. VA. TAYLOR RUN NEAR ALPENA, WV STALNAKER RUN NEAR BOWDEN, WV SALEM F SUBWATERSHED #11A VARNER H NR SALEM, SALEM FORK AT SALEM, W. VA. | BIG SANDY CREEK AT ROUTE 40 BIG SANDY CR AT WHARTON FURNACE BIG SANDY CREEK AT ELLIOTSVILLE STONY FORK AT CAMP RAIMO STONY FORK NEAR BETHEL CHAPEL | STONY FORK AT BAUER ESTATE STONY FORK NEAR ELLIOTSVILLE STONY FORK AT MOUTH STONY FORK TRIB NR GIBBON GLADE STONY FORK TRIB BELOW STATION 67 | STONY FORK TRIB NORTH OF DELTA STONY FORK TRIB SOUTH OF DELTA LITTLE SANDY CR AT BEAVER BRIDGE CHEAT RIVER-4 RED RUN AT MOUTH | MILL RUN 4.3 MI EAST ELKINS
MILL RUN 4.4 MI EAST ELKIKNS
RICH CHAMP 493 MI EAST ELKINS
RICH CHAMP RUN 4.4 MI E ELKINS
STALNAKER RUN 4.4 MI EAST ELKINS | TAYLOR RUN 9.5 MI EAST ELKINS
SHAVERS FORK 21 MI SOUTH ELKINS
SHAVERS FK 9 MI SE ELKINS W.VA.
SHAVERS FORK AT BEMIS, W. VA.
SHAVERS FORK ABOVE BOWDEN, W. VA. | TAYLOR RUN AT BOWDEN W VA SHAVERS FORK BELOW BOWDEN, W. VA. SHAVERS FORK NR ELKINS, W. VA. CHEAT RIVER AT ROWLESBURG, W. VA. | | | HYDROLOGIC
Unit
Code | 05020001
05020001
05020001
05020002 | 05020004
05020004
05020004
05020004 | 05020004
05020004
05020004
05020004 | 05020004
05020004
05020004
05020004 | 05020004
05020004
05020004
05020004
05020004 | 05020004
05020004
05020004
05020004
05020004 | 05020004
05020004
05020004
05020004 | | | | r | | | | | | | | |----------------------------|---|--|---|--|---|---|--|--| | ALGEM | 000 | 00000 | 00000 | 00000 | 0000 | 00000 | 0000 | | | MOITAXIMADRO
3000 | Sesu. | 0000000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | uses
uses
uses
uses | | | SUSP DISCHARGE | 400 | | 4 Z 4 4 4 | DAAVE | A M M M | প্ৰব্ৰৰ | NNXN | | | 3512 TRAY TAM 038 | | | | | | | | | | SIS TAAR 92US | | | ш | I A B M | աա | | | | | 2024 ZED CONCEN | ▼ 00 | YA 44Z30 | 22444 | D A R Z | ▼ N⊞⊞ | XAAAA | NNXN | | | ON3 WO
RA3Y | | | 1975 | | 1979 | 1974
1974
1974 | | | | NW BEGIN | 1978
1977
1977 | | 1978
1978
1925
1974
1974 | 1958
1962
1964
1979
1925 | 1925
1979
1954
1964 | 1976
1974
1974
1974 | 1979
1930
1979 | | | MISAB
ROTAIRD230 | | | 904 | 124
004
000
400
400 | 0000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 00 | | | ORAINAGE
AREA | 2.50 | 6 . 5 . 6 . 7 . 7 . 7 . 4 . 4 . 7 . 7 . 4 . 4 . 7 . 4 . 4 | 180.00 | 7337.00
295.00
62.50
19.60
382.00 | 121.00
37.00
19500.00
496.00 | 49.00 | 104 . 00 | | | 179E 0F
311E | * * * * * * * * * * * * * * * * * * * | NE E E E | A M M M M M M M M M M M M M M M M M M M | A A A A A A A A A A A A A A A A A A A | M M M M M M M M M M M M M M M M M M M | N N N N N N N N N N N N N N N N N N N | 3333
888 | | | COUNTY | 051
051 | 051
051
051
051 | 051
051
059
051 | 003
023
023
111 | 111
125
003
029
081 | 029
125
125
125
125 | 125
125
085
073 | | | 3TAT2 | 042 | 100 00000 | 042
042
042
042 | 042
024
042
042 | 042
042
039
039 | 054
042
042
042
042 | 042
042
042
042 | | | LONGITUBE | 999 | 0793454
0793538
0793546
0793546
0793634
0793634 | 0793728
0793704
0800422
0794749
0794850 | 0795253
0792431
0790812
0791232
0791340 | 0791918
0800820
0801121
0803227 | 0803534
0802609
0802801
0803034
0803110 | 0802449
0802741
0802235
0801858 | | | LATITUDE | 394651
394551 | 94627
94627
94627
9463 | 394559
394403
395523
395535 | 402419
393913
394208
395404
395135 | 394913
401414
403153
404033
403216 | 402608
402245
402209
402156
402208 | 401504
401638
402519
410521 | | | STATION NAME AND LOCATION | STONY FORK AT CAMP RIAMO, PA (42) STONY FORK TRIB NR GIBBON GLADE, PA (67) STONY FORK TRIB NR GIBBON GLADE, PA (67) | STONY FORK TRIB (BELOW GRANBAY SITE), PA (68 STONY FORK AT BETHEL CHAPEL, PA (44) STONY FORK TRIB #4 (N OF DELTA SITE), PA (73 STONY FORK TRIB #5 (S OF DELTA SITE), PA (75 STONY FORK NEAR ELLIOTTSVILLE, PA (51) STONY FORK NEAR ELLIOTTSVILLE, PA (51) | STONY FORK AT MOUTH AT ELLIOTTSVILLE, PA (52 LITTLE SANDY CREEK NR MOUTH, PA (101) SOUTH FORK TENMILE CREEK AT JEFFERSON, PA. DUNLAP CR NR NEW SALEM, PA. | MONONGAHELA RIVER AT BRADDOCK, PA.
YOUGHIOGHENY RIVER AT FRIENDSVILLE, MD.
CASSELMAN RIVER AT GRANTSVILLE, MD.
MIDDLE C NR CASSELMAN, PA
CASSELMAN RIVER AT MARKLETON, PA. | LAUREL HILL CREEK AT URSINA, PA.
LITTLE CHARTIERS C AT LINDEN, PA
OHIO RIVER AT SEWICKLEY, PA.
L BEAVER C NR EAST LIVERPOOL OH
YELLOW C NR HAMMONDSVILLE OH | KINGS CREEK AT WEIRTON,W.VA.
HARMON CR NR BURGETTSTOWN, PA.
HARMON CR AT HANLIN STATION, PA.
HARMON C NR HANLIN STATION, PA
HARMON CR AT W. VA PA. STATE LINE | CROSS C NR AVELLA PA
N FK CROSS C AT AVELLA PA
LITTLE SHENANGO RIVER AT GREENVILLE, PA.
L NESHANNOCK C NR NESHANNOCK FALLS PA | | | HYDROLOGIC
Unit
Code | 05020004
05020004 | | 05020004
05020004
05020005
05020005 | 05020005
05020006
05020006
05020006
05020006 | 05020006
05030101
05030101
05030101 | 05030101
05030101
05030101
05030101 | 05030101
05030101
05030102
05030102 | | | AUT2 G32
AIG3M | ۵۵۵ | | 00000 | ۵۵۵ | 0000 | 00000 | 0000 | | |----------------------------|--
--|--|--|--|---|--|--| | NOITASINABRO
3000 | uses
uses
uses | USGS
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | nn ASSSm | O.m.m. ∑ | ¥ 0≻≻ | > w w x | 0 m 0 I m | α | | | 3512 TRAS TAM 038 | | | | | w | | | | | SUSP SED CONCEN | и и | nm SSSSm
nm S m | O m m Z Z | X O U
∑ m | m m m X | E E E E | 2404 | | | OW END
YEAR | | | 1972 | 1975 | 1975 | | 1979 | | | VEAR | 1970
1929
1970 | 1964
1977
1977
1977
1977 | 1960
1964
1965
1968
1960 | 1978
1956
1953
1980
1980 | 1980
1965
1965
1965 | 1961
1965
1951
1949 | 1948
1976
1930
1930 | | | BOT91RDS30 | 4 4 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 00
4 4 4 | 00 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 000
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 00
4
4 | | | ORAINAGE
AREA | 2235.00
3106.00
356.00 | | 458.00
210.00
156.00
913.00
1515.00 | 3.96
1.04
943.00
12.98 | 6.55
146.00
253.00
160.00
455.00 | 464.00
140.00
5993.00
7422.00
116.00 | 207.00
7.15
2202.00
2341.70 | | | 30 39YT
3TI2 | * * * * * * * * * * * * * * * * * * * | NA NANAN | N N N N N | N N N N N N N N N N N N N N N N N N N | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | NA NA | | | YTWUOD | 073
007
007 | | 095
167
105
013 | 08 1
0045
0045
045 | 045
169
151
151
083 | 075
119
119
115
089 | 009
197
155
371 | | | 3TAT2 | 042
042
042 | | 054
039
054
054 | 054
039
039
039 | 680
680
680
680 | 680
680
680
680
680 | 037
051
051
051 | | | LONGITUDE | 0802014
0801855
0801433 | 0804404
0804420
0804454
0804434
0804333
0805527 | 0805950
0811214
0815255
0810550
0812325 | 0811500
0824213
0820516
0823641 | 0823519
0814435
0811536
0813437
0821709 | 0815910
0820853
0815959
0815100 | 0812427
0805402
0804445
0803701 | | | LATITUDE | 405319
404548
404901 | 136
136
136
137
131
131 | 392830
393347
390349
385520
390335 | 374227
394250
391944
394111 | 394515
405647
404021
403924
402351 | 402853
400757
4007 13
393842
401341 | 362340
365551
365615
371722 | | | STATION NAME AND LOCATION | BEAVER RIVER AT WAMPUM, PA.
BEAVER RIVER AT BEAVER FALLS, PA.
CONNOQUENESSING CREEK NR ZELIENOPLE, PA. | SLIPPERY RUCK CREEK AI WORTEMBURG, SHORT C NR DILLONVALE OH OHIO RIVER AT BENWOOD NEAR WHEELING LITTLE GRAVE CREEK AT MOUNDSVILLE,W MIDOLE GRAVE CREEK AT MOUNDSVILLE,W CAPTINA C AT ARMSTRONGS MILLS OH | MIDDLE ISLAND CREEK AT LITTLE, W. VA.
L MUSKINGUM R AT BLOOMFIELD OH
SHADE R NR CHESTER OH
LITTLE KANAWHA RIVER AT GRANTSVILLE, W. VA.
LITTLE KANAWHA RIVER AT PALESTINE, W. VA. | SOAK CREEK NEAR SOPHIA, W. VA. N B HUNTERS RN NR HOOKER OH HOCKING R AT ATHENS OH TARHE RN AT MILL RD NR LANCASTER OH EWING RN AT RAINBOW RD NR LANCASTER OH | FETTERS RN AT RAINBOW RD NR LANCASTER OH
CHIPPEWA C AT EASTON OH
SANDY C AT WAYNESBURG OH
SUGAR C AB BEACH CITY DAM AT BEACH CITY OH
KOKOSING R AT MILLWOOD OH | KILLBUCK C AT KILLBUCK OH
WAKATOMIKA C NR FRAZEYSBURG OH
MUSKINGUM R AT DRESDEN OH
MUSKINGUM R AT MCCONNELSVILLE OH
N F LICKING R AT UTICA OH | SOUTH FORK NEW RIVER NEAR JEFFERSON, N. C. GLADE CREEK AT GRAHAMS FORGE, VA. NEW RIVER AT ALLISONIA, VA. NEW R AT EGGLESTON VA | | | HYDROLOGIC
Unit
Code | | 05030106
05030106
05030106
05030106
05030106 | 05030201
05030201
05030202
05030203
05030203 | 05030203
05030204
05030204
05030204
05030204 | 05030204
05040001
05040001
05040001 | 05040003
05040004
05040004
05040004 | 05050001
05050001
05050001
05050002 | | | NOT2 032
A103M | 00004 | م م م م | 00000 | ۵۵۵۵۵ | 00000 | 00000 | ۵۵۵۵ | | |----------------------------|---|--|--|---|---|---|--|-------------| | ONDANI ZATION
3000 | USGS
USFS
USFS
USGS | USGS
USGS
USGS
USGS
USGS | USFS
USFS
USFS
USGS
USFS | USFS
USFS
USFS
USFS
USFS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | ⋖ | 4 4 4 4 4 | 0 | m | ш о | 04000 | 4 ⊘ m m | | | SI2 TAA9 TAM 038 | | | | | | | | | | BEIS TRAS SUN | Z | | | | ш | | ш | | | SUSPEC CONCEN | Zdd\\ | 44477 | α N m Q ∢ | AAAK E | MESEO | 04000 | ▲公田田 | | | ON3 WD
RA3Y | 1974 | | | | 1974 | | | | | OW BEGIN | 1930
1979
1974
1968 | 1978
1965
1978
1976
1976 | 1976
1976
1970
1966
1974 | 1974
1974
1976
1976 | 1955
1972
1972
1972
1974 | 1960
1979
1973
1973 | 1975
1951
1965
1954 | | | BASIN
DESCRIPTOR | 014
004
004 | | | | 0000
4444 | 004 | 004
004
014 | | | DRAINAGE
AREA | 3768.00
1625.00
137.00 | 2.84
52.20
25.50
4.57
6.58 | 528.00 | 268.00 | 11809.00
62.80
280.00
49.20
442.00 | 270.00
12.20
319.00
835.00
861.00 | 567.00
157.00
497.00 | | | TYPE OF | ************************************** | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | M M M M M M M M M M M M M M M M M M M | N N N N N N N N N N N N N N N N N N N | N A A A A A A A A A A A A A A A A A A A | M M M M M M M M M M M M M M M M M M M | | | YTNUOD | 071
075
075
089 | 089
081
081
081 | 075
075
025
067
075 | 075
075
075
075 | 079
081
005
005
039 | 005
005
005
043
039 | 045
041
101
049 | | | 3TAT2 | 051
054
054
054
055 | 054
054
054
054
054 | 054
054
054
054
054 | 054
054
054
054
054 | 054
054
054
054
054 | 054
054
054
054
054 | 054
039
039 | | | LONGITUDE | 0805145
0800729
0800255
0804820
0800750 | 0811347
0810950
0810858
0811021
0811022 | 0800943
0801221
0802400
0803830 | 0800739
0800715
0800607
0800600 | 0815440
0813155
0813654
0813750
0814754 | 08 150 15
08 14948
08 15 110
08 14825
08 15029 | 0815239
0831150
0825920
0830155 | | | LATITUDE | 372220
381703
381300
373825
381115 | 374431
374540
374514
374723
374742 | 382015
382109
381330
381730
381954 | 381949
381955
381927
381848
383550 | 383132
375808
380551
380610
381500 | 380345
380601
380917
381711
382020 | 374345
402510
403458
400637 | *** | | STATIDN NAME AND LOCATION | NEW RIVER AT GLEN LYN, VA PRECIP MARLINTON GREENBRIER RIVER AT HILLDALE, W. VA. | CRAB ORCHARD CREEK AT CRAB ORCHARD, WV 4 PINEY CREEK AT RALEIGH, W. VA. 4 BEAVER CREEK AT BEAVER, WV 5 LITTLE WHITESTICK CR AT BECKLEY, W. VA. 6 CRANBERRY CREEK AT BECKLEY W. VA. | B MILES NW MARLINTON W.VA. LITTLE LAUREL 10MI NW MARLINTON HAMRICK RUN AT MOUTH GAULEY RIVER NEAR CRAIGSVILLE, W. VA. | 8 MILES NNW MARLINTON W.VA.
7 MILES NNW MARLINTON W.VA.
7 MILES NNW MARLINTON W.VA.
7 6 MILES NNW MARLINTON W.VA.
7 ELK RIVER BELOW WEBSTER SPRINGS, W. VA. | KANAWHA RIVER AT WINFIELD, W.VA. CLEAR FORK AT WHITESVILLE, W. VA. BIG COAL R NR SETH WV LAUREL CR AT SETH WV BIG COAL RIVER NEAR ALUM CREEK, | LITTLE COAL RIVER AT DANVILLE, W. VA. ROCK CREEK NEAR DANVILLE WV LITTLE COAL RIVER AT JULIAN, W. VA. COAL RIVER AT ALUM CREEK, W. VA. | 9 037.0 ROCKHOUSE CREEK AT MAN, W. VA.
1 SCIOTO R NR PROSPECT OH
1 OLENTANGY R AT CLARIDON OH
1 OLENTANGY R NR WORTHINGTON OH | | | HYDROLOGIC
UNIT
CODE | 05050002
05050003
05050003
05050003 |
05050004
05050004
05050004
05050004 | 05050005
05050005
05050005
05050005 | 05050007
05050007
05050007
05050007 | 05050008
05050009
05050009
05050009 | 05050009
05050009
05050009
05050009 | 05050009
05060001
05060001
05060001 | | | | | | | | | | | | |----------------------------|---|---|--|--|--|--|---|--| | SED STOR | ۵۵۵۵۵ | 00000 | 00000 | 00000 | 00000 | م م م م م | 0000 | | | ORGANIZATION
CODE | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSF DISCHARGE | 2 H 2 H H | 4 m 4 g 0 | 00000 | XXO | m≯∢∢ | AMAAA | Αm | | | 3ZIZ 18A9 1AM 038 |
 | | | | | | | | | SIS TRAS SUS | шшшш | m m ∢ | ∢ | | | | | | | SUSP SED CONCEN | <u> </u> | 4 m 4 x D | 00000 | XZO44 | m > 4 4 m | AMAAA | шш∢ш | | | OW END
RA3Y | | | | 1979 | | | | | | OW BFGIN | 1950
1964
1959
1964 | 1952
1966
1955
1977
1977 | 1977
1977
1977
1970
1973 | 1977
1977
1973
1978
1975 | 1971
1974
1975
1975
1975 | 1975
1975
1975
1974 | 1975
1975
1975
1975 | | | BASIN
DESCRIPTOR | 004
000
004
004 | 000
4 4 4 4 | | | | | | | | DRAINAGE
AREA | 190.00
122.00
189.00
534.00
228.00 | 5131.00
249.00
807.00
8.69
8.43 | 4.85
7.12
6.27
308.00
40.70 | 6.14
6.64
124.00
124.00 | 836.00
103.00 | | | | | TYPE OF SITE | 8 8 8 8
0 0 0 0 | A S S A S S S S S S S S S S S S S S S S | M S M S M S M S M S M S M S M S M S M S | M S A S A S A S A S A S A S A S A S A S | A A A A A A A A A A A A A A A A A A A | MS M | A A A A | | | COUNTY | 049
041
049
129 | 141
141
109
109 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 109
109
109
045 | 045
045
109
109 | 109
109
109
045 | 045
109
045
045 | | | 3TAT2 | 680
680
680
680 | 039
039
039
054 | 054
054
054
054
054 | 054
054
054
054
054 | 054
054
054
054
054 | 054
054
054
054
054 | 054
054
054
054 | | | LDNGITUDE | 0825303
0825742
0825628
0830637
0831526 | 0825150
0832232
0831001
0812054
0812054 | 0812338
0812542
0813112
0813844
0813910 | 0812819
0812827
0814213
0814213 | 0815950
0820030
0814709
0812403 | 0812255
0814943
0811914
0814724
0815050 | 08 15209
08 138 18
08 15222
08 15002 | | | LATITUDE | 400613
401056
395642
394202
394254 | 391244
392245
391549
373527 | 373819
373451
373516
373615 | 374044
374048
373726
373726 | 375010
375050
373303
373322
373423 | 373455
373539
373549
373702
374034 | 374127
374153
374348
37460? | | | STATION NAME AND LOCATION | BIG WALNUT C AT CENTRAL COLLEGE OH
ALUM C AT AFRICA OH
ALUM C AT COLUMBUS OH
BIG DARBY C AT DARBYVILLE OH
DEER C AT MOUNT STERLING OH | SCIOTO R AT HIGBY OH PAINT C NR GREENFIELD OH PAINT C NR BOURNEVILLE OH ALLEN CREEK AT ALLEN JUNCTION, WV | MARSH FORK AT MABEN, WV
STILL RUN AT ITMANN, WV
BEARHOLE FORK AT PINEVILLE, WV
GUYANDOTTE RIVER NEAR BAILEYSVILLE, W. VA.
INDIAN CREEK AT FANROCK W. VA. | MILAM FORK AT MCGRAWS, WV
MILAM FORK AT MCGRAWS, WV
CLEAR FORK AT CLEAR FORK, W
CLEAR FORK NEAR CLEAR FORK
BUFFALO CREEK AT MAN, W.VA. | GUYANDOTTE RIVER AT LOGAN, W. VA. ISLAND CREEK AT LOGAN, W. VA. 028.0 LITTLE HUFF CREEK NEAR HANOVER, W. VA. 008.0 BARKERS CREEK AT TRALEE, W. VA. 009.1 CABIN CR AT JOE BRANCH W VA | 006.0 SLAB FORK AT MULLENS, W. VA. 031.0 LITTLE HUFF CREEK AT JUSTICE, W. VA. 001.0 DEVILS FORK AT AMIGO, W. VA. 026.0 BIG CUB CREEK NEAR CUB CITY, W. VA. 035.0 ELK CREEK AT WYLO, W. VA. | 036.0 SANDLICK CREEK AT BRUND, W. VA.
024.0 CLEAR FORK AT OCEANA, W. VA.
041.0 HUFF CREEK NEAR MAN, W. VA.
045.0 PIGHT FOPK AT ACCOVILLE, W. VA. | | | HYDROLOGIC
Unit
Code | 05060001
05060001
05060001
05060001 | 05060002
05060003
05060003
05070101 | 05070101
05070101
05070101
05070101 | 05070101
05070101
05070101
05070101 | 05070101
05070101
05070101
05070101 | 05070101
05070101
05070101
05070101 | 05070101
05070101
05070101 | | | LUB - | | | | | | | | | |----------------------------|--|--|--|--|--|--|--|--| | NOT2 G32
AIG3M | ۵۵۵۵۵ | 00000 | 00000 | 00000 | 00000 | 00000 | ۵۵۵۵ | | | MOITASINADMO
3003 | uses
uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | α шααα | ш АШ 4 А | AAMAM | MAAAA | 44444 | 4444 | 4444 | | | SED MAT PART SIZE | | | | | | | | | | BZIZ TRAS SZUZ | | | | | | | | | | SOSE SED CONCEN | Amaaa | MAMAA | A A M A M | MAAAA | 44444 | 44444 | 4444 | | | OW END
PABY | | | | | | | | | | OW BEGIN | 1975
1975
1975
1975 | 1960
1974
1975
1974 | 1975
1975
1975
1975 | 1975
1975
1975
1975 | 1975
1975
1975
1975 | 1975
1975
1975
1975 | 1975
1975
1975
1975 | | | BASIN
DESCRIPTOR | | 00
4
00
4 | | | | | | | | DRAINAGE
AREA | | 1226.00 | | | | | | | | TYPE OF
SITE | ************************************** | N N N N N | N N N N N | N N N N N | N N N N N | N N N N N | N N N N | | | COUNTY | 045
045
045
045
045 | 043
043
011
045 | 045
045
045
045 | 045
043
043
043 | 043
043
043
043 | 043
043
043
043 | 043
043
110 | | | 3TAT2 | 054
054
054
054 | 054
054
054
054
054 | 054
054
054
054
054 | 054
054
054
054
054 | 054
054
054
054
054 | 054
054
054
054
054 | 054
054
054
054 | | | LONGITUDE | 0815536
0815018
0815610
0815650 | 0821210
0820330
0820646
0821742
0815909 | 0815940
0815849
0820828
0820218 | 0820823
0820228
0820753
0820751 | 0820733
0815805
0821057
0821054 | 0821015
0821211
0821224
0820616
0821135 | 0821250
0821158
0821429
0821259 | | | LATITUDE | 374606
374607
374848
375011 | 381315
381010
382315
382458
375244 | 375347
375549
375755
375809
375837 | 375840
380016
380133
380146
380248 | 380454
380532
380559
380647
380927 | 381037
381312
381554
381625
381712 | 381755
381823
381955
382003 | | | STATION NAME AND LOCATION | 049.0 RICH CR AT EARLING, W. VA.
045.0 BUFFALD CR AT ACCOVILLE, W. VA.
050.0 RUM CR AT DABNEY, W. VA.
051.0 DINGESS RUN AT STOLLINGS, W. VA.
059.0 ISLAND CREEK AT MOUNT GAY, W. VA. | GUYANDOTTE RIVER AT BRANCHLAND, W. VA. MUD RIVER AT PALERMO, W. VA. MUD RIVER NEAR MILTON, W. VA. MUD RIVER AT BARBOURSVILLE W.VA. 068.0 CROOKED CR AT CROOKED CREEK, W. VA. | 069.0 BUFFALO CR AT HENLAWSON, W. VA. 070.0 MILL CR AT PECKS MILL, W. VA. 076.0 BUCK FORK NEAR HARTS, W. VA. 071.0 CRAWLEY CR AT CHAPMANVILLE, W. VA. 077.0 BIG HARTS CREEK NEAR HARTS, W. VA. | 078.0 SMOKEHDUSE FORK NEAR HARTS, W. VA.
075.0 BIG CR AT BIG CREEK, W. VA.
080.0 BIG HARTS CREEK AT HARTS, W. VA.
081.0 GUYANDOTTE RIVER
AT HARTS, W. VA.
082.0 LITTLE HARTS CREEK AT ATENVILLE, W. VA | 085.0 BIG UGLY CREEK AT GILL, W. VA.
104.1 MUD RIVER AT MUD, W. VA.
086.0 FOURTEENMILE CREEK NEAR RANGER, W. VA.
088.0 FOURTEENMILE CREEK AT RANGER, W. VA.
089.0 TENMILE CREEK NEAR MIDKIFF, W. VA. | 090.0 NINEMILE CREEK AT MIDKIFF, W. VA. 093.0 FOURMILE CREEK AT BRANCHLAND, W. VA. 095.0 FALLS CREEK NEAR WEST HAMLIN, W. VA. 110.0 MUD RIVER AT HAMLIN, W. VA. 096.0 TWOMILE CREEK AT WEST HAMLIN, W. VA. | 098.0 MADISON CREEK NEAR SALT ROCK, W. VA. 097.0 BEAR CREEK NEAR WEST HAMLIN, W. VA. 100.0 SMITH CREEK AT SARAH, W. VA. 099.0 TRACE CREEK AT SALT ROCK, W. VA. | | | HYDROLOGIC
Unit
Code | 05070101
05070101
05070101
05070101 | 05070102
05070102
05070102
05070102 | 05070102
05070102
05070102
05070102 | 05070102
05070102
05070102
05070102 | 05070102
05070102
05070102
05070102 | 05070102
05070102
05070102
05070102 | 05070102
05070102
05070102
05070102 | | | | | | | | | | | |----------------------------|----------------------------------|--|---|---|---|--|--| | ROT2 G32
AIG3M | ۵۵۵ | ۵۵۵۵ | 00000 | 00000 | مممم | 00000 | ۵۵۵ | | MOITAZINADRO
3002 | USGS
USGS
USGS | KY001
KY001
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
KYOO1 | | SUSP DISCHARGE | 444 | 4 X D m | O××03 | X > O D W | Ω Ω Ω ∢ Ω | ααααα | 444 | | 3512 TAAS TAM 038 | | | | | | | | | SUSP PART SIZE | | m m | 440 | ENAAAM | | | | | SUS SED CONCEN | 444 | EE UXOME | □×××≥ | ×30mm | Ω Ω Ω ∢ Ω | α α α α α | 444 <u>2</u> | | OW END
PA3Y | | 1979 | 1979
1979
1979 | 1979
1979 | 1979
1979
1979 | 1979
1979
1979 | 1979
1979
1979 | | NID38 WO
RA3Y | 1975
1975
1975 | LL | 1968
1974
1972
1972 | 1972
1972
1974
1972 | 1960
1978
1978
1965 | 1977
1977
1978
1977 | 1977
1977
1977
1977 | | BASIN
Descriptor | | 004 | 00000
44444 | 0000
44000
4444 | 000
4 4 4 4 | | | | DRAINAGE
AREA | | 1.68
93.90
1507.00
3892.00 | 297.00
7.40
4.18
11.60
9.55 | 2.42
6.70
.82
6.20
393.00 | 554.00
48.80
12.60
112.00 | | | | TYPE OF | 3 3 3
0 0 0 0 | MS MS MS | M M M M M M M M M M M M M M M M M M M | MA MA M | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | X | | YTNUOD | 000 | ស ១ 4 ១ ८ ១ | 027
027
195
195 | 195
195
195
195 | 195
195
195
195 | 195
195
195
111
195 | 1 9 5 5 1 1 9 5 5 1 1 1 1 1 1 1 1 1 1 1 | | 31AT2 | 054
054
054 | 000000 | 051
051
021
021 | 021
021
021
021 | 021
021
021
021 | 021
021
021
021 | 021 | | LONGITUDE | 0821551
0821527
0821727 | 0822435
0820600
0821953
0823053
0823805
0823805 | 0821145
0821229
0821530
0821438
0821452 | 0821817
0821808
0822016
0822114
0822515 | 0822035
0822245
0823444
0822957
0821449 | 0821525
0822051
0821907
0821920 | 0821805
0821745
0821752
0825213 | | LATITUDE | 382005
382104
382259 | 7331
7331
7251
7471
8002
8101 | 372113
372045
372254
372407
372543 | 372523
372344
372657
372557
372557 | 37 18 14
37 16 30
37 16 38
37 25 24
37 22 10 | 372410
372609
372645
372656 | 372708
372709
372711
375050 | | STATION NAME AND LOCATION | | | LEVISA FORK AT BIG ROCK VA CONAWAY CREEK AT CONAWAY, VA. CARD CREEK AT MOUTHCARD, KY. FEDS CR AT FEDS CREEK, KY. BIG CREEK AT DUNLAP, KY. | ISLAND CREEK NEAR PHYLLIS,KY. LICK CR.AT LICK CREEK,KY. DICKS FORK AT PHYLLIS, KY. GRAPEVINE CREEK NR PHYLLIS, KY | RUSSELL FK AT ELKHORN CITY ELKHORN CR NR ELKHORN CREEK SHELBY CREEK AT DORTON, KY. SHELBY CREEK AT SHELBIANA KY LITTLE HACKNEY CREEK AT MOUTHCARD | CROOKED BRANCH NR FEDSCREEK FEDS HOLLOW NR PHYLLIS, KY HUNTERS CR AT PHYLLIS HONEY FORK AT PHYLLIS TRACE FORK NR PHYLLIS | LOWER CAMP BRANCH NR PHYLLIS
GRAPEVINE CR ABOVE UPPER CAMP BR NR PHYLLIS
UPPER CAMP BRANCH NR PHYLLIS
PAINT CR NR MOUTH | | HYDROLOGIC
Unit
Code | 05070102
05070102
05070102 | 05070201
05070201
05070201
05070201
05070201 | 05070202
05070202
05070202
05070202 | 05070202
05070202
05070202
05070202 | 05070202
05070202
05070202
05070202 | 05070202
05070202
05070202
05070202 | 05070202
05070202
05070202
05070203 | | ROTZ G3Z
AIG3M | ۵۵۵۵ | 00000 | 0000 | 0000 | 00000 | 00000 | 0000 | | |----------------------------|---|--|--|--|---|---|---|--| | MOITASINADRO
BOOD | KYOO1
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
KYOO1 | KY001
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | Ω ∢ | □××≥× | m α O ∢ | 2000 | 88788 | NUNIE | w∑Z∢ | | | 3512 18A9 TAM G38 | | | | 0 0 | 0 | | | | | 3212 TRAS SUZ | | ΣααΣ | w | 0 & 0 & | 44084 | шош | ш « | | | SOUS SED CONCEN | ΣΣΩΣ∢ | 0××3× | m K 3 4 Z | ₹ 0000 | ααναα | NUNIE | w Σ Z ∢ | | | OW END
RA3Y | 1979 | 1979
1979
1979
1979 | 1979 | 1975
1975
1975
1975 | 1974
1974
1975
1975 | 1971
1975
1973
1974
1970 | 1974 | | | OW BEGIN | 70001
70001
7000
7000
8000
8000 | 1961
1973
1973
1973
1973 | 1953
1965
1948
1977 | 1965
1965
1965
1965 | 1965
1960
1962
1964
1960 | 1954
1951
1950
1962
1965 | 1965
1966
1975
1968 | | | NIZAB
ROT91R3230 | 000
440
440 | 88888
444444 | 014 | 024 | 424
000
44
000
400 | 000
400
400
004
400 | 124 | | | DRAINAGE
Area | 1237.00
51.90
1701.00
62.10 | 56.30
14.80
3.74
20.40
6.21 | 206.00
103.00
2143.00 | 541.00 | 926.00
193.00
503.00
162.00 | 307.00
2511.00
197.00
275.00 | 120.00
3814.00
58.70
529.00 | | | TYPE OF | SEEE | N N N N N N N N N N N N N N N N N N N | M S M S M S M S M S M S M S M S M S M S | M M M M M M M M M M M M M M M M M M M | M M M M M M M M M M M M M M M M M M M | N N N N N N N N N N N N N N N N N N N | 3 3 3 8
0 0 0 0 | | | COUNTY | 07.1
195
07.1
07.1 | 195
195
195
195
071 | 071
115
115
071
011 | 127
149
149
149 | 109
109
109
109 | 023
113
113
135 | 017
177
177
041 | | | 3TAT2 | 021
021
021
021 | 021
021
021
021 | 021
021
021
021 | 021
039
039
039 | 680
039
039 | 039
039
039
039 | 039
039
018
018 | | | LONGITUDE | 0823914
0823105
0823840
0824638 | 0822729
0822705
082323
0822903
0822903 | 0824327
0825215
0824730
0824350
0824021 | 0823720
0840900
0840900
0842302
0842302 | 0841152
0842548
0842122
0842122 | 0834921
0841136
0841151
0843130
0842348 | 0843639
0844004
0850947
0850927 | | | LATITUDE | 374160
372835
373213
374015 | 373401
373055
373511
373958
373758 | 374437
375005
374855
373456
381034 | 381008
401713
401713
401825
401825 | 400225
400608
400328
400328
400627 | 395836
394553
394555
394228
393810 | 393123
391547
395225
393423 | | | STATION NAME AND LOCATION | JOHNS FORK HEAD OF DEWEY LK
LEVISA FORK AT PIKEVILLE, KY.
MUD CR AT HAROLD
LEVISA FORK AT PRESTONSBURG, KY.
MIDDLE CR NR PRESTONSBURG | JOHNS CREEK NEAR META, KY. RACCOON CR. NR ZEBULON,KY. CANEY FORK NEAR GULNARE, KY. BRUSHY FK. AT HEENON,KY. BUFFALO CREEK NEAR ENDICOTT, KY. | JOHNS CR NR VAN LEAR,KY. PAINT CREEK AT STAFFORDSVILLE, KENTUCKY LEVISA FK AT PAINTSVILLE,KY. BEAVER CR BELOW ARKANSAS CR NR MARTIN BLAIN CR FALLSBURG | LOUISA KY W PI
G MIAMI R AT SIDNEY OH
G MIAMI R AT SIDNEY OH
LORAMIE C NR NEWPORT OH
LORAMIE C NR NEWPORT OH | G MIAMI R AT TROY OH
GREENVILLE C NR BRADFORD OH
STILLWATER R AT PLEASANT HILL OH
STILLWATER R AT PLEASANT HILL OH
MAD R NR URBANA OH | MAD R AT EAGLE CITY OH G MIAMI R AT DAYTON
OH G MIAMI R AT DAYTON OH TWIN C NR INGOMAR OH TWIN C NR GERMANTOWN OH | SEVENMILE C AT COLLINSVILLE OH
G MIAMI R AT NEW BALTIMORE OH
WHITEWATER RIVER NEAR HAGERSTOWN, IND
WHITEWATER RIVER NEAR ALPINE, IND | | | HYDROLOGIC
Unit
Code | 05070203
05070203
05070203
05070203 | 05070203
05070203
05070203
05070203 | 05070203
05070203
05070203
05070203 | 05070204
05080001
05080001
05080001 | 05080001
05080001
05080001
05080001 | 05080001
05080002
05080002
05080002 | 05080002
05080002
05080003
05080003 | | | MEDIA | <u> </u> | | ···· | | | | | | | |----------------------------|----------|--|---|--|---|--|--|---|-------------| | NOT2 GBZ
AIGEM | | 00000 | 00000 | ٥٥٥٥ | 00000 | 0000 | 00000 | 0,00 | | | NOITASINADIO
3000 | | 0868
0868
0868
0868
0868 | USGS
USGS
USGS
USGS
USGS | KY001
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
KYOO1 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
KYOO1 | | | SUSP DISCHARGE | | OIM | шш∢ ∠ | ∢∪m m | 00000 | M E N N | それなる女 | 4 7 H | | | 3512 TRAS TAM 038 | | | | | | | | · | | | SUS TANS SEUZ | · | ш | <u> </u> | шшш | 00 | <u> </u> | w Z w | шш | | | SUSP SED CONCEN | | Q I M 3 3 | ≯шш∢и | 2 K U M M | 00000 | Z m € 10 10 | m Z & C A | <u> </u> | | | OW END
RABY | | | | | 1972
1972
1968
1968 | 1974 | 19,79 | 1979 | | | OW BEGIN | | 1967
1963
1973
1970
1970 | 1959
1950
1973
1970
1955 | 1977
1949
1963
1960
1965 | 1951
1951
1951
1954
1953 | 1951
1952
1946
1969
1977 | 1968
1958
1965
1948
1960 | 1970
1951
1948
1977 | | | BASIN
ROT9IR3230 | | 004
004 | 0000
4 4 4 4 4 | 004
000
004
004 | 00000
444444 | 000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 000
4 4 4 | 000
4 | | | DRAINAGE
AREA | | 200.00
380.00
1224.00
1.01 | 4.99
585.00
62000.00
59.60
242.00 | 400.00
12.20
387.00
218.00 | 48.90
28.90
129.00
28.90
17.10 | 63.20
219.00
1203.00
195.00 | 38.10
83170.00
140.00
827.00
84.70 | 119.00
2326.00
3385.00 | | | TYPE OF
SITE | | X X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | N N N N N | N N N N N | M M M M M M M M M M M M M M M M M M M | N N N N N N N N N N N N N N N N N N N | A M M M M M M M M M M M M M M M M M M M | | | COUNTY | | 177
047
047
163
163 | 163
053
089
043
089 | 043
145
001
015 | 023
023
057
057
057 | 057
165
025
025
015 | 029
077
153
011
205 | 161
191
191
017 | | | 3TAT2 | | 018
018
039
039 | 039
039
021
021
021 | 021
021
039
039
039 | 680
039
039 | 039
039
039
039 | 021
021
021
021 | 021
021
021 | | | LONGITUDE | | 0845735
0850012
0850046
0821847
0821851 | 0821956
0822122
0825138
0831025 | 0825623
0825622
0831257
0832516
0835543 | 0834421
0834638
0835553
0834725
0834550 | 0835258
0840512
0841753
0840129
0844327 | 0850217
0845752
0830504
0833236
0832850 | 0834737
0841600
0842105
0841053 | | | LATITUDE | | 394357
392602
392424
392145
392148 | 392001
385225
383848
381757
383351 | 381947
381948
383837
384813
385129 | 394836
394940
394454
394525
394420 | 394322
392007
391017
390652
390008 | 390147
384629
374503
380655 | 383257
383552
384722
380607 | | | STATION NAME AND LOCATION | | EAST FORK WHITEWATER RIVER AT ABINGTON, IND. EAST FORK WHITEWATER AT BROOKVILLE, IND WHITEWATER RIVER AT BROOKVILLE, IND SANDY RN AB BIG FOUR HOLLOW C NR LAKE HOPE O BIG FOUR HOLLOW C NR LAKE HOPE O | SANDY RN NR LAKE HOPE OH
RACCOON C AT ADAMSVILLE OH
OHIO R AT GREENUP DAM NR GREENUP, KY
TYGARTS CREEK AT OLIVE HILL, KY.
TYGARTS CREEK NEAR GREENUP, KY. | LITTLE SANDY R GRAYSON
LITTLE SANDY RIVER AT GRAYSON, KY.
UPPER TWIN C AT MCGAW OH
OHIO BRUSH C NR WEST UNION OH
WHITEOAK C NR GEORGETOWN OH | L MIAMI R NR SELMA OH
N F L MIAMI R NR PITCHIN OH
L MIAMI R NR OLDTOWN OH
N F MASSIE C AT CEDARVILLE OH
S F MASSIE C NR CEDARVILLE OH | MASSIES C AT WILBERFORCE OH
TODD F NR RDACHESTER OH
L MIAMI R AT MILFORD OH
E F L MIAMI R NR MARATHON OH
GUNPOWDER CR BELOW FLORENCE | SOUTH HOGAN CREEK NEAR DILLSBORO, IND.
OHIO R AT MARKLAND DAM NR WARSAW, KY
LICKING R NR SALYERSVILLE, KY.
LICKING R AT FARMERS
NORTH FORK TRIPLETT CREEK NEAR MOREHEAD, KY. | NORTH FORK LICKING RIVER NEAR LEWISBURG, KY.
LICKING RIVER AT MCKINNEYSBURG, KY.
LICKING RIVER AT BUTLER,KY.
STRODES CR BELOW HOODS CR | | | HYDROLOGIC
Unit
Code | | 05080003
05080003
05080003
05090101 | 05090101
05090101
05090103
05090103 | 05090104
05090104
05090201
05090201 | 05090202
05090202
05090202
05090202
05090202 | 05090202
05090202
05090202
05090202
05090203 | 05090203
05090203
05100101
05100101 | 05100101
05100101
05100101
05100102 | | | ZED ZLOW | ۵ ۵ | ٥ | | | ۵ ۵ | ۵۵۵۵ | ۵ ۵ | | |----------------------------|---|--|--|---|---|---|--|---------------------------------------| | ONGANIZATION
CODE | U S G S
U S G S
U S G S | USGS
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
KY001
KY001
USGS | , | | SUSP DISCHARGE | ∢ ♡ ∢ | | 00000 | 00000 | 00040 | 0 M 4 4 4 | œ | | | 3212 TAA9 TAM 038 | | | | | 4 | | | · · · · · · · · · · · · · · · · · · · | | SUS TAAR REUS | | | | | <u> </u> | | | | | ZOZE ZED CONCEN | 404 | 00 00004 | 00000 | 00 00 | 00040 | OKAAA | RZZA | | | ON3 WO
RA3Y | | | | | | | | | | OW BEGIN | 1971
1979
1948 | LL | 1979
1979
1979
1979 | 1979
1979
1948
1979 | 1979
1970
1979
1970 | 1979
1948
1973
1979
1964 | 1948
1977
1977
1970 | | | BASIN
BESCRIPTOR | 000
000
004 | 900 0000
44 44444 | 00000
44444 | 00000
444444 | 88888
444444 | 00000
444444 | 004 | | | DRAINAGE
AREA | 40.90 | 177.00 | | 1101.00 | 202.00 | 537.00
155.00
163.00 | 722.00 | | | TYPE OF | A A A | 33 3333
30000 | N N N N N | N N N N N | N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | | | COUNTY | 193
193
193 | oo oo + 00 | 025
119
119
025 | 025
025
025
025
025 | 025
131
131
131
131 | 025
129
051
051
051 | 189
129
237
129 | | | STATE | | 021
021
021
021
021 | 021
021
021
021 | 021
021
021
021 | 021
021
021
021 | 021
021
021
021 | 021
021
021 | | | LONGITUDE | 0830533
0831037 | 0831115
0831533
0831914
0830905
0830643
0833114 | 0831914
0830123
0830529
0830548
0831128 | 0831341
0831948
0832305
0832457
0831911 | 0832453
0832217
0832337
0831829
0832430 | 0833004
0833538
0833535
0834133 | 0834038
0834611
0832735
0834606 | | | LATITUDE | 370648
371004
371448 | 371701
371409
372111
372201
372208
372655
372655 | 372756
372704
372957
373417
373507 | 373533
373157
373305
373304
373830 | 373734
370813
370918
370954
371351 | 372857
373318
371043
370450
370907 | 372845
373308
374832
373319 | | | STATION NAME AND LOCATION | LEATHERWOOD CREEK AT DAISY,
KY.
RIGHT FK MACYS CK NR FARLAR,KY.
NORTH FORK KENTUCKY R AT HAZARD,KY. | LOTTS CREEK NR DARFORK,KY. BIG CREEK NR AVAWAN,KY. GRAPEVINE CK NR LAMONT,KY. TROUBLESOME CREEK NR ARY,KY BALLS FORK NR TALCUM,KY. BUCKHORN CREEK NR NOBLE,KY. TROUBLESOME CREEK AT NOBLE, | LOST CREEK NR LOST CREEK,KY. LAUREL FORK NEAR ELMROCK,KY. MIDDLE FK QUICKSAND CK NR DECOY,KY. HAWLS FORK NEAR TIPTOP,KY. CANEY CREEK NEAR CAMP LEWIS,KY. | HUNTING CREEK NR ROUSSEAU,KY. SOUTH FORK NEAR PORTSMOUTH NORTH FORK KENTUCKY RIVER AT JACKSON,KY. CANE CREEK NR JACKSON,KY. FROZEN CREEK NR TAULBEE,KY. | BOONE FORK NEAR VANCLEVE,KY. MIDDLE FORK KENTUCKY RIVER NEAR HYDEN, KY ROCKHOUSE CREEK NR HYDEN,KY. CUTSHIN CREEK AT WOOTON, KY. HELL FOR CERTAIN CK NR KALIOPI,KY. | TURKEY CREEK NEAR TURKEY,KY.
MIDDLE FORK KENTUCKY RIVER AT TALLEGA,KENTUC
RED BIRD RIVER NEAR BIG CREEK, KY.
GOOSE CR NR GOOSEROCK, KY.
GOOSE CREEK AT MANCHESTER, KENTUCKY | SOUTH FORK KENTUCKY RIVER AT BOONEVILLE, KENT
KY R LOCK & DAM #14
RED R HAZEL GREEN
KENTUCKY RIVER AT LOCK 14 AT HEIDELBERG, KY | | | HYDROLOGIC
Unit
Code | 05100201
05100201
05100201 | 05100201
05100201
05100201
05100201
05100201 | 05100201
05100201
05100201
05100201 | 05100201
05100201
05100201
05100201 | 05 100201
05 100202
05 100202
05 100202
05 100202 | 05 100202
05 100202
05 100203
05 100203
05 100203 | 05 100203
05 100204
05 100204
05 100204 | | | winzin I | | | | | | | ······································ | | |----------------------------|--|--|---|--|--|---|--|---| | 9072 032
AIG3M | | | 000 | | 00000 | | 00 0 | | | CODE
CODE | USGS
KY001
KY001
KY001 | KY001
KY001
KY001
USGS | USGS
USGS
USGS
KYOO1
KYOO1 | KY001
KY001
KY001
KY001
USGS | USGS
USGS
USGS
USGS
USGS | KY001
KY001
KY001
USGS
KY001 | USGS
USGS
KYOO1
USGS | | | SUSP DISCHARGE | Z | 8 | ∢Z'N | ٩ | OWAZO | 7 | α ⋖ | | | SIS TRAS TAM 036 | | · | | | | | | | | SUSP SED CONCEN | 35555 | Ш | 2 W | | <u> </u> | FFFOF | A - 5 N | | | | 2 2 2 2 2 0 | 0 | 4ZUZZ | Z Z Z Z < | 0 M A N 4 | 0 0 | R A Z U | | | OW END
AA3Y | 197 | 197 | | | 197 | 197 | | | | OW BEGIN | 1970
1977
1977
1977 | 1977
1977
1977
1977 | 1948
1972
1948
1977 | 1977
1977
1977
1977
1960 | 1948
1962
1970
1970 | 1977
1977
1977
1948 | 1958
1972
1977
1950 | | | MIZAB
AOT91R3230 | 004 | 014 | 000
4 4 4 4 | 900 | 000
4 4 4 00
4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 014 | 004 | | | DRAINAGE
AREA | 65.80 | 5412.00 | 473.00
6180.00
437.00 | 188.00 | 1673.00
2.26
357.00
85.40
600.00 | 1848.00 | 5403.00
125.00
504.00 | | | TYPE OF | ************************************** | A A A A A A A A A A A A A A A A A A A | A A A A A A A A A A A A A A A A A A A | A A A A A A A A A A A A A A A A A A A | A A A A A A A A A A A A A A A A A A A | X X X X X X X X X X X X X X X X X X X | A A A A A A A A A A A A A A A A A A A | | | COUNTY | 237
103
187
073
209 | 113
113
079
021
073 | 073
103
187
217
087 | 099
085
093
001 | 099
061
093
099
085 | 227
009
009
227
141 | 031
177
085
085 | | | 3TAT2 | 021
021
021 | 021
021
021
021 | 021
021
021
021 | 021
021
021
021 | 021
021
021
021 | 021
021
021
021 | 021
021
021
021 | | | LONGITUDE | 0832750
0845744
0844838
084528 | 0844044
0843052
0844441
0843939
0845254 | 0844853
0845748
0844926
0852811 | 0855953
0860420
0860242
0850810
0852338 | 0855310
0861024
0860243
0855953
0860721 | 0863008
0860140
0860234
0862551 | 0864122
0870016
0861945
0863305 | | | LATITUDE | 374844
382617
384211
381031 | 374742
375330
373743
373830
381206 | 381607
382620
384218
371922
371513 | 372133
372249
373302
371133
370709 | 371605
371347
373303
372131
372043 | 370511
365633
364509
370004
365726 | 371436
371801
373531
373520 | - | | STATION NAME AND LOCATION | RED RIVER NEAR HAZEL GREEN, KY. KENTUCKY R LOCK #2 LOCKPORT EAGLE CR AT GLENCOE KENTUCKY R BELOW FRANKFORT SOUTH ELKORN CR KY HWY BRIDGE 314 | KENTUCKY R BELOW JESSAMINE CK HICKMAN CR BELOW EAST&WEST FORK CLARKS RUN DANVILLE DIX R NR DANVILLE KENTUCKY R AT LOCK 4 AT FRANKFORT KY | ELKHORN CREEK NEAR FRANKFORT, KY
KENTUCKY RIVER AT LOCK 2,AT LOCKPORT,KY.
EAGLE CR. AT GLENCOE,KY.
LITTLE PITMAN CK BELOW CAMPBELL
GREEN R GREENSBURG WPI | BACON CR PRICEVILLE NOLIN R BROADFORD NOLIN RIVER WHITE MILLS GREEN R RESERVOIR RUSSELL CREEK NEAR COLUMBIA, KY. | GREEN RIVER AT MUNFORDVILLE, KY. WET PRONG BUFFALO CREEK NR MAMMOTH CAVE KY NOLIN RIVER AT WHITE MILLS, KY. BACON CREEK NEAR PRICEVILLE, KY. NOLIN RIVER AT WAX, KY. | BARREN R LOCK & DAM #1 BEAVER CR RACKY HILL BARREN R MAYNARD BARREN R AT BOWLING GREEN KY MUD R EAST OF EPLYS | GREEN RIVER AT ABERDEEN, KY. POND CR NR MARTWICK KY ROUGH R LK ROUGH RIVER AT FALLS OF ROUGH, KY | | | HYDROLOGIC
Unit
CODE | 05100204
05100205
05100205
05100205 | 05 100205
05 100205
05 100205
05 100205
05 100205 | 05 100205
05 100205
05 100205
05 110001 | 05110001
05110001
05110001
05110001 | 05110001
05110001
05110001
05110001 | 05110002
05110002
05110002
05110002
05110003 | 05110003
05110003
05110004
05110004 | | | | | | | | | | | - | |----------------------------|---|---|--|---|---|--|---|---------------| | MOT2 GBZ
AIGBM | 0000 | 000 | 00000 | 0000 | 00000 | 00000 | 0000 | | | NOITASINADRO
3000 | USGS
USGS
USGS
USGS | USGS
KYOO1
USGS
USGS
USGS | INOO1
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 448. | | ₩ ₩₩ | 0 X O K K | XIQIQ | ₩ шио | 4 4 | | | 3512 TAA9 TAM 038 | | | | | | | Σ | | | SELE TRAN NEUZ | ш | | ×m∢ | ш сиш | < C < C < | шо | ∢Σw | | | SUSP SED CONCEN | A A CA TH | α ΣΣααα | ₩ ₩₩ | GXOKK | ×ICIC | 4×EC | ₹™ | · | | OW END
Year | | | 1973
1979
1979 | 1965
1979
1974 | 1966 | | | | | OW BEGIN | 1970
1948
1948 | 1970
1977
1961
1979
1979 | 1972
1971
1969
1978
1978 | 1963
1969
1969
1968 | 1954
1958
1972
1968
1969 | 1975
1978
1973
1978 | 1974
1977
1963
1972 | | | BASIN
Descriptor | 004
014
014 | 000 | 410 | | 014
004
004 | 014 | 004 | | | DRAINAGE
AREA | 4 17 4 | 58.20
194.00
52.50 | 453.00
263.00
159.00
85.60 | 425.00
133.00
789.00
274.00
856.00 | 7267.00
139.00
509.00
670.00 | 138.00
542.00
29234.00
104.00
745.00 | 3102.00
241.00
25.50 | | | TYPE OF | 3 3 3 S | A A A A A A A A A A A A A A A A A A A | SEE | MS M | MS M | N N N N N | N N N N N N N N N N N N N N N N N N N | | | TNUOD | 183
183
149
233 | 8 74700 | 179
001
069
103
075 | 069
135
017
015 | 157
133
107
121
011 | 153
041
129
129
025 | 193
193
035
035 | | | 3TAT2 | 021
021
021
021 | 021
021
021
021 | 0 18
8 10
8 10
8 10 | 8 t 0 0 1 8 1 0 0 1 8 1 0 0 1 8 1 0 0 1 8 1 0 0 1 8 1 0 0 1 8 1 0 0 1 1 1 1 | 018
018
018
018 | 018
017
018
018 | 017
017
018
018 | | | LONGITUDE | 0863920
0864616
0871550 | 915
903
910
910
710 | 0851323
0850158
0852422
0860544 | 0852713
0845944
0861550
0863715 | 0865349
0865714
0865358
0870733 | 0872311
0880348
0875625
0874610
0882950 | 0880935
0880900
0852314
0853053 | | | LATITUDE | 372750
373346
373202
373521 |
3708
2116
0720
0720
1157
2920 | 404336
403922
405414
404006
402540 | 404245
401649
404655
403525
410926 | 402519
394845
400256
395552
395656 | 390433
393933
380755
380458 | 380340
380300
401215
401545 | | | STATION NAME AND LOCATION | CANEY CREEK NEAR HORSE BRANCH, KY
ROUGH RIVER AT DUNDEE, KY.
GREEN RIVER AT LOCK 2, AT CALHOUN, KY.
GREEN RIVER NR BEECH GROVE,KY. | SOUTH FORK PANIHER CREEK N POND R NR ISAACS CREEK POND R NR APEX POND RIVER NR APEX, KY. DRAKES CREEK NEAR WHITE PL CYPRESS C NR CALHOUN KY | CORNING GLASS BLUFFTON WABASH RIVER AT LINN GROVE, IND. LITTLE RIVER NEAR HUNTINGTON, IND. PIPE CREEK NEAR BUNKER HILL, IND. SALAMONIE RIVER AT PORTLAND, IND. | SALAMONIE RIVER NEAR WARREN, IND.
MISSISSINEWA RIVER NEAR RIDGEVILLE, IND.
EEL RIVER NEAR LOGANSPORT IND
DEER CREEK NEAR DELPHI, IND.
TIPPECANDE RIVER NEAR ORA, IND. | WABASH RIVER AT LAFAYETTE IND
BIG RACCOON CREEK NEAR FINCASTLE IND
SUGAR CREEK AT CRAWFORDSVILLE, IND.
SUGAR CREEK NEAR BYRON, IND.
EAGLE CREEK AT ZIONSVILLE, IND. | BUSSERON CR NR SULLIVAN IN SITE 114
EMBARRAS RIVER AT STATE HWY 133 NR OAKLAND.
WABASH RIVER AT NEW HARMONY, IND.
BIG CR NR WADESVILLE IN SITE 293
LITTLE WABASH RIVER AT LOUISVILLE, IL | LITTLE WABASH RIVER AT CARMI, IL
CARMI WWKS B MUDDY R ROBOT
WHITE RIVER AT MUNCIE, IND.
KILLBUCK CREEK NEAR GASTON, IND. | | | HYDROLDGIC
Unit
Code | 05110004
05110004
05110005
05110005 | 05110005
05110006
05110006
05110006 | 05120101
05120101
05120101
05120101
05120101 | 05120102
05120103
05120104
05120105
05120106 | 05120108
05120108
05120110
05120110 | 05120111
05120112
05120113
05120113 | 05120114
05120114
05120201
05120201 | | | MEDIY | | | | | | | | |----------------------------|--|--|--|--|---|---|--| | NOT2 G32 | ۵۵۵۵۵ | 00000 | 00000 | 00000 | 0000 | _00 | ۵ | | ORGANIZA TION
CODE | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | INOO1
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
KYOO1 | KYOO1
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | SUSP DISCHARGE | R A R R M | ແከኧ ແ ແ | 3 Z 4 O Y | αD∢Z | AYAE | 4400 | & 0 0 0 | | 3512 TAA9 TAM 038 | | | | | | | | | SUSP SED CONCEN | X 4 X X M | m A m A | <u> </u> | 0 1 2 1 | | F | | | | 4 70 | <u>o</u> o | > Z < 0 × | ოთ და
ით და | 0 0
AXAZZ | E | <u> </u> | | OW END
RAJY | 197 | 197 | 197
197
197 | 197
197
196
196 | 197 | | | | NIGGIN
BABY | 1954
1963
1978
1978 | 1978
1968
1968
1964 | 1973
1968
1978
1968
1969 | 1972
1966
1954
1968 | 1966
1978
1974
1963 | 1977
1970
1949
1979 | 1948
1979
1979
1979 | | NISA8
ROTGIADS30 | 014 | 003 | 004 | 004 | 000
44 | 0000
4400
444 | 0000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | DRAINAGE
AREA | 828.00
169.00
4.40
212.00
2444.00 | 14.60
11305.00
794.00
326.00
245.00 | 184.00
421.00
78.80
474.00
303.00 | 155.00
2341.00
293.00
11.40 | 198.00
10.90
287.00
882.00 | 55.80
374.00 | 90.60 | | TYPE OF
SITE | MS W W | N N N N N | N N N N N | SSSE | X X X X X X X X X X X X X X X X X X X | N N N N N | 3333
0000 | | KTNUOD | 057
097
099
099 | 013
051
157
133
119 | 139
145
097
081
145 | 071
079
071
071 | 079
105
117
051
235 | 013
095
095
095
013 | 0000
8 8 8 8 | | 3TAT2 | 810
810
810 | 018
018
018
018 | 018
018
018
018 | 810
810
810
810 | 018
018
018
021 | 021
021
021
021 | 021 | | LONGITUDE | 0855746
0855205
0860714
0862256 | 0861455
0873300
0864945
0865835
0864548 | 0853433
0854655
0855727
0855951
0853803 | 0860330
0853932
0855357
0854026
0852910 | 0853713
0862507
0863803
0873255
0840738 | 0834134
0831452
0832121
0832745
0833332 | 0834119
0834428
0834327
0833609 | | LATITUDE | 400746
395715
394345
393628 | 391545
382923
392627
393211
392600 | 394438
393145
393925
392139 | 385300
390503
385857
384815
390413 | 385834
391011
383510
382330
365809 | 364550
364457
365048
364519
364318 | 364305
364342
364317
364706 | | STATION NAME AND LOCATION | WHITE RIVER NEAR NOBLESVILLE IND
FALL CREEK NEAR FORTVILLE, IND.
BEAN CREEK AT INDIANAPOLIS, IND
WHITE LICK CREEK NEAR MOORESVILLE, IND.
WHITE RIVER NEAR CENTERTON IND | BEANBLOSSOM CREEK AT BEANBLOSSOM, IND. WHITE RIVER AT HAZLETON, IND. WILDCAT CREEK NR. LAFAYETTE, IND. BIG WALNUT CREEK NEAR REELSVILLE, IND. MILL CREEK NEAR CATARACT, IND. | BIG BLUE RIVER AT CARTHAGE, IND. BIG BLUE RIVER AT
SHELBYVILLE, IND BUCK CREEK AT ACTON, IND. SUGAR CREEK NEAR EDINBURGH IND. FLATROCK RIVER AT ST. PAUL, IND. | KIEFFER PAPER BROWNSTOWN SAND CREEK NEAR BREWERSVILLE, IND. EAST FORK WHITE RIVER AT SEYMOUR IND MUSCATATUCK RIVER NEAR DEPUTY, IND. BRUSH CREEK NEAR NEBRASKA, IND. | VERNON FORK AT VERNON, IND.
STEPHENS CREEK NEAR BLOOMINGTON, IND.
LOST RIVER NR. WEST BADEN SPRINGS, IND.
PATOKA RIVER NEAR PRINCETON, IND.
LAUREL R RESERVOIR HGWY 312 | CUMBERLAND R PINEVILL WPI
MARTINS FK NR SMITH,KY.
CUMBERLAND RIVER NEAR HARLAN,KENTUCKY
PUCKETT CK NR PATHFORK,KY.
BROWNICE CREEK NR OAKS,KY. | VELLOW CR NR MIDDLESBORD, KY. CLEAR CK NR PINEVILLE, KY. LITTLE CLEAR CK NR PINEVILLE, KY. STRAIGHT CK NR KETTLE ISLAND, KY. | | HYDROLOGIC
Unit
Code | 05120201
05120201
05120201
05120201 | 05120202
05120202
05120203
05120203 | 05120204
05120204
05120204
05120204 | 05120206
05120206
05120206
05120206 | 05120207
05120208
05120208
05120209
05130101 | 05130101
05130101
05130101
05130101 | 05130101
05130101
05130101
05130101 | | MEDIA | | 00000 | | | 0 0 | 0000 | 000 | |----------------------------|---|---|---|--|--|--|---| | AOTZ G32 | 0 | 00000 | 000 0 | 0 | | | | | MOITAZ INADRO
BIDDO | \$9\$0
\$9\$0
\$9\$0
\$9\$0
\$9\$0 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
KYOO1
USGS
KYOO1 | USGS
USGS
USGS
USGS
KYOO | KYOO.
USGS
USGS
USGS | | SUSP DISCHARGE | 000∢0 | বৰবৰৰ | 44004 | ∢ ♂ ♂ ♂ | 40 4 | 4004 | 044 | | 3512 TRAY TAM G38 | | | | | | | | | SUSP SED CONCEN | 00010 | 44444 | A m A | | <u> </u> | <u> </u> | 044 | | | 00040 | 44444 | AANOA | 40000 | 40242 | 4 W W Z | ∑ O ⊲ ⊲ | | OW END
RABY | | | | | | 1974 | | | OW BEGIN | 1979
1979
1978
1978 | 1979
1979
1979
1979 | 1979
1970
1948
1979 | 1960
1979
1978
1979 | 1960
1979
1977
1948 | 1960
1955
1955
1970
1977 | 1977
1975
1975
1975 | | BASIN
ROT9IRD230 | 000
4400
4400
4400 | 00000
44444 | 00000
4 4 4 4 4 | 00
4
00
4
00 | 00
4
4
4
4 | 9000
44444 | | | DRAINAGE
AREA | 00.096 | 48.99
34.50
38.26
20.70
117.00 | 40.48
331.00
1607.00 | 103.00 | 954.00 | 82.30
.67
.85 | 66.00
27.90 | | FYPE OF | ************************************** | MS M | M M M M M M M M M M M M M M M M M M M | MS M | MS M | M M M M M M M M M M M M M M M M M M M | 3333 | | COUNTY | 013
121
121
121
121 | 0013 | 013
235
235
235
151 | 235
147
147
125 | 147
147
203
125
199 | 095
147
147
199
199 | 147
001
013
013 | | 3TAT2 | 02
02
02
1 | 047
047
047
047 | 021
021
021
047 | 021 | 021 | 021
021
021
021 | 021
047
047 | | LONGITUDE | 0833936
0834225
0834444
0835313 | 0835936
0840020
0840836
0840432
0840242 | 0840953
0840642
0840930
0840807
0841901 | 0841520
0842118
0842036
0835956
0840447 | 0843200
0842939
0841748
0841746
0843713 | 0825935
0842657
0842855
0842752
0843603 | 0843237
0842532
0841918
0841949 | | LATITUDE | 364754
365314
365402
365145 | 363246
363225
363026
363001
363300 | 363310
363802
364438
364708 | 364056
364255
365014
370334
370347 | 363737
364009
371016
371016
365943 | 365826
365205
365307
371238
365348 | 364331
360728
361234
361417 | | STATION NAME AND LOCATION | LEFT FK STRAIGHT CK NR CARY,KY.
MIDDLE FK STINKING CK NR WALKER,KY.
ROAD FORK CK NR BARNYARD,KY.
CUMBERLAND RIVER AT BARBOURVILLE,KENTUCKY
LITTLE INDIAN CK NR PERMON,KY. | CLEAR FORK AT HWY 90, AT ANTHRAS, TN. TACKETT CREEK AT ANTHRAS, TN STINKING CREEK NEAR NEWCOMB, TN. LICK CREEK AT HABERSHAM, TN HICKORY CREEK AT MORLEY, TN | ELK CREEK AT NEWCOMB,TN.
CLEAR FORK AT SAXTON, KENTUCKY
CUMBERLAND RIVER AT WILLIAMSBURG, KY.
WATTS CK NR WOFFDRD,KY.
JELLICO CREEK AT KETCHEN, TN. | JELLICO C NR WILLIAMSBURG
MARSH CK NR DUCKRUN,KY.
FY78 CHANGE OPERATION OWDC63228 TO
TRIB TO LAUREL R NR LESBAS,KY.
TRIB TO LAUREL R NR PINE GROVE,KY. | SOUTH FORK CUMBERLAND RIVER NEAR STEARNS, KY ROARING PAUNCH,KY. ROCKCASTLE R AT BILLOWS ROCKCASTLE R AT BILLOWS,KY. PITMAN CR BELOW SOMERSET STP | POOR FORK AT CUMBERLAND, KY
CANE BRANCH NEAR PARKERS LAKE
HELTON BRANCH AT GREENWOOD, KY.
BUCK CREEK NEAR SHOPVILLE, KY
LK CUMBERLAND BURMSIDE | SOUTH FORK CUMBERLAND R YAMACRAW
NEW RIVER AT FORK MOUNTAIN, TENN
NEW RIVER AT STAINVILLE, TENN
BEECH FORK AT SHEA, TENN | | HYDROLOGIC
Unit
Code | 05130101
05130101
05130101
05130101 | 05130101
05130101
05130101
05130101 | 05130101
05130101
05130101
05130101 | 05130101
05130101
05130101
05130101 | 05130101
05130101
05130102
05130102 | 05130103
05130103
05130103
05130103 | 05130104
05130104
05130104
05130104 | | WEDIY | | | | | | | | | |----------------------------|--|---|---|--|--|---|---|---| | SOTZ G3Z | 0000 | 00000 | 00000 | 00000 | 00000 | ٥٥ | 0000 | | | NOITAZINADRO
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USTVA
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | A | 4 4 | 44 04 | 4 4 | 444 4 | 000 ∢ | 444 | | | 3512 TAA9 TAM G38 | 0 | | | ····· | | | | * | | SUSP PART SIZE | | 4 4 | 4 04 | 4 4 | ववव व | 44 | 444 | | | SUSP SED CONCEN | ₹ 0000 | 00404 | 44004 | 04004 | 44404 | ००० ∢ | 4440 | | | OW END
YEAR | 1975 | | 1975 | | | | | | | OW BEGIN | 1975
1975
1975
1978 | 1975
1975
1975
1975 | 1975
1975
1965
1964 | 1976
1979
1976
1976 | 1979
1979
1979
1949 | 1979
1979
1976
1976 | 1979
1965
1965 | | | MISAB
Descriptor | | 004 | 004 | 004 | 0004 | 000
004
004 | 004 | | | DRAINAGE
AREA | 1.38
.67
17.20
2.19
32.80 | .69
.92
.92
.10
198.00
42.50 | 21.50
48.70
382.00
27.10 | 1.11
70.25
.25
3.62
120.00 | 23.00
31.41
98.00
272.00
806.00 | 34.60 | 15.85
116.51
23.40
202.00 | | | TYPE OF | * * * * * * * * * * * * * * * * * * * | AS A | AS S AS S | M M M M M M M M M M M M M M M M M M M | MS MS MS | MS AS | AS SW | | | CONNIX | 151
151
151 | 151
151
151 | 151
151
151
151 | 049
049
049
129 | 129
151
151
151 | 147
147
231
049 | 049
049
049
049 | | | STATE | 047
047
047
047
047 | 047
047
047
047 | 047
047
047
047 | 047
047
047
047 | 047
047
047
047 | 021
021
047
047 | 047
047
047 | | | LONGITUDE | 0842459
0842419
0842414
0842417
0842227 | 0842314
0842307
0842201
0842706
0842513 | 0842655
0842659
0843222
0843317
0845435 | 0845740
0845033
0845443
0845450
0845450 | 0844215
0843913
0844126
0843749
0844009 | 0843544
0843334
0844125
0845740
0850953 | 0850406
0850240
0850034
0850135 | | | LATITUDE | 361209
361239
361423
361614
361614 | 361904
361904
361943
362010
362316 | 362218
362414
362043
362308
361825 | 361532
361713
362330
362259
361928 | 361712
361916
362112
362318
362838 | 364210
364356
365021
361532 | 361142
361624
362306
362458 | | | STATION NAME AND LOCATION | GREEN BRANCH NEAR HEMBREE, TENN
BILLS BRANCH NEAR HEMBREE, TENN
SMOKY CREEK AT HEMBREE, TN
BOWLING BRANCH ABOVE SMOKY
JUNCTION, TENN
SMOKY CREEK AT SMOKY JUNCTION, TENN | | BUFFALO CREEK AT WINDNA, TENN PAINT ROCK CREEK NEAR HUNTSVILLE, TENN BRIMSTONE CREEK NEAR ROBBINS, TENN NEW RIVER AT NEW RIVER, TENN NORTH PRONG CLEAR FORK NEAR GRIMSLEY, TN | LONG BRANCH NEAR GRIMSLEY, TENN
CLEAR FORK AT GATEWOOD, TN.
CROOKED CREEK TRIBUTARY NEAR ALLARDT, TENN
CROOKED CREEK NEAR ALLARDT, TENN
CROOKED CREEK NEAR ALLARDT, TENN | BONE CAMP CREEK NEAR BURR
BLACK WOLF CREEK NEAR GLE
WHITE OAK CREEK AT RUGBY.
CLEAR FORK NEAR ROBBINS,
S F CUMBERLAND R AT LEATH | ROCK CK AT WHITE DAK JUNCTION, KY. WOLF CK AT WOLF CK, KY. SINKING CK NR GREGORY, KY. TRIB. TO S. PRONG CLEAR FORK R. EAST FORK OBEY RIVER AT OBEY CITY, TN | HURRICANE CREEK AT CAMP GROUND, TN.
EAST FORK OBEY RIVER NEAR WILDER, TN.
BUFFALO COVE C NR BOATLAND, TENN.
FAST FORK MBEY RIVER MFAR HAMESTOWN, TENN. | | | HYDROLDGIC
Unit
Code | 05130104
05130104
05130104
05130104 | 05130104
05130104
05130104
05130104 | 05130104
05130104
05130104
05130104 | 05130104
05130104
05130104
05130104 | 05130104
05130104
05130104
05130104 | 05130104
05130104
05130104
05130105 | 05130105
05130105
05130105
05130105 | | | SED STOR | ۵۵۵۵ | 00000 | 0 000 | 00000 | 00000 | 00000 | 000 | | |----------------------------|---|---|--|---|--|--|---|--| | ORGANIZATION
CODE | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USTVA
USTVA
USTVA
USTVA | USTVA
USTVA
USGS
USGS | | | SUSP DISCHARGE | 4 44 | 4444 | 4 44 | 4444 | 4 4 | | | | | SIZ TAA AZUZ | | | | | 4 4 Σ | বৰবৰ | 44 | | | 2029 SED CONCEN | 4 44 | 2444 | 4 44 | 44440 | A O A O E | 44444 | ΣΣ | | | ON3 WO
RA3Y | | · · · · · · · · · · · · · · · · · · · | | | 1978 | | | | | OW BEGIN | 1979
1965
1979
1979 | 1975
1979
1979
1979 | 1964
1965
1979
1979 | 1979
1979
1965
1979 | 1979
1964
1979
1977 | 1979
1979
1976
1976 | 1979
1979
1975 | | | NISAB
ROT4IRJ230 | 0000
4444 | 000
400
004 | 000
4 4 000
4 4 4 000 | 000
400
400
400 | 004
003
014 | | 800 | | | DRAINAGE
AREA | 70.80
115.00
41.00
21.61 | 210.00
22.90
174.00
34.12
55.59 | 58.20
640.00
111.00
14.80
16.90 | 17.00
39.13
134.00
37.70
175.00 | 72.00
1678.00
38.00
1.15
10690.00 | | 24.30
55.60 | | | 3TIS | N N N N N | N M M M M M M M M M M M M M M M M M M M | A A A A A A A A A A A A A A A A A A A | N K K K K K K K K K K K K K K K K K K K | M M M M M M M M M M M M M M M M M M M | N N N N N N N N N N N N N N N N N N N | M M M M M M M M M M M M M M M M M M M | | | COUNTY | 133
133
049
137 | 087
061
061
177 | 177
177
035
185
007 | 007
007
175
185 | 175
185
185
141
159 | 169
165 | 165
165
037
037 | | | 3TAT2 | 047
047
047
047 | 047
047
047
047 | 047
047
047
047 | 047
047
047
047 | 047
047
047
047 | 047
047
047
047
047 | 047
047
047
047 | | | LONGITUDE | 0851053
0851028
0845709
0845656
0850423 | 0853245
0853400
0854027
0854242
0854049 | 0855102
0854346
0851305
0851505 | 0851143
0851557
0852333
0852010
0852846 | 0853440
0853744
0853021
0853026
0855719 | 0860800
0860400
0860800
0860800 | 0862440
0862049
0865116
0864449 | | | LATITUDE | 361852
362349
363214
363220
363337 | 362104
352335
353104
353417
353406 | 353432
354232
355328
355310
354546 | 354407
354535
354436
360153
355431 | 354204
354826
360454
360901
361453 | 361900
361600
361900
362100
362002 | 361837
362042
360904
360858 | | | STATION NAME AND LOCATION | WEST FORK OBEY RIVER NEAR ALLRED, TN
WEST FORK OBEY RIVER NEAR ALPINE, TENN.
WOLF RIVER AT WOLF RIVER, TN
ROTTEN FORK WOLF RIVER NEAR PALL MALL, TN.
WOLF RIVER NEAR BYRDSTOWN, TENN. | ROARING RIVER ABOVE GAINESBORD, TENN COLLINS RIVER AT BARKERTOWN, TN COLLINS RIVER NEAR TARLTON, TENN SCOTT CREEK AT IRVING COLLEGE, TN. HILLS CREEK NEAR IRVING COLLEGE, TN. | HICKORY CREEK NEAR VIOLA, TN
COLLINS RIVER NEAR MCMINNVILLE, TENN.
CANEY FORK AT CLIFTY, TENN.
CLIFTY CREEK AT MOBRA,TN
BEE CREEK AT LANTANA RD AT WINESAP, TN | BEAVERDAM CR AT LANTANA RD NEAR BELLVIEW, TN GLADE CREEK NEAR LONEWOOD, TN. CANE C NR SPENCER, TENN. CALFKILLER RIVER NEAR TAYLORS, TN CALFKILLER RIVER BELOW SPARTA, TENN. | ROCKY RIVER AT ROCKY R ROAD AT RIVERVIEW. TN CANEY FORK NEAR ROCK ISLAND, TENN. FALLING WATER R AT ST. HWY 42,NR COOKEVILLE. SHORT CREEK TRIB AT COOKEVILLE,TN CUMBERLAND RIVER AT CARTHAGE, TENN. | | RICHLAND C AT CHARLOTTE AVE., AT NASHVILLE,
INTERSTATE I-40 STORM SEWER AT NASHVILLE, TN | | | HYDROLDGIC
UNIT
CODE | 05130105
05130105
05130105
05130105 | 05130106
05130107
05130107
05130107 | 05130107
05130107
05130108
05130108 | 05130108
05130108
05130108
05130108 | 05130108
05130108
05130108
05130108 | 05130201
05130201
05130201
05130201 | 05130201
05130201
05130202
05130202 | | | WEDIY | | | | | | | | | |----------------------------|-----------------------------|--|---|---|--|--|--|--| | NOTE GS2 | | 0000 | 000 | 00040 | 00000 | 00000 | 0000 | | | ONGANIZATION CODE | USGS | USGS
KYOOT
KYOOT
USGS
USGS
USGS | USGS
USGS
USGS
KY001
KY001 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USES
USES
USES
USES
USES | USGS
USGS
USGS
USGS | | | SED MAT PART SIZE | | < | 8.2 | N M | ααααα | यययय | 44 | | | STIR THAN NEUR | | | ш | m Z Z m | шкп | 4444 | 4444 | | | ZOZE ZED CONCEN | ₹ ₹ | 222 2242 2 | | ии≅≅ш | ααααα | *4444 | 4444 | | | ON3 WO
AA3Y | | | 1961 | 1964 | 1979 | | | | | OW BEGIN | 1965 | 1965
1975
1977
1964
1958
1958 | 1975
1978
1953
1977 | 1953
1948
1953
1977 | 1968
1973
1964
1979
1978 | 1975
1971
1975
1974
1974 | 1974
1975
1975
1975 | | | BASIN
Descriptor | 400 | 0004 | 014 | 000
440 | 004
4 | 8888
4444 | 000
4.000
4.44
4.44 | | | DRAINAGE
AREA | 262.00
165.00 | 237.00
681.00
681.00
124.00
244.00
65.60 | 935.00
27.50
31.80 | 1.55 | 476.00
97000.00
39.80
56.00 | 61.30
35.40
147.00
35.50 | 13.30
4.04
559.00
76.40 | | | TYPE OF
SITE | 3 8 8 8 8 8 | | A A A A A A A A A A A A A A A A A A A | A A A A A A A A A A A A A A A A A A A | MS M | NS NA | A A A A A A A A A A A A A A A A A A A | | | COUNTY | 149 | 149
021
221
047
125
125
147 | 125
077
215
029
093 | 211
029
029
029
029 | 061
091
123
101 | 151
199
199
165
165 | 165
165
059
165 | | | 3TAT2 | 047 | 047
021
021
047
047
047 | 047
018
021
021
021 | 021
021
021
021 | 018
021
018
021
021 | 017
017
017
017 | 017
017
017
017 | | | LONGITUDE | 0862002
0862443 | 086275
087055
087583
087324
087322
087431
086514 | 0870831
0851526
0852555
0855401
0854830 | 0852205
0854303
0854303
0855633 | 0861342
0864220
0864316
0873530
0874152 | 0883221
0885138
0884548
0884040
0883802 | 0883908
0883709
0882027
0882605 | | | LATITUDE | 55506
55125 | 355625
360719
364757
364710
362055
364640
363047
363055 | 363317
385241
380305
375456
380710 | 381027
375906
375906
380004
374922 |
381415
375358
380819
374711 | 372820
374040
373919
373816
374341 | 374630
374633
374353
375301 | | | STATION NAME AND LOCATION | EAST FORK STONES RIVER NEAR | WEST FORK STONES RIVER NEAR SMYRNA, TENN. HARPETH RIVER NEAR KINGSTON SPRINGS, TENN. CUMBERLAND R BARKLEY LK LITTLE R BELOW NTS FORKS YELLOW CREEK NEAR SHILOH, TENN. LITTLE R NR CADIZ,KY. SULPHUR FORK RED RIVER ABOVE SPRINGFIELD, TE SULPHUR FORK RED RIVER NEAR ADAMS, TENN | RED RIVER AT PORT ROYAL, TENN
INDIAN-KENTUCK CREEK NR CANAAN, IND.
PLUM CREEK AT WATERFORD, KY.
MILL CR BELOW FORT KNOX
ROLLING FORK LEBANDN JUNCTION | PLUM CRK SUBWATER SHED NO 4 NR SIMPSONVILLE,
SALT RIVER AT SHEPHERDSVILLE, KY.
SALT RIVER AT SHEPHERDSVILLE, KY.
SALT R NR MOUTH
ROLLING FORK NR LEBANON JUNCTION,KY. | BLUE RIVER NEAR WHITE CLOUD, IND
OHIO R AT CANNELTON DAM, KY
MIDDLE FORK ANDERSON RIVER AT BRISTOW, IND.
CANDE CREEK NEAR HENDERSON, KY
BEAVERDAM CREEK NEAR CORYDON,KY. | LUSK CREEK 4MI SE OF EDDYVILLE
SOUTH FORK SALINE RIVER AT NEW DENNISON, IL
SUGAR CREEK NEAR STONEFORT, IL
SOUTH FORK SALINE RIVER NEAR CARRIER MILLS.
BANKSTON FORK NEAR CARRIER MILLS, IL | BRUSHY CREEK NEAR HARCO, IL
BRUSHY CREEK TRIBUTARY NEAR HARCO, IL
SALINE RIVER AT EQUALITY, IL
RECTOR CREEK NEAR TEXAS CITY, IL | | | HYDROLOGIC
Unit
CODE | 05130203
05130203 | 05130203
05130204
05130205
05130205
05130205
05130206 | 05130206
05140101
05140101
05140102
05140102 | 05140102
05140102
05140102
05140102 | 05140104
05140201
05140201
05140202 | 05140203
05140204
05140204
05140204
05140204 | 05140204
05140204
05140204
05140204 | | | V103 | | | |----------------------------|---|---| | NOT2 G32
A103M | 00000 | 000 | | NOITAZ MADRO
3000 | USGS
USGS
USGS
USGS
USGS | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | SUSP DISCHARGE | বৰণৰৰ | m X G | | 3512 TRAS TAM CIRE | | | | BZIS 1844 98US | ∢ α | ш α | | 2026 ZED CONCEN | 44044 | m X G | | OW. END
YEAR | | | | OW BEGIN | 1974
1966
1948
1966 | 1972
1978
1953 | | NISA8
AOTAIRDS30 | 0004
0004
0004 | 4 4 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | DRAINAGE
AREA | 8.51
60.40
255.00
17.00 | 40330.00 | | TYPE OF
STTE | | 3 3 3
5 5 5 | | COUNTY | 165
047
033
107
233 | 7 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 3TAT2 | 017
021
021
021 | 0021 | | LONGITUDE | 0882328
0873446
0873453
0873418 | 0884239 | | LATITUDE | 373903
370430
371126
371746 | 370216 | | STATION NAME AND LOCATION | EAGLE CREEK NEAR EQUALITY, IL
TRADEWATER R AT POOLS MILL BR NR DAWSON SPRI
TRADEWATER RIVER AT OLNEY, KY.
CLEAR C AT HWY 70 BR NR RICHLAND
CRABORCHARD CK NR CLAY, KY | TENNESSEE RIVER AT HIGHWAY 60, NEAR PADUCAH, K MASSAC CREEK NR PADUCAH KY. OHIO R AT LOCK AND DAM 53 NR GRAND CHAIN ILL | | HYDROLOGIC
UNIT
CODE | 05140204
05140205
05140205
05140205
05140205 | 05140206
05140206
05140206 | | MEDIA | | | | | | | | | | |----------------------------|---------|--|--|--|---|--|---|---|---| | MOT2 GB2 | | 6 | 00000 | 00000 | 00000 | 00000 | 4444 | 4 4 4 4 | | | ORGANIZATION
CODE | | GAOO9
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | NC004
NC0004
NC0004
NC0004 | NC004
NC004
NC004
NC004 | | | SUSP DISCHARGE | | α | OKXZ | YZZ Y | ZXXZZ | 886 | | | | | ISI2 TAA9 TAM 038 | | | | | | | EEEEE | ΣΣΣΣ | | | SUSP SED CONCEN | | 4 4 2 2 2 | 0 0 0 7 0 | V 7 7 N V | ZXXZZ | Z Z O 2 2 | | | | | | | 0 | 0000 | XZZNX | 00 | 0 | | | | | OW END
AA3Y | | 197 | 197
197
197
197 | 197
197
197
197 | 197 | 197 | | ···· | | | OW BEGIN | | 1976
1945
1963
1951
1951 | 1965
1944
1954
1951
1973 | 1946
1961
1968
1955
1955 | 1949
1956
1955
1955 | 1961
1955
1961
1967
1967 | 1969
1969
1969
1969 | 1969
1969
1969
1969 | | | NICAB
Rothirds30 | | 004 | 900 | 024
014
024
004
124 | 424
000
440
000 | 004
004
014 | | | | | | | 8888 | 96.4.9.9 | 00
00
00
00
00
00
00
00
00 | 88688 | 88888 | | | | | DRAINAGE
AREA | 90 | 672.00
36.30
90.80
137.00 | 3747.00
67.90
40.40
296.00
18.60 | 66.
676.
79.
5. | 945.
1332.
27.
55. | 133.00
350.00
49.20
353.00
5101.00 | | | | | TYPE OF | Z | 3333
88888 | N N N N N N N N N N N N N N N N N N N | MS MS MS | MS MS MS | N N N N N N N N N N N N N N N N N N N | AS S AS | N N N N | | | COUNTY | | 047
169
163
189
019 | 093
175
175
175
089 | 089
021
021
021
021 | 021
115
087
087
087 | 087
087
087
155
093 | 011
011
121
121 | 121
121
199
199 | | | 3TAT2 | | 013
051
047
037
047 | 047
037
037
037 | 037
037
037
037 | 037
037
037
037 | 037
037
047
047 | 037
037
037
037 | 037
037
037 | | | LONGITUDE | В Ж. | 0823405
0822736
0814922
0821237 | 0834954
0824928
0824221
0823727 | 0823546
0823535
0824035
0822420
0823242 | 0823441
0823939
0825617
0825446
0825212 | 0825028
0825922
0830423
0833440
0834626 | 0820054
0820114
0820059
0820019
0820349 | 0820403
0820657
0821149
0821129 | - | | LATITUDE | SEE | 363631
363342
361418
362040 | 360056
350832
351623
351756 | 352356
353007
353228
353911
353406 | 353632
354710
352346
352638
352742 | 353130
353807
354002
355242
355730 | 360347
360006
355851
355504
355219 | 355452
355546
355217
355432 | | | STATION NAME AND LOCATION | TENNESE | W CHICKAMAUGA C AT GA HWY 196
N F HOLSTON R NR GATE CITY VA
REEDY CREEK AT OREBANK, TENN.
WATAUGA RIVER NEAR SUGAR GROVE, N. C.
DOE RIVER AT ELIZABETHTON, TENN. | HOLSTON RIVER NEAR KNOXVILLE, TENN.
FRENCH BROAD RIVER AT ROSMAN N C
DAVIDSON RIVER NEAR BREVARD, N.C.
FRENCH BROAD RIVER AT BLANTYRE N C
NORTH FORK MILLS RIVER ABOVE MILLS RIVER N C | MILLS RIVER NEAR MILLS RIVER, N. C.
FRENCH BROAD RIVER AT BENT CREEK N C
HOMINY CREEK AT CANDLER, N.C.
BEETREE CREEK NEAR SWANNANDA N C
SWANNANDA RIVER AT BILTMORE, N. C. | FRENCH BROAD RIVER AT ASHEVILLE, N. C.
FRENCH BROAD RIVER AT MARSHALL, N. C.
W FK PIGEON R AB LAKE LOGAN NEAR HAZELWOOD N
W FK PIGEON R BL LAKE LOGAN NR WAYNESVILLE N
EAST FORK PIGEON RIVER NEAR CANTON, N.C. | PIGEON RIVER AT CANTON, N. C.
PIGEON RIVER NEAR HEPCO, N. C.
CATALOOCHEE CREEK NEAR CATALOOCHEE N C
LITTLE PIGEON RIVER AT SEVIERVILLE, TENN.
FRENCH BROAD RIVER NEAR KNOXVILLE, TENN. | N TOE R NR FRANK NC
N TOE R NR SPEAR NC
N TOE R NR INGALLS NC
N TOE R NR ALTAPASS NC
GRASSY C NR SPRUCE PINE NC | N TOE R BL BUR C AT SPRUCE PINE NC
N TOE R AT PENLAND NC
S TOE AT CELO NC
S TOF P. NP NEWDALF NC | | | HYDROLDGIC
Unit
Code | | 060020 L
06010101
06010102
06010103 | 06010104
06010105
06010105
06010105 | 06010105
06010105
06010105
06010105 | 06010105
06010105
06010106
06010106 | 06010106
06010106
06010107
06010107 | 06010108
06010108
06010108
06010108 | 06010108
06010108
06010108
05010108 | | | AIG3M | | | | | 00000 | | | · · · · · · · · · · · · · · · · · · · | |----------------------------|--|---|--
---|---|---|--|---------------------------------------| | AOT2 G32 | 4 4 4 4 4 | 5000 | 00000 | 00000 | 00000 | _ 4444
O □ | <u> </u> | | | DRGANIZATION
CODE | NCO04
NCO04
NCO04
NCO04
NCO04 | NCOO4
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USTVA
NCOO4
NCOO4 | NCOOV
USGS
USGS
USGS | | | SUSP DISCHARGE | | O | | বৰবৰ | OZ YZ | Z | αα | | | SI2 T8A9 TAM G38 | Z Z Z Z Z | Σ | | | | | | | | SSIZ TAAS AZUZ | | | ш | 4444 | 0 | | | · · · · · · · · · · · · · · · · · · · | | 2026 SED CONCEN | | 40E0 | <u> </u> | 44440 | 0 Z N Y Z | 2 W Z Z Z | | | | ON3 WO
AA3Y | | 1979 | 1979 | | 197 | 1968 | 197
197
197 | · | | OW BEGIN | 1969
1969
1969
1969 | 1969
1973
1957
1975
1967 | 1962
1967
1978
1978
1978 | 1979
1979
1979
1979 | 1974
1968
1973
1968 | 1968
1965
1968
1969 | 1968
1955
1973
1949 | | | NIZA8
NOTAIRJ230 | · | 004
4 | 003 | 8888
4444 | 014 | | 0
4
00
4
00
4 | | | DRAINAGE
AREA | | 1.80
43.40
805.00
8934.00 | 106.00
269.00
15.70
11.80
30.80 | 33.80
19.00
21.10
62.30
95.90 | 17310.00
57.10
436.00
51.90 | 144.00 | 347.00
4.70
184.00 | | | TYPE OF | * * * * * * * * * * * * * * * * * * * | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | A S S A S A S S A S S A S S A S S A S S A S S A S A S S A S A S S A S | X X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | | | утиноэ | 121
199
199
199 | 011
199
199
179
093 | 009
009
009
009 | 143
035
035
143 | 113
113
173
173 | 173
173
099
099
099 | 173
099
173
173 | | | 3TAT2 | 037
037
037
037 | 037
037
037
047 | 047
047
047
047 | 047
047
047
047 | 047
037
037
037
037 | 037
037
037
037
037 | 037
037
037
037 | | | LONGITUDE | 0821346
0821959
0821814
0821813 | 0815823
0821152
0821104
0822727
0835142 | 0834241
0835304
0835858
0835946
0842735 | 0844843
0844417
0844756
0845308 | 0844700
0832339
0831740
0833139 | 0833922
0832916
0831323
0831456
0831730 | 0832452
0831538
0831830
0832113 | | | LATITUDE | 360047
355416
355449
355448 | 355723
354842
354952
361035
355717 | 353952
354710
354608
354641
354220 | 354750
355114
355016
354302
354159 | 353713
350931
350708
352011
350735 | 351755
352330
352229
352208
352304 | 352554
352159
353112
352742 | | | STATION NAME AND LOCATION | N TOE R NR RED HILL NC
CANE R AT BURNSVILLE NC
MC INTOSH B NR BURNSVILLE NC
MC INTOSH B AT BURNSVILLE NC
CANE R NR BURNSVILLE NC | BRUSHY C NR INGALLS NC
LOCUST CREEK NEAR CELD N C
SOUTH TOE RIVER NEAR CELD, N. C.
NOLICHUCKY RIVER AT EMBREEVILLE, TENN.
TENNESSEE RIVER AT KNOXVILLE, TENNESSEE | LITTLE RIVER ABOVE TOWNSEND, TENN. LITTLE RIVER NEAR MARYVILLE, TENN PISTOL CR AT CALDERWOOD AVE AT ALCOA, TN CULTON CREEK AT ALCOA, TN POND CREEK NEAR ADOLPHUS, TN | WHITES CREEK AT BAKERS BRIDGE NEAR GLEN ALIC
PINEY CREEK NEAR WESTEL. TN
FALL CREEK NEAR OZONE, TN
PINEY RIVER ABOVE SPRING CITY, TN
PINEY R AT SPRING CITY TENN. | TENNESSEE RIVER AT WATTS BAR DAM (TAILWATER) CARTODGECHAYE CREEK NEAR FRANKLIN N C PEEKS CREEK AT SR 1678 NEAR GNEISS N C LITTLE TENNESSEE RIVER AT NEEDMORE, N. C. NANTAHALA RIVER NEAR RAINBOW SPRINGS, N. C. | NANTAHALA RIVER AT NANTAHALA, N. C.
ALARKA C NR BRYSON CITY N C
SCOTT C AT CITY HALL BR AT SYLVA
SCOTT C BL SYLVA NC
TUCKASEGEE R AT BARKERS CREEK NC | TUCKASEGEE R AT US 19 NR BRYSN CY
TUCKASEGEE RIVER AT DILLSBORO, N.C.
MINGUS CREEK AT RAVENSFORD
OCONALUFTEE RIVER AT BIRDTOWN, N. C. | | | HYDROLOGIC
UNIT
CODE | 06010108
06010108
06010108
06010108 | 06010108
06010108
06010108
06010108 | 06010201
06010201
06010201
06010201 | 06010201
06010201
06010201
06010201 | 06010201
06010202
06010202
06010202 | 06010202
06010202
06010203
06010203 | 06010203
06010203
06010203 | | | | | | | *************************************** | | | | | |----------------------------|---|---|--|---|--
---|--|---------| | NOT2 032
AIQ3M | 00000 | 0000 | 00400 | 0000 | 00000 | 0000 | 0000 | | | MOTAZINADAO
3003 | USGS
USTVA
USGS
USTVA
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USERD
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USTVA
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP OISCHARGE | Z 4 | ৰ ৰ | বৰ | Χ « | 4 4 | ⋖ | | | | 3512 TRAN NEUZ | | | | V | | | | | | ZOZE ZED CONCEN | ΖΣΣωα | 04400 | 44 8 0 0 | X 4 G G | 4004 | 00400 | 0000 | | | VEAR | 1971 | 1979 | | | | | 1979 | | | OW BEGIN | 1961
1973
1963
1960 | 1961
1950
1978
1978 | 1979
1979
1962
1965 | 1973
1961
1960
1960 | 1975
1979
1965
1965 | 1966
1963
1979
1965 | 1960
1979
1978 | <u></u> | | BASIN
Descriptor | 014 | 00
4 4 00
4 4 4 4 | 004 | 004 | 00
4
00
4 | 00000
444000 | 000 | | | DRAINAGE
AREA | 655.00
118.00
7.04
1126.00 | 1474.00
24.00
23.80
23.90
685.00 | 6.72
31.20
24.50
68.50 | 3343.00
30.30
82.50
19.50 | 31.20
83.20
139.00
38.40 | 153.00
518.00
18.40
50.30
33.70 | 764.00
43.30
32.30
117.00 | | | TYPE OF
SITE | ************************************** | M M M M M M M M M M M M M M M M M M M | X X X X X X X X X X X X X X X X X X X | A A A A A A A A A A A A A A A A A A A | A A A A A A | ASS ASS | AS AS AS | | | COUNTY | 173
099
123
169 | 025
013
013
067
025 | 025
025
145
001
093 | 105
001
145
145
001 | 145
129
129
035
129 | 129
129
129
129 | 129
129
121
121 | | | 3TAT2 | 037
037
047
051 | 047
047
047
047 | 047
047
047
047 | 047
047
047
047 | 047
047
047
047 | 047
047
047
047 | 047
047
047
047 | | | LONGITUDE | 0832650
0831538
0841644
0840426 | 0832354
0840733
0841335
0832251
0833749 | 0834426
0835459
0842334
0840927
0835916 | 0841803
0841816
0842023
0842130
0842130 | 0843000
0843731
0843654
0844924
0844801 | 0844446
0844015
0864001
0843318
0843644 | 0843329
0843550
0844213
0844453 | | | LATITUDE | 352540
352159
352142
352351
363855 | 362530
362319
361825
363318
363230 | 363145
362636
355425
361314
360652 | 355307
360157
355955
355758
360200 | 355400
360802
360646
355953
361040 | 360718
360453
360310
360505
360040 | 355859
360858
353554
353453 | | | STATION NAME AND LOCATION | TUCKASEGEE RIVER AT BRYSON CITY, N. C. TUCKASEGEE R 31.6 AT DILLSBORO NC TELLICO RIVER AT TELLICO PLAINS, TENN. NF CITICO C NR TELLICO PLAINS TN CLINCH RIVER AT SPEERS FERRY, VA | CLINCH RIVER ABOVE TAZEWELL, TENN.
BIG CREEK AT LA FOLLETTE, TENN
COVE CREEK ABOVE COVE LAKE, NEAR CARYVILLE,
MULBERRY CREEK AT ALANTHUS HILL, TN
POWELL RIVER NEAR ARTHUR TN | OLD TOWN CREEK NEAR RED HILL, TN.
DAVIS CREEK NEAR SPEEDWELL, TN
K-25 PUMPING STATION
COAL CR AT LAKE CITY TENN.
BULLRUN CREEK NEAR HALLS CROSSROADS, TENN | CLINCH RIVER AT MELTON HILL DAM (TAILWATER). POPLAR C AT BATLEY RD NR OLIVER SPRINGS, TEN POPLAR CREEK NEAR OAK RIDGE, TENN. EAST FORK POPLAR CREEK NEAR OAK RIDGE, TENN. | ROCK CREEK NEAR GOBEY, TN
EMORY RIVER NEAR WARTBURG, TENN.
DADDYS CR NR HEBBERTSBURG, TENN.
WHITE CREEK AT TWIN BRIDGES, TN | CLEAR C NR LANCING TENN
OBED RIVER NEAR LANCING, TENN.
ISLAND CREEK NEAR CATOOSA, TN
CROOKED F NR WARTBURG TENN
CRAB ORCHARD CREEK NEAR DEERMONT, TENN. | EMORY RIVER AT DAKDALE, TENN. EMORY RIVER AT GOBEY (035382968),TN LITTLE SEWEE CREEK NEAR CENTER POINT, TENN SEWEE CREEK NEAR DECATUR, TENN. | | | HYDROLOGIC
Unit
Code | 06010203
06010203
06010204
06010204 | 06010205
06010205
06010205
06010206
06010206 | 06010206
06010206
06010207
06010207 | 06010207
06010207
06010207
06010207 | 06010207
06010208
06010208
06010208 | 06010208
06010208
06010208
06010208 | 06010208
06010208
06020001
06020001 | | | | | | ···· | | | | | | |-----------------------------------|---|---|---|--|---|--|--|---| | 9012 G32
A103M | 0000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | NOIT A SINADRO
3003 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USFS
USGS
USGS | USGS
USFS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USTVA
USTVA
USTVA
USGS | USGS
USGS
USGS
USGS | | | SOZE DISCHARGE | বৰ ব | < | Idd | বৰৰৰ | 4 4 Y | ∢ α | шшшк | | | 3512 T8A9 92U2
IZ T8A9 TAM G3B | | | | | | | | | | ZOSE ZED CONCE | <u> </u> | Q Q Q X X | E R I A A | 44440 | O O O O O Y | ∢ZZZ
∢ α | шшшк | | | NA31 | | 66 | | | | - | e - | · ···································· | | ON3 WO
AA3Y | | 197
197 | | | | 197 | 197 | | | OW BEGIN | 1966
1979
1967
1964 | 1967
1979
1972
1968
1960 | 1975
1963
1963
1979 | 1979
1979
1979
1979 | 1965
1979
1979
1979 | 1979
1973
1979
1979 | 1962
1971
1971
1971 | • • • • • • • • • • • • • • • • • • • | | NISA8
Aot4iaj230 | 00
00
00
00
00
00
00 | 004 | 000
400 | 8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | 00 00
4 4 4 | 8 | 004 | | | | 98999 | 88 98 | 8 888 | 9999 | 844.69 | 04 | 8 8 | | | DRAINAGE
AREA | 50.05
57
18.1 | 21400.00
22.60
406.00
104.00 | 57.
177.
106.
202. | 15.4
66.7
15.3
17.9 | 116.
50.
4.
28.
22640. | 78. | 342. | | | TYPE OF
SITE | X X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | MS MS | X X X X X X X X X X X X X X X X X X X | N N N N N | 8 8 8 8 8
8 8 8 8 8 | SSSS | | | COUNTY | 143
065
065
065 | 065
065
281
039
039 | 107
111
111
007
153 | 153
153
153
153
115 | 2 | 051
071
089 | 089
089
089
089 | | | 3TAT2 | 047
740
740
740
740 | 047
047
013
037
037 | 047
013
047
047 | 047
047
047
047 | 047
047
047
047 | 000
000
000
000
000
000
000
000
000
00 | 8888 | | | LONGITUDE | 0850120
0850524
0850956
0850359 | 0851643
0852326
0834104
0840010
0835850 | 0844219
0840907
0841424
0851127
0852047 | 0852318
0852150
0852601
0852714
0852948 | 0853510
0854615
0854411
0854555 | 0855407
0855700
0855501
0855357 | 0862852
0862905
0862851
0863241 | | | LATITUDE | 353017
352535
351805
350343 | 350512
350728
345155
350450 | 351939
344213
344724
353548 | 352415
352355
351919
351640 | 350747
350803
350448
350352
350041 | 355928
343900
344200
344328
342935 | 344908
344715
344713
343146 | · | | STATION NAME AND LOCATION | RICHLAND CREEK NEAR DAYTON, TENN.
SALE CREEK NEAR SALE CREEK, TN
SODDY C AT SODDY TENN
WOLFTEVER CREEK NEAR OOLTEWAH, TENN
NORTH CHICKAMAUGA CREEK NEAR DAISY, TN | TENNESSEE RIVER AT CHATTANDOGA, TENN.
SUCK CREEK NEAR CHATTANDOGA, TN
MILL CR4 PHEASANT BR
HIWASSEE RIVER ABOVE MURPHY, N.C.
VALLEY RIVER AT TOMOTLA, N. C. | DOSTANAULA CREEK NEAR SANFORD, TENN.
MILL CR ABOVE HATCHERY
TOCCOA RIVER NEAR DIAL, GA.
SEQUATCHIE RIVER NEAR PIKEVILLE, TN
SEQUATCHIE RIVER NEAR MT. AIRY, TN. | LITTLE BRUSH CREEK NR DUNLAP, TENN. BIG BRUSH CREEK NEAR DUNLAP, TN WOODCOCK CREEK SOUTHWEST OF DUNLAP, TN HICKS CREEK AT CARTWRIGHT, TN SEQUATCHIE RIVER NEAR WHITWELL, TENN. | L SEQUATCHIE R AT SEQUATCHIE, TENN. BATTLE CR NR MONTEAGLE TENN. KELLY COVE CREEK AT SMITHTOWN,TN SWEDEN CREEK NEAR SOUTH PITTSBURG, TN TENNESSEE RIVER AT SOUTH PITTSBURG, TENN. | CROW CREEK NEAR ANDERSON, TN
GUNTERSVILLE RESERVOIR
TENNESSEE RIVER NEAR MORGAN CITY, ALA. | FLINT RIVER NEAR CHASE AL
FLINT RIVER NEAR CEDAR GAP, ALA.
FLINT RIVER NEAR MOUNT CARMEL AL
TENNESSEE R NR HOBBS ISLAND, ALA. | | | HYDROLOGIC
UNIT
CODE | 06020001
06020001
06020001
06020001
06020001 | 06020001
06020001
06020002
06020002 | 06020002
06020003
06020003
06020004
06020004 | 06020004
06020004
06020004
06020004 | 06020004
06030001
06030001
06030001 | 06030001
06030001
06030001
06030001 |
06030002
06030002
06030002
06030002 | | | WEDIY | | | ···· | | | | | | |----------------------------|---|---|---|--|--|---|---|--| | SED 5708 | 00000 | 0000 | 00000 | 000 | 0 000 | 000 | | | | MOITAS INAGRO
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USTVA
USTVA
USTVA
USTVA
USTVA | USTVA
USTVA
USTVA
USTVA | | | SUSP DISCHARGE | | ппппА | ববব | | | | | | | SSIZ TAAN TAM GSB | | | | Оm | | | | | | 3512 TAAR REUZ | | ∢ | 444 | | ∢ | 444 | | | | SUSP SED CONCEN | | | 00444 | 0000ш | Σσαz | 33 | <u> </u> | | | OW END
YEAR | 1973
1975
1973
1973 | 1979
1973 | | 1969 | 1979 | | 1971
1971
1971
1971 | | | OW BEGIN | 1956
1970
1971
1971 | 1959
1971
1971
1971
1979 | 1979
1975
1979
1979 | 1969
1973
1959
1966 | 1974
1971
1978
1974 | 1979
1979
1965
1965 | 1965
1965
1965
1965 | | | BASIN
BOTGIRD230 | 014
003
003 | 00 00
00 00
00 00
00 00 | 0000
4 4 4 4 | 014
014
004 | 00
4
4
4
7 | | | | | DRA!NAGE
AREA | 25610.00
13.90
21.00 | 49.00
49.60
25.70 | 22.40
65.60
11.50
18.40
14.80 | 275.00
37.70
827.00
24.40 | 348.00
143.00
165.00
198.00 | | 7.20 | | | TYPF OF | N N N N N | MS SW | MS SW
SW
SW
SW
SW | MS MS MS NS | MS SW
SW
SW
SW | A S S A S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S A S S A | M S M S | | | COUNTY | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 089
089
089
089 | 061
031
031
031 | 051
051
103
055
055 | 099
141
141
141
033 | 033
033
039
079 | 093
093
133
133 | | | 3TAT2 | 88888 | 98884 | 047
047
047
047 | 047
047
047
047 | 047
028
028
028
001 | 88888 | 8888 | | | LONGITUDE | 0863329
0863223
0863223
0863409 | 0864200
0864112
0863616
0863746
0855010 | 0854929
0855212
0855512
0855614
0855614 | 0860620
0860337
0863223
0871008 | 0873444
0881735
0881444
0881248
0875100 | 0875343
0875123
0874849
0873053
0873012 | 0874219
0874254
0873330
0873415 | | | LATITUDE | 343418
343741
343501
343435
344500 | 344150
343837
343933
343732
352129 | 351921
351748
351948
351628
352243 | 351708
350944
350804
351508 | 350127
345402
345453
345925
344500 | 344530
34466
342406
342435
342428 | 341644
341644
341655
341733 | | | STATION NAME AND LOCATION | TENNESSEE RIVER AT WHITESBURG AL ALDRIDGE NEAR LILY FLAGG AL ALDRIDGE CREEK NEAR WHITESBURG, ALA. TENNESSEE RIVER AT FARLEY, ALA. INDIAN CR AT U.S.HWY 72 NR HUNTSVILLE, ALA. | INDIAN CREEK NEAR MADISON AL INDIAN C 700 FT DS MARTIN RD NR HUNTSVILLE HUNTSVILLE SP BR AT MARTIN RD NEAR HUNTSVILL HUNTSVILLE SPRING BR PATTON RD NR HUNTSVILLE HUNTSVILLE SPRING BR PATTON RD NR HUNTSVILLE BELK RIVER NEAR MT. VIEW, TN | DRY CREEK NEAR MT.VIEW.TN
ELK RIVER NEAR PELHAM, TENN.
BETSY WILLIS CREEK NEAR PELHAM, TN
MUD CREEK NEAR ALTO, TN
BEANS CR AT US HWY 41, NEAR HILLSBORO, TN | ELK RIVER NEAR ESTILL SPRINGS, TENN.
BOILING FORK CREEK NEAR DECHERD, TENN
ELK RIVER ABOVE FAYETTEVILLE, TENN.
WEAKLEY CREEK NEAR BODENHAM, TENN. | SHOAL CREEK AT IRON CITY, TENN. YELLOW CREEK NR DOSKIE, MS. YELLOW CREEK AT CROSS ROADS, MS. YELLOW CREEK AT MILE ONE NR PINE FLAT, MS. PICKWICK RESERVOIR | PICKWICK RESERVOIR <
WF UPPER BEAR C NR MOUNT HOPE ALA
EF UPPER BEAR C NR MOUNT HOPE ALA | AUSTIN B AT BEAR C ALA
MILL C NR BEAR C ALA
WHITEHEAD C NR FORKVILLE ALA
WHITEHEAD C NR PEBBLE ALA | | | HYDROLOGIC
Unit
Code | 06030002
06030002
06030002
06030002 | 06030002
06030002
06030002
06030003 | 06030003
06030003
06030003 | 06030003
06030003
06030003
06030004 | 06030005
06030005
06030005
06030005 | 06030005
06030005
06030006
06030006 | 06030006
06030006
06030006 | | | MEDIA | | | | | |----------------------------|---|--|---|---| | 9012 G32 | 0 | 00000 | 00 0 | 0 | | MOTASINADRO
3000 | USTVA
USTVA
USTVA
USTVA
USTVA | USGS
USGS
USGS
USGS
USGS | USGS
USTVA
KY001
KY001
USGS | USGS | | SUSP DISCHARGE | 0 | W W | 4 | < | | SSI2 TRAN
TAM CHE | | | | Σ | | SUSP SED CONCEN | O * * * * * * * * * * * * * * * * * * * | Σ m A m Σ
m m | Z ZZQ | Σ
4Σ | | | | | | | | ON3 WO
AA3Y | 197 | | | | | DW BEGIN | 1965
1965
1965
1965 | 1967
1963
1967
1966
1975 | 1968
1979
1977
1977
1978 | 1977 | | MISAB
Descriptor | | 004
124
004 | | | | | 8. | 88888 | 8. 8. | 8 | | DRAINAGE
AREA | 32820. | 107.
447.
707.
17598. | 205.00 | 89 | | TYPE OF
SITE | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | N N N N N | N N N N N | 3 3
Vi (vi | | COUNTY | 059
059
059
079 | 135
135
143
085 | 017
145
157
095 | 157 | | 3TAT2 | 000
1000
1000
1000
1000 | 047
047
021
021 | 047
021
021
021 | 021 | | LONGITUDE | 0874529
0873942
0873203
0873111 | 0860718
0874958
0874751
0881316 | 0881342
0880000
0883146
0882048 | 0882803 | | LATITUOE | 34 1825
34 1927
342 157
342 363 | 352815
352945
354846
370118 | 360219
360200
370215
365225 | 364648 | | STATION NAME AND LOCATION | POSEY C NR POSEY MILL ALA
L BEAR C BL BATESTOWN BRIDGE ALA
BEAR C NR CARROLL CROSSROADS AL
BEAR C NR NEWBURG ALA
TENNESSEE RIVER AT PICKWICK LANDING DAM (LL) | DUCK RIVER BELOW MANCHESTER, TENN
BUFFALO RIVER NEAR FLAT WOODS, TENN.
BUFFALO RIVER NEAR LOBELVILLE, TENN.
CUMBERLAND RIVER NEAR GRAND RIVERS, KY.
TRACE CREEK ABOVE DENVER, TENN | BIG SANDY RIVER AT BRUCETON, TENN
TENNESSEE RIVER HWY 60 NR PADUCAH
CLARKS RIVER BENTDN
CLOVER FORK AT HARLAN, KY. | WEST FDRK CLARKS RIVER NEAR BREWERS, KY. TENNESSEE R PICKWICK DAM | | HYDROLOGIC
Unit
CODE | 06030006
06030006
06030006
06030006 | 06040002
06040004
06040005
06040005 | 06040005
06040005
06040006
06040006 | 06040006
06040010 | | MEDIA
SED STOR | | | | | | 00005 | 0 000 | | | |----------------------------|--------------|--|---|--|---|---|--|---|-------------| | NOTE GB2 | | | | <u> </u> | <u> </u> | 00000 | 0 000 | 0004 | | | NOITAZMADRO
3000 | | USGS
USGS
USCE
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USCE
USCE
USCE | USFS
USFS
USGS
USGS
USGS | USGS
USCE
USGS
USGS
USGS | USGS
USGS
USGS
IJSGS | | | 20% DIZCHYRGE | | | | | | шш | 3 0 m 0 | 00 | | | BED MAT PART SIZE | | <u> </u> | 4 10 10 4 | 4 422 | ΣΣ | ⋖ | ∞ ∢ | 4 4 | | | SUSP SED CONCEN | | ₹ 2 2 2 3 | ▼ 2 2 2 € | 4 422 | EE00 | A K H > H | <u> </u> | - - 4 | | | | | | > & & > W | 3 11 3 2 2 | Z Z O O 4 | 0 8 6 | 330m0 | 17 | ···· | | OW END
AA3Y | | | | | | 197 | | 1967
1957 | | | DW BEGIN | | 1977
1977
1974
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1973
1973
1970 | 1976
1970
1963
1967
1969 | 1961
1970
1960
1955
1960 | 1960
1957
1967
1957 | | | BASIN
DESCRIPTOR | | | | | | 014 | 00 00
4 4 4 4 4 | 800
804
804 | | | Drainage
Area | N 07 | | | | | 11600.00
1010.00
615.00 | 19100.00
36800.00
389.00 | 398.00
1870.00
307.00
697.00 | | | 40 39YT
3TI2 | _ ō _ | 3 3 3 3 3 S | N N N N N N N N N N N N N N N N N N N | ************************************** | X X X X X X X X X X X X X X X X X X X | ************************************** | X X X X X X X X X X X X X X X X X X X | E E E E | | | KENNES | | 133
043
091
141
097 | 073
073
069
121 | 099
107
033
091
121 | 063
023
073
051
007 | 061
021
097
159
141 | 053
053
053
123
051 | 073
023
083
127 | | | 3TAT2 | Ш | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
027
046
027 | 027
027
027
027
027 | 027
027
027
027
046 | 027
027
027
027 | | | LONGITUDE | <u> </u> | | | | 0943630 | 0941920
0935730
0942130
0945244
0934000 | 0934402
0931430
0931748
0930520
0962914 | 0962112
0954757
0954713
0951020 | | | LATITUDE | SP | | | | 473900 | 473220
471150
455140
463825
452002 | 450512
445830
450736
445640
451732 | 451335
450639
442705
443125 | | | STATION NAME AND LOCATION | UPPER MISSIS | FOX R AT WAUKESHA WI
GRANT R AT BURTON WI
CHIPPAWA R NR DURAND WISC
TENMILE C NR NEKOOSA WI | BIG EAU PLEINE R NR STRATFORD WI
DEAU CLAIRE R AT KELLY WI
SPIRIT R AT SPIRIT FALLS WI
TREMPEALEAU R AT ARCADIA WI
FLAMBEAUR AT BABBS IS NR WINTE | S F FLAMBEAU R NR PHILLIPS WI
FLAMBEAU R NR BRUCE WI
HAY R AT WHEELER WI
CHIPPEWA R 3 MILES E OF PEPIN
BLACK R 3 MILES E OF GALESVILLE | LA CROSSE R AT LA CROSSE WISCONSIN R AT BRIDGEPORT YELLOW BANK R NR ODESSA MN WHETSTONE R NR BIG STONE CITY SD 1 RICE RIVER, FS ROAD 2182 | ISLAND CK 11.5MI NW BENA,MN. BEAR RIVER,ROAD 65 MISSISSIPPI RIVER NEAR ROYALTON, MN CRDW WING RIVER AT NIMROD, MN | CROW RIVER AT ROCKFORD, MN MISS R MPLS BARGE TERM MPLS MINN MISSISSIPPI RIVER NEAR ANOKA, MN MISSISSIPPI RIVER AT ST. PAUL, MN WHETSTONE RIVER NEAR BIG STONE CITY, SD | YELLOW BANK RIVER NEAR ODESSA, MN
CHIPPEWA RIVER NEAR MILAN, MN
REDWODD RIVER AT MARSHALL, MN
REDWOOD RIVER NEAR REDWODD FALLS, MN | | | HYDROLOGIC
Unit
CDDE | | 07002400
07002600
070027 M
07002700 | 07002700
07002700
07002700
07002700 | 07002700
07002700
07002700
07002700 | 07002700
07002700
070028
070028
07010101 | 07010101
07010102
07010104
07010106
07010203 | 07010204
07010206
07010206
07010206 | 07020001
07020005
07020006
07020006 | | | MEDIA | | | | | | | | | |----------------------------|---|---|--|---|---|--|--|--| | MOTZ G32 |
<u>000</u> | 00000 | 0000 | 00000 | 00000 | 00000 | <u>е</u> | | | NOITAZINADRO
3000 | USGS
USGS
USGS
USFW
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | WIOOS
USGS
USGS
USGS | | | SUSP DISCHARGE |
0 W 0 I | ОСПАП | α m ∢ ∢ | o 4 x m c | M000 | OWZAM | ∢ N ≯ | | | SIS TAN TAM 038 | 3 | | ш | A | 4 4 | 4 | | | | SSIS TAA9 92U2 | 4 m 4 3 | m 4 m | Ωm ∢ | 444 4 | m 4 m 4 | 0 4 m | ΥΥ | | | SUSP SED CONCEN |
O M O 3 I | <u>0</u> ε π 4 π | 8 8
H X H A A | ω
Ν Κ Κ Η Β | 7 F 8 0 6 2 6 2 | 2 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 | 4 W A N W | | | OW END
RABY | 1980 | 1969 | 197 | 1961 | 196 | 197
197
197
196 | 197 | | | OM BECIN | 1966
1961
1960
1977
1967 | 1960
1967
1963
1975
1954 | 1968
1954
1954
1964 | 1975
1975
1962
1968
1967 | 1961
1967
1974
1963
1961 | 1974
1966
1965
1970
1965 | 1966
1964
1969
1964 | | | NISA8
ROTHIA3230 |
000
000
000
000
000
000
000
000
000
00 | 0000
0000
0000
0000
0000
0000
0000
0000
0000 | 000
4
4
4
10
0
14 | 004 | 0000
4 4 4 4 | 0000
44000
4444 | 8 8 8
4 4 1 | | | Į. | 8888 | 8 8 8 | 8888 | 8 888 | 88888 | 88888 | 6.00
19.70 | | | DRAINAGE
AREA | 9530.00
1280.00
14900.00 | 812.
16200.
1588. | 24.
364.
5930.
1630. | 958.00
46600.00
442.00 | 1320.00
101.00
271.00
59200.00 | 1400.00
552.00
643.00
398.00
62800.00 | 756.00
39.70
2120.00 | | | TYPE OF | SESSES | ****** | A A A A A A A A A A A A A A A A A A A | N N N N N | N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N | | | YTNUOD | 103
103
109
063 | 013
103
019
031
013 | 013
013
095
107 | 129
115
115
049 | 049
169
169
169 |
157
121
121
063
063 | 063
019
053
063 | | | 31AT2 | 027
027
027
019
027 | 027
027
027
055
055 | 055
055
055
055
055 | 055
027
027
027
027 | 027
027
027
027
027 | 027
055
055
055
055 | 055
055
055
055 | | | an |
0942709
0942640
0940015
0941000
0945910 | 38
30
30
16
50 | 0920751
0922915
0923849
0911539
0912553 | 00
47
00
36
51 | 0924355
0920357
0920017
0913815
0922556 | 0920014
0913025
0913314
0910705
0911525 | 30
54
23
41 | | | LONGITUDE | 200 | 141138
141502
133830
120416
121450 | 25
25
25
25
25
25
25 | 15300
24347
25600
23636
31351 | 033
38
25
25 | 33 | 115
036
048
117 | | | 9 | 0000
0000
0000 | 0941138
0941502
0933830
0920416
0921450 | 092 | 0915300
0924347
0925600
0923636 | 092
092
091 | 091
091
091 | 09115
09036
09048
09117 | | | | 00000 | R 0 R 2 8 | 9889 | | 22222 | ជា ភាព កា | 22 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25 | | | LATITUDE | 14 1929
14 17 40
14 10 10
132000
1337 10 | 440245
442440
444135
461132
460428 | 454702
455250
452425
452708
460306 | 5700
5413
5030
3636 | 443350
440530
440903
440320
441712 | 14 18 43
14 15 15
14 07 55
13 54 04
13 48 45 | 48
18
18
04 | | | LAT | 4 4 4 4 4 4 | 44440 | 44444
70 70 70 70 | 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4 4 4 4 4 | 44444 | 4444 | | | STATION NAME AND LOCATION | MINNESOTA RIVER AT NEW ULM, MN
COTTONWOOD RIVER NEAR NEW ULM, MN
MINNESOTA RIVER AT MANKATO, MN
BUFFALO CREEK
DES MOINES RIVER AT JACKSON, MN | WATONWAN RIVER NEAR GARDEN CITY, MN
JUDICIAL DITCH NO. 14 NEAR NEW SWEDEN, MN
MINNESOTA RIVER NEAR JORDAN, MN
ST. CROIX RIVER NEAR DAIRYLAND, WI
ST. CROIX RIVER NEAR DANBURY, WI | BASHAW BROOK NEAR SHELL LAKE, WI
CLAM RIVER NEAR WEBSTER, WI
ST. CROIX RIVER AT ST. CROIX FALLS, WI
CHIPPEWA RIVER NEAR BRUCE, WI
NAMEKAGON RIVER NEAR HAYWARD, WI | NAMEKAGON RIVER AT TREGO, WI
KETTLE RIVER NEAR CLOVERDALE, MINN
SNAKE RIVER NEAR PINE CITY, MN
MISSISSIPPI RIVER AT L&D #3 NEAR RED WING, M
STRAIGHT RIVER NEAR FARIBAULT, MN | CANNON RIVER AT WELCH, MINN NORTH FORK WHITEWATER RIVER NEAR ELBA, MN WHITEWATER RIVER NEAR BEAVER, MN MISSISSIPPI RIVER AT WINONA, MN ZUMBRO RIVER AT ZUMBRO FALLS, MN | ZUMBRO RIVER AT KELLOGG, MN
TREMPEALEAU RIVER AT ARCADIA, WI
TREMPEALEAU RIVER AT DODGE, WI
LA CROSSE RIVER NEAR WEST SALEM, WI
MISSISSIPPI RIVER AT LA CROSSE, WIS. | MISSISSIPPI R MC LACROSSE WIS
BLACK RIVER AT NEILLSVILLE, WI
LEVIS CREEK AT BLACK RIVER FALLS, WIS.
BLACK RIVER NEAR GALESVILLE, WI | | | HYDROLOGIC
Unit
Code | 07020007
07020007
07020007
07020009 | 07020010
07020012
07020012
07030001 | 07030001
07030001
07030001
07030001 | 07030002
07030003
07030004
07040001
07040002 | 07040002
07040003
07040003
07040003 | 07040004
07040005
07040006
07040006 | 07040006
07040007
07040007 | | | | | | ···· | | | | | · | |----------------------------|--|--|---|---|---|---|--|-------------| | ROTZ G3Z
A1G3M | م م م م | 00000 | 00000 | 00000 | 00000 | 00400 | 0000 | | | ORGANIZATION
CODE | USGS
USGS
USGS
USGS | 7 7 7 7 7 Y | USGS
USGS
USGS
USGS
USGS | USGS
USFS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | 2026 DISCHARDE | 0000 | | 4 X \mathbb{M} 4 \mathbb{M} | 4 447 | 3 K K Z A | ⋖ шш | 4 m 0 2 | | | 3512 TAA9 TAM 038 | | | | | | | Σ | | | SUSP PART SIZE | RAA | | - 30 1.1 | ~ ~ | <u>ш </u> | ш | <u> </u> | | | | 0100 | <u> </u> | E S S S S S S S S S S S S S S S S S S S | ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ | ∞ 4
₹ ₹ ₹ ₹ ₹ ₹ | 880
000
E | A O m A | | | OW END
RA3Y | 197 | 197. | 197
197
196
197
197 | 197
197
197 | 197 | 193
193
197 | 1966 | | | OW BEGIN | 1974
1961
1961 | 1974
1974
1974
1974
1974 | 1975
1974
1965
1966 | 1975
1974
1964
1973
1970 | 1954
1967
1974
1976
1965 | 1964
1935
1935
1964
1966 | 1951
1974
1946
1966 | | | NIZAB
ROT41A3230 | 000
444 | | 000
4
4
4
100
4
100 | 000
4
4
4 | 014 | 00000
4 4 4 4 4 | 004 | | | DRAINAGE
Area | 615.00
1270.00
275.00 | | 9.11
37.80
1000.00
615.00 | 24.60
574.00
5600.00 | 9010.00 64.80 | 426.00
77.20
119.00
80.90
58.50 | 42.80
67500.00
744.00 | | | 40 34YT
3T12 | N N N N N N N N N N N N N N N N N N N | N X X X X | N N N N N | N N N N N | X X X X X | N N N N N | N N N N | | | COUNTY | 063
055
055 | 0007
0007
0007 | 099
113
113
099
107 | 099
119
107
017
035 | 091
093
091
011 | 033
125
123
123
005 | 005
043
043
085 | | | 3TAT2 | 055
027
027
027 | | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055
055 | 019
019
019 | | | LONGITUDE | 0911943
0915843
0913511 | 0905500
0905500
0905500
0905500 | 0902807
0904100
0904541
0903658
0911234 | 0901528
0904130
0905723
0912433 | 0915810
0921417
0920423
0920430
0911650 | 0915439
0910105
0910910
0910858
0911412 | 0911821
0911021
0911021
0893251 | | | LATITUDE | | 6 1100
001100
001100
001100 | 455706
455412
454607
454208
452221 | 453106
451319
451829
445537 | 443740
445110
443225
442615
444835 | 450252
434215
433950
433310
431840 | 431237
430129
430129
454958 | | | STATION NAME AND LOCATION | BLACK RIVER AT HIGHWAY 93 NEAR
ROOT RIVER NEAR LANESBORO, MN
ROOT RIVER NEAR HOUSTON, MN
SOUTH FORK ROOT RIVER NEAR HOU | | SMITH CREEK NEAR PARK FALLS, WI
PINE CREEK NEAR OXBO, WI
FLAMBEAU RIVER AT BABBS ISLAND, WI
SOUTH FORK FLAMBEAU RIVER NEAR PHILLIPS, WI
FLAMBEAU RIVER NEAR BRUCE, WI | DOUGLAS CREEK NEAR PRENTICE, WI
BRUSH CREEK EFFLUENT QUALITY
JUMP RIVER AT SHELDON, WI
CHIPPEWA RIVER AT CHIPPEWA FALLS, WI
CHIPPEWA RIVER NEAR CARYVILLE, WI | CHIPPEWA RIVER AT DURAND, WI
EAU GALLE RIVER AT SPRING VALLEY, WI
PLUM CREEK NEAR ELLA, WI
CHIPPEWA RIVER NEAR PEPIN, WI
EAU CLAIRE RIVER NEAR FALL CREEK, WI | HAY RIVER OCOON CREEK COON CREEK NORTH FORK | PAINT CREEK AT WATERVILLE, IOWA
MISSISSIPPI RIVER AT MCGREGOR, IOWA
MISSISSIPPI RIVER AT MCGREGOR, I
WISCONSIN R AT RAINBOW LK NEAR LAKE TOMAHAWK | | | HYDROLOGIC
UNIT
CODE | 07040007
07040008
07040008 | 07050001
07050001
07050001
07050001 | 07050002
07050002
07050002
07050002 | 07050004
07050005
07050005
07050005 | 07050005
07050005
07050005
07050005 | 07050007
07060001
07060001
07060001 | 07060001
07060001
07060001 | | | MEDIA | | | | | | | | | |----------------------------|--|--|--|---|--|--|---|----------------| | NOTZ G3Z | 000 | <u> </u> | 00000 | ٥٥٥ | 00000 | 00000 | 0000 | | | ORDANIZATION
3000 | USGS
USGS
WI 003
WI 003 | W1003
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USCE
USCE
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSPENSE DISCHARGE | | 0 A Q Q | 034ma | 4 4 m | 3 4 W 4 | 44277 | 0404 | | | SKIZ TRAN TAM 038 | w | | Σm | | ш | | | | | BZIS 1844 4SDS | Щ | | <u> </u> | 80 80 | <u>w</u> | 4 | ш | | | 2026 SED CONCEN | ក ៤ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ | 2 A O FI B | 034m2 | 0044m | ⊗ n
S A M A m | ~ 4 4 2 X X | 04 W | | | OW END
YEAR | 1975 | | 1979
1973
1973 | 1967
1978
1975 | 197 | 1978 | 1979
1974
1973 | | | DA BECIN | 1954
1975
1966
1966 | 1966
1961
1977
1975
1956 |
1978
1954
1965
1944
1965 | 1942
1942
1970
1975
1966 | 1944
1964
1966
1975
1954 | 1976
1978
1964
1974 | 1974
1963
1968
1964 | | | NIZAB
ROT41R3230 | 000 | %
800
800
800 | 8008
4444 | 8
8
8
8
8
8 | 88288
44444 | 00000
444444 | 000
4 4 4 4 4 4 | ·············· | | DRAINAGE
AREA | 81.60 | 511.00
770.00
700.00 | 269.00
142.00
130.00
177.00 | 25.00
96.00
61.30 | 553.00
184.00
1760.00
200.00
375.00 | 224.00
36.90
26.50 | 363.00
2.24
19.00
44.00 | | | DRA | | 111111111 | 0 | | - 70
E1 - 12 (19) | 0 7 | | | | TYPE OF | 3 A S A S A S A S A S A S A S A S A S A | N X X X X X X X X X X X X X X X X X X X | SEE | AS AS AS | AS AS AS | NS A A S | N N N N N N N N N N N N N N N N N N N | | | YTNUDD | 069
023
123
123 | 123
191
005
005
043 | 043
043
061
191 | 085
065
065
085
097 | 097
069
069
067
073 | 073
073
073
073 | 073
097
097
097 | | | 31AT2 | 055
055
055
055
055 | 055
019
019
019 | 019
055
055
019 | 017
055
055
017
019 | 019
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055 | | | TUDE | 1847
1323
1342
1300 | 1311
4748
3031
3031
1542 | 247
309
325
356 | 350
240
240
540
559 | 304
359
359
403 | 305
325
446
424 | 4534
12920
13144
14152 | | | LONGITUDE | 08958-
090591
09113- | 09117
0913
0913
0913 | 0911542
0904909
0903825
0904446 | 0903850
0902240
0902540
0902540 | 0903804
0893859
0894052
0891403 | 0893805
0900625
0900446
0895824
0895142 | 0894
0892
0893
0894 | | | UDE | 658
710
407 | 803
819
516
516 | 424
313
352
318
228 | 122950
123050
123049
122450 | 505
409
041
733
506 | 309
459
919
803
711 | 352
805
826
226 | | | LATITUDE | 4 4 5 2 2 4 4 3 2 4 4 3 3 3 4 4 5 3 3 3 4 4 5 3 3 3 4 5 3 3 4 5 5 5 5 | 432
432
432
424 | 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 451
451
450
445 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 4 4 4
4 4 4 4
4 0 0 0 | | | | , WIS. | | IOWA | | | I 3 | I A | | | OCATION | S, WI
FAIRVIEW,
A WIS
LANDIN | TORY WI
I IOWA
IA
IA | , WI
DURANGO,
IOWA | QUE ILL
NSIN
WI | KETA, IOWA
. WI
. WI
GO. WI | LD, WI
, WI
TRATFORD,
I | NO IN | | | STATION NAME AND LO | SPIRIT RIVER AT SPIRIT FALLS
NORTH FORK NEDERLO CREEK NR
MISSISSIPPI R STODDARD
MISSISSIPPI R DAM NO 8 GENOA
MISSISSIPPI R THIEF SL BOAT | MISSISSIPPI R BOAT RAMP VICTUPPER IOWA RIVER AT DECORAH, UPPER IOWA R NR DORCHESTER I TURKEY RIVER AT GARBER, IOWA | RIVER AT BURTON, WI
RIVER NEAR ROCKVILLE.
MAQUOKETA RIVER NEAR
RIVER AT SPILLVILLE, | ⊃o ⊸ | MAQUOKETA RIVER NEAR MAQUOKETA
PRAIRIE RIVER NEAR MERRILL, WI
WISCONSIN RIVER AT MERRILL, WI
EAU CLAIRE RIVER NEAR ANTIGO,
EAU CLAIRE RIVER AT KELLY, WI | WISCONSIN RIVER AT ROTHSCHILD HAMANN CREEK NEAR STRATFORD, VEIG EAU PLEINE RIVER NEAR STRAFENWOOD CREEK AT BRADLEY, WI FREEMAN CREEK AT HALDER, WI | BIG EAU PLEINE RIVER NEAR KNOWL
LITTLE PLOVER RIVER NEAR ARNOTT
LITTLE PLOVER RIVER AT PLOVER, '
BUENA VISTA CREEK NEAR KELLNER, | | | STATION | R AT SPIRIT
REDERLO CREI
R STODDARD
R DAM NO 8
R THIEF SL | R BOAT IVER AT NR DOR NR DOR | GRANT RIVER AT BURTON,
PLATTE RIVER NEAR ROCK
LITTLE MAQUOKETA RIVER
TURKEY RIVER AT SPILLV | MISSISSIPPI R AT EAST DUB
GALENA R AT BUNCOMBE WISC
GALENA RIVER AT BUNCOMBE,
GALENA RIVER AT GALENA, I
BEAR CREEK NEAR MONMOUTH, | VER NEAR
NER AT
IVER AT
IVER NE | WISCONSIN RIVER AT ROTHS HAMANN CREEK NEAR STRATFIBIG EAU PLEINE RIVER NEAFENWOOD CREEK AT BRADLEY FREEMAN CREEK AT HALDER, | NE RIVER
R RIVER
CREEK N | | | | RIVER
FORK N
SIPPI
SIPPI | SIPPI R
IOWA RI
IOWA R
IOWA R | RIVER
RIVER
MAQUO
RIVER | SIPPI
R AT
RIVER
RIVER
REEK N | ETA RI
E RIVE
SIN RI
AIRE R | SIN RI
CREEK
U PLEI
D CREE | U PLEI
PLOVE
PLOVE
VISTA | | | | SPIRIT RIVER
NORTH FORK N
MISSISSIPPI
MISSISSIPPI | MISSIS
UPPER
UPPER
UPPER
TURKEY | GRANT P
PLATTE
LITTLE
TURKEY | MISSIS
GALENA
GALENA
GALENA
BEAR CI | MAQUOKETA F
PRAIRIE RIV
WISCONSIN F
EAU CLAIRE | WISCON
HAMANN
BIG EA
FENWOOI | BIG EA
LITTLE
LITTLE
BUENA | | | HYBROLOGIC
Unit
Code | 07060001
07060001
07060001
07060001 | 07060001
07060002
07060002
07060003 | 07060003
07060003
07060003
07060003 | 07060005
07060005
07060005
07060005 | 07060006
07070002
07070002
07070002 | 07070002
07070002
07070002
07070002 | 07070003
07070003
07070003 | | | È | 0770 | 0000 | 0000 | 0000 | 0000 | 0000 | 070 | | | MEDIA | | | | | | | | | |----------------------------|--|--|---|---|--|---|--|---| | SED STOR | 0000 | 00000 | ٥٥٥٥ | 00000 | 00000 | 00000 | 0000 | | | ORGANIZATION
3000 | USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | m 44 | αα ≥ ο | NARA | 00000 | OAKKK | παααα | 82 88 88 | | | BED MAT PAR SIZE | ш | ш | ш | | | | ······································ | · | | SUSP PART SIZE | ш | ш ш | | ш о о о | 0 | | | | | NSONCO CES ESTIS | и с
шш ч | | 435 8
HARAH | 00000 | 04888 | <u> </u> | <u> </u> | | | OW END
PIA3Y | 1978 | 197 | 1978
1975
1973
1967 | 1979
1978
1978 | 1978
1972
1975
1975 | 1975
1975
1975
1976 | 1975
1975
1975
1975 | | | OM BEGIN | 1964
1963
1974 | 96
46
96
76
76 | 1956
1973
1974
1973
1967 | 1965
1953
1975
1975
1975 | 1975
1968
1974
1974
1974 | 1974
1974
1974
1974
1974 | 1974
1974
1974
1974 | | | NISAB
ROT9IR3230 | 4 4 000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 000
4
004
004 | 00000
444444 | %
8
8
8 | | | | | DRAINAGE
AREA | 8
73.30
9419
0.10 | | 44.90
8090.00
40.10 | 609.00
45.60
8.37
9.02 | 13.50
16.80 | | | | | TYPE OF | 8 8 8 8 V V V V V V V V V V V V V V V V | 3 3333
3 3 3 3 3 3 | N N N N N N N N N N N N N N N N N N N | NS N
N N
N N
N N
N N | NS NA SW | A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A
S A S | N N N N | | | YTNUOD | 097 | 001
141
057
111 | 1103 | 111
025
049
049
049 | 049
049
103
103 | £ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 103
103
103 | | | STATE | 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055 | | | LONGITUDE | 0893259
0894838
0894829 | 9 4 6
0 0 7 0 0 4 6
9 4 9 9 9 4 8 | 0895155
0894525
0902550
0895440
0900206 | 0893809
0894356
0895648
0895701 | 0895757
0901638
0902200
0902117 | 0902910
0902824
0902924
0902930 | 0902958
0902845
0902948
0902912 | | | LATITUDE | 441808
441544
441514
441515 | 0 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 433305
433622
433222
433043
432632 | 432851
430803
430252
430340
430352 | 430408
430142
432924
433312
433208 | 433120
433022
432910
432857
432912 | 432726
432649
432614
43258 | | | STATION NAME AND LOCATION | | BIG ROCHE A CRI CREEK NEAR ADAMS, WI
BIG ROCHE A CRI CREEK NR ADAMS, WIS.
YELLOW RIVER AT BABCOCK, WI
LEMONWEIR RIVER AT NEW LISBON, WI
HULBERT CREEK NEAR WISCONSIN DELLS,
HULBERT CREEK NEAR WISCONSIN DELLS, | | BARABOO RIVER NEAR BARABOO, WI
BLACK EARTH CREEK AT BLACK EARTH, WI
TROUT CR CONFLUENCE ARNESON CR NR BARNEVELD,
TROUT CREEK AT TWIN PARKS DAM 8 NR BARNEVELD
TROUT CREEK AT CTH T NEAR BARNEVELD, WI | TROUT CREEK NEAR RIDGEWAY, WI
OTTER CREEK NEAR HIGHLAND, WI
PINE RIVER AT SITE 36B NEAR HUB CITY, WI
MALANCTHON CREEK AT SITE 21A NR HUB CITY, WI
MALANCTHON CREEK AT SITE 21B NR HUB CITY, WI | W BR PINE RIVER AT SITE 14A4 NR BLOOM CITY, W BR PINE RIVER AT SITE 14B NR BLOOM CITY, W BR PINE R TRIB AT SITE 11A1 NR BLOOM CITY, W BR PINE R TRIB AT SITE 11B2 NR BLOOM CITY, W BR PINE R TRIB AT SITE 11B AT BLOOM CITY, | FANCY CREEK AT SITE 33A NR GILLINGHAM, WIS. FANCY CREEK AT SITE 33B NR GILLINGHAM, WIS. FANCY CREEK TRIB AT SITE 9A NR GILLINGHAM, W FANCY CREEK TRIB AT SITE 9R1 NR GILLINGHAM, | | | HYDROLOGIC
Unit
Code | 07070003
07070003 | 07070003
07070003
07070003
07070003 | 07070003
07070003
07070004
07070004 | 07070004
07070005
07070005
07070005 | 07070005
07070005
07070005
07070005 | 07070005
07070005
07070005
07070005 | 07070005
07070005
07070005 | • | | | | | | | | | | | |----------------------------|--|---|---|---|---|---|--|--| | NOTZ G3Z
AIG3M | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | ۵ ۵ | | | MDITASINADRO
3000 | USGS
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USCE
USCE
USGS | | | SUSP DISCHARGE | ααααα | ααααα | αα3×α | ПОЧПА | шшшшо | 4 4 ¥ 70 | α | | | IS THAY TAM 038 | | | | | | o | | | | BSIZ TAAR REUZ | | | m cx | <u>шш</u> (х | <u> </u> | 4 O M W | 80 80 | | | 2026 SED CONCER | 000000
200000 | wwwww
wwwww | υυ ω
απ≥ ⊼4 | 7 7 0 4 A A A | 00000 | 9 B B B B B B B B B B B B B B B B B B B | αοοα | | | OW FUD
YEAR | 1978
1978
1978
1978 | 197
197
197
197
197 | 1978
1978 | 1977
1979
1979 | | 197 | | | | OW BEGIN | 1974
1974
1974
1974 | 1974
1974
1974
1974
1974 | 1974
1974
1954
1977
1942 | 1972
1970
1970
1966
1974 | 1966
1967
1966
1966
1971 | 1965
1967
1977
1947
1942 | 1944
1943
1942
1963 | | | BASIN
DESCRIPTOR | | | 014 | 000
440
440 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00
00
00
4
4 | %
% | | | DRAINAGE
AREA | | | 10400.00 | 150.00
260.00
266.00
530.00 | 2.21
4.11
6.70
9.46
617.00 | 690.00
85600.00
17.80 | 2330.00 | | | TYPE OF | ************************************** | 3 3 3 3 3 S | N N N N N N N N N N N N N N N N N N N | N N N N N | SERE | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | | | COUNTY | 103
103
103
103 | 103
103
103
103 | 103
103
043
025
123 | 123
123
123
123
023 | 023
023
023
023
023 | 023
045
163
019
045 | 045
111
057
131 | | | 3TAT2 | 00 85
00 85
00 85
00 85 | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055
055 | 055
019
019
019 | 019
019
017 | | | LONGITUDE | 0902904
0902819
0902644
0902644
0902511 | 0902643
0902631
0902555
0902240 | 0902511
0901838
0902626
0893354
0903515 | 0903513
0903734
0903800
0903835 | 0905434
0905431
0905349
0905244
0905108 | 0905228
0901504
0902715
0915342 | 0903205
0912225
0910539
0905805 | | | LATITUBE | 432459
432526
432237
432226 | 432100
432054
432100
431854
431756 | 431734
431637
431154
425752
434318 | 434252
433646
433540
433427
432340 | 432147
432136
432130
432143
431910 | 431127
414653
413303
422749
414555 | 414601
402335
404753
411115 | | | STATION NAME AND LOCATION | FANCY CREEK TRIB AT SITE 7A3 NR GILLINGHAM,
FANCY CREEK TRIB AT SITE 7B NR GILLINGHAM, W
HORSE CREEK AT SITE 32A1 NR RICHLAND CTR, WI
HORSE C TRIB AT SITE 32A2 NR RICHLAND CTR, W
HORSE CREEK AT SITE 32B NR RICHLAND CENTER, | BRUSH CREEK AT SITE 4A1 NR RICHLAND CENTER, BRUSH C TRIB AT SITE 4A2 NR RICHLAND CTR, WI BRUSH CREEK AT SITE 4B NR RICHLAND CENTER, W PINE RIVER AT RICHLAND CENTER, WIS. | ASH CREEK AT SITE 2B NEAR RICHLAND CENTER, W PINE RIVER AT TWIN BLUFFS, WIS. WISCONSIN RIVER AT MUSCODA, WI BADGER MILL CREEK NEAR VERONA, WI KICKAPOO RIVER AT ONTARIO, WI | KICKAPOO RIVER AT ONTARIO, WI
KICKAPOO RIVER NEAR ROCKTON, WI
KICKAPOO RIVER NEAR LA FARGE, WI
KICKAPOO RIVER AT LAFARGE, WI | NORTH FORK NEDERLO CREEK NEAR GAYS MILLS. WI
SOUTH FORK NEDERLO CREEK NEAR GAYS MILLS. WI
NEDERLO CREEK AT UTICA TN HALL NR GAYS MILLS
NEDERLO CREEK NEAR GAYS MILLS, WI
KICKAPOO RIVER AT GAYS MILLS, WI | KICKAPOD RIVER AT STEUBEN, WI
MISSISSIPPI RIVER AT CLINTON, IOWA
I CROW C AT BETTENDORF IA
2 WAPSIPINICON R AT INDEPENDENCE, IOWA
3 WAPSIPINICON R NR DEWITT IOWA | WAPSIPINICON RIVER NEAR DE WITT, IOWA
MISSISSIPPI R AT KEOKUK IOWA
MISSISSIPPI R AT BURLINGTON IOWA
EDWARDS RIVER NEAR NEW BOSTON, IL | | | HYDROLOGIC
Unit
Code | 07070005
07070005
07070005
07070005 | 07070005
07070005
07070005
07070005 | 07070005
07070005
07070005
07070005 | 07070006
07070006
07070006
07070006 | 07070006
07070006
07070006
07070006 | 07070006
07080101
07080101
07080102 | 07080103
07080104
07080104
07080104 | | | AIG3M | ٥٥ | 0 0 | ٥٥٥٥٥ | 00000 | 0000 | ٥٥٥ | 00000 | ٥٥٥٥ | | |----------------------------
-----------------------------|---|---|--|--|--|---|---|---| | ONGANIZATION
CODE | USGS | USGS
USCE
USGS | USGS
USGS
USGS
USGS
IAOO7 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USCE
USCE
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | 20126 DISCHARGE | 3 < | Z w | KOX0 | 444 | 40 m B 4 | m 4 m | 4400X | K O X M | • | | 3512 TAAS TAM 038 | | | Σ ∪ | | | | | | | | Machine Sept Concen | | ₹ 60 | 0 X m Q | ∀ m X | | <u> </u> | <u> </u> | ш
ш | | | | | 20 m | w w4 | 4 E 4 | ыр
по
по
по
по
по
по | 3 E E O | Φωυυυ | R O X m | | | OW END
RABY | 0 | 197 | 197
197
197 | 197 | 197
197
197
197 | 196
197
196
197 | 196
197
197
197 | 197 | | | OW BEGIN | 1966
1966 | 1944
1967
1946 | 1946
1966
1944
1961 | 1968
1968
1968
1970 | 1906
1971
1970
1944
1956 | 1957
1944
1966
1966
1966 | 1966
1948
1968
1952
1952 | 1964
1906
1967
1970 | | | MISAB
DESCRIPTOR | 8 8 | | 8 | 00 00 0
4 4 4 4 | 00
4
4 | 00 00
4 4 4 | 800
444
444 | 00
4
4 | | | | 8 | 8 8 | 88 8 | 78
33
51
50
10 | 88888 | 858 | 88828 | 5 8 8 | | | DRAINAGE
AREA | 433. | 119000. | 730.
4303.
425. | 13.
1.
19.
327.
65. | 6510.
178.
218.
7785. | 118.
56.
201. | 70.
189.
2794.
3. | 98.
3271.
201. | | | TYPE OF
STIR | 3 S | NS N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | S E N N N N N N N N N N N N N N N N N N | N N N N | | | TINUOD | 07.1 | 111
169
123 | 107
057
057
099 | 171
171
171
013
113 | 1139
139
139 | 095
127
127
171 | 157
095
095
103 | 103
103
103 | | | STATE | 017 | 019 | 019
019
027
019 | 019
019
019 | 0
0
0
0
0
0
0
0
0 | 019
019
019 | 010
010
010 | 019
019
019 | | | JO. | | | | | | | | 10 0 0 0 | , , , , , , , , , , , , , , , , , , , | | LONGITUDE | + +
+ E | 0912227
0933540
0923931 | 1216
1640
1640
3820
3344 | 3639
3639
3344
1200
4427 | 14001
14702
110409
111706 | 10420
15405
15115
12827
1847 | 0922310
0921055
0920342
0913048
0912915 | 355
322
302
364 | | | <u>8</u> | 0 0 | 933 | 09212
09116
09116
09258
09233 | 0923
0923
0923
0924 | 9917 | 0926
0926
0927
0927 | 9992 | 910 | | | | ÒÖ | 000 | | | | | | 0000 | | | LATITUDE | 0005
4 2 8 | 02337
20030
12119 | 1803
4513
4513
3810 | 1332
1240
1207
1900
0357 | 15814
15522
13400
12436
24536 | 4835
10405
10025
5358
5751 | 5006
4458
4841
3950
4119 | 4036
3924
3905
3625 | | | [A] | 4 4 | 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4 4 4 4 4
- 0 0 8 9 | 4 4 4 4 4 | 4 4 4 4 4 | 44444 | 4 4 4 4 | 4444 | | | STATION NAME AND LOCATION | HENDERSON CREEK NEAR GOUAWK | MISSISSIPPI RIVER AT KEOKUK, IOWA
S SKUNK R BL SQUAW C NR AMES IOWA
SOUTH SKUNK RIVER NEAR OSKALOOSA, IOW | NORTH SKUNK RIVER NEAR SIGDURNEY, IOWA
SKUNK RIVER AT AUGUSTA, IOWA
SKUNK RIVER AT AUGUSTA, IOWA
CEDAR RIVER NEAR AUSTIN, MN | FOURMILE CREEK NEAR LINCOLN, IOWA
HALF MILE CREEK NEAR GLADBROOK, IOWA
FOURMILE CREEK NEAR TRAER, IOWA
WOLF CR AT LAPORTE CITY, IOWA
OTTER C NR CEDAR RAPIDS, IOWA | CEDAR RIVER AT CEDAR RAPIDS, IDWA
PRAIRIE CREEK AT FAIRFAX, IOWA
SUGAR C NR MOSCOW, IOWA
CEDAR RIVER NEAR CONESVILLE, IOWA
IOWA RIVER NEAR ROWAN, IOWA | IDWA R AT MARENGO IOWA IDWA R AT MARSHALLTOWN IOWA ITIMBER CREEK NEAR MARSHALLTOWN, IOWA RICHLAND CREEK NEAR HAVEN, IOWA SALT CREEK NR ELBERON, IOWA | WALNUT CREEK NEAR HARTWICK, IOWA
BIG BEAR CREEK AT LADORA, IOWA
IOWA RIVER NEAR MARENGO, IOWA
RALSTON CREEK AT IOWA CITY, IOWA
RAPID CREEK NEAR IOWA CITY, IOWA | CLEAR CREEK NR CORALVILLE, IOWA IOWA RIVER AT IOWA CITY, IOWA SOUTH BRANCH RALSTON CREEK AT IOWA CITY, IOW DLD MANS CR NR IOWA CITY, IOWA | | | HYDROLOGIC
Unit
Code | 07080104 | 07080105
07080105
07080105 | 07080106
07080107
07080107
07080201 | 07080205
07080205
07080205
07080205 | 07080205
07080205
07080206
07080206 | 07080208
07080208
07080208
07080208 | 07080208
07080208
07080208
07080208 | 07080209
07080209
07080209
07080209 | | | VIO3W | | | | | | | | | |----------------------------|---|--|---|---|---|--|---|--| | ROTZ G32 | | 0000 | 00000 | 00400 | 00000 | 0000 | 00000 | 0000 | | MOIT A SUN A DRO
BODD | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | SUSP DISCHARGE | | $\mathbf{I} \propto \mathbf{A} \times \mathbf{D}$ | X 4 X | | x ooz | 0 X X | ZKIXX | Σ ∢ω⊻ | | SED MAT PART SIZE | | | | | | | | | | 3ZIS 18V4 dSnS | | 442 | | 0 0 0 | 0000 | 0 11 0 0 | шш | ш | | SUSP SED CONCEN | | INADO | m m X 4 X | 04000 | X0000 | OOXXO | SAIXX | Σ A m X | | OW END
RA3Y | | 1975
1975
1976 | 1968
1968
1972 | 1978 | 1976 | 1978 | 1975
1975
1975
1975 | 1975 | | OW BEGIN | | 1946
1974
1976
1944
1978 | 1966
1968
1964
1974 | 1976
1967
1976
1976
1976 | 1976
1976
1974
1974 | 1976
1972
1967
1967
1976 | 1974
1974
1974
1974 | 1974
1954
1976
1967 | | MIZA8
ADT41A3230 | | 014 | 800
444 | 800
444444 | 000
4 600
8 4 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 000
4 | | DRAINAGE
AREA | | 573.00
4293.00
12499.00 | 41.40
62.80
179.00 | 73.60
24.30
113.00
41.10 | .57
18.30
20.80
23.00 | 3.29
3.15
2.57 | | 327.00
15.30
82.60 | | TYPE OF
SITE | | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N A A A A A A A A A A A A A A A A A A A | N N N N N | X X X X X X X X X X X X X X X X X X X | 3 3 3 S | | COUNTY | | 183
103
115
115 | 039
039
027
025
025 | 025
025
025
025
025 | 025
025
025
025
025 | 025
025
025
025
025 | 025
025
025
025
025 | 025
025
025
105 | | 31AT2 | i | 0
0
0
0
0
0
0
0
0 | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055
055 | 0055
0055
0055 | | LONGITUDE | | 0914256
0912825
0912039
0911057 | 0883910
0884315
0883400
0891413
0890620 | 0892109
0891928
0892407
0892558 | 0892632
0892151
0893042
0892936
0892901 | 0892815
0892521
0892018
0891954
0891928 | 0892449
0892523
0892439
0892512
0892512 | 0891423
0891818
0891354
0891148 | | LATITUDE | 1 | 412759
412515
411644
411048
411048 | 434005
433830
433146
430858 | 431232
431052
430903
431029 | 430825
430735
430612
430616 | 430445
430427
430538
430557
430557 | 430041
430054
430046
430055
430055 | 430108
430032
430254
425000 | | STATION NAME AND LOCATION | | ENGLISH RIVER AT KALONA, IOWA IOWA RIVER NEAR LONE TREE, IOWA IOWA RIVER AT COLUMBUS JUNCTION, IOWA RIVER AT WAPELLO, IOWA | WEST BRANCH
ROCK RIVER NEAR WAUPUN, WI
SOUTH BRANCH ROCK RIVER AT WAUPUN, WI
EAST BRANCH ROCK RIVER NEAR MAYVILLE, WI
KOSHKONONG CREEK NEAR SUN PRAIRIE, WI
KOSHKONONG CREEK NEAR DEERFIELD, WI | YAHARA RIVER AT WINDSOR,
TOKEN CREEK AT MADISON, W
YAHARA RIVER AT STATE HWY
SIX MILE C AT ST HWY 113
SIXMILE CREEK NEAR WAUNAK | SPRING CREEK NEAR WAUNAKEE. WI
WARNER PARK STORM DITCH AT MADISON, WI
PHEASANT BRANCH AT MIDDLETON, WI
PHEASANT BRANCH AT CENTURY AVE AT MIDDLETON,
PHEASANT BRANCH AT MOUTH AT MIDDLETON, WI | SPRING HARBOR STORM SEWER AT MADISON, WI
WILLOW CREEK AT MADISON, WI
WEST BRANCH STARKWEATHER CREEK AT MADISON, W
EAST BRANCH STARKWEATHER CREEK AT MADISON, W
OLBRICH PARK STORM DITCH AT MADISON, WI | NEVIN WETLAND SITE H AT MADISON, WIS. NEVIN WETLAND SITE F AT MADISON, WIS. NEVIN WETLAND SITE B AT MADISON, WIS. NEVIN WETLAND SITE G AT MADISON, WIS. NEVIN WETLAND SITE A AT MADISON, WIS. | NEVIN WETLAND SITE D AT MADISON, WIS. YAHARA RIVER NEAR MC FARLAND, WI DOOR CREEK NEAR COTTAGE GROVE, WI BADFISH CREEK NEAR COOKSVILLE, WI | | HYDROLOGIC
Unit
Code | | 07080209
07080209
07080209
07080209 | 07090001
07090001
07090001
07090001 | 07090001
07090001
07090001
07090001 | 07090001
07090001
07090001
07090001 | 07090001
07090001
07090001
07090001 | 07090001
07090001
07090001
07090001 | 07090001
07090001
07090001
07090001 | | VIA 1 | | | | | | | | | | |----------------------------|--|--|---|---|---|--|--|--|---| | SED STOR | ۵۵۵ | 000 00 | 0000 | 2000 | 0000 | ٥٥ | 000 | 0 00 | | | ORGANIZATION
CODE | USGS | USGS
USGS
USGS
USGS | USGS
USGS
USGS | USGS
USGS
USGS
USGS | USGE
USGS
USGS
USGS
USGS | USGE
USGS
USGS
USGE
USCE | USCE
USCE
USGS
USGS
USGS | USGS
USCE
USGS
USGS | | | SUSP DISCHARDE | ⋖ | α ∢∢ | (40X | ∢ m ≥ | 0000 | ш∢ | 0 m 0 | 6 mm | | | 3512 TAA9 TAM 038 | | ш | | | | | ш | | | | SUSP SEE CONCEN | ш | ш | | 4 m 8 | <u>в</u> ш | 8 488 | 8 8 M M | 20 H H | | | | 00 IO | m 10 m 0 | | 4 4 m ≥ 0 | N 4
Ο 3 4 m π | 5 7
0 A 0 | 353 | <u> </u> | | | OW END
YEAR | 197 | 197
197
197 | 197 | | 197 | 197 | 197
197
197 | 197 | | | OW BEGIN | 1954
1954 | 1964
1954
1965 | , თთთ c | 1970
1974
1974
1966
1940 | 1968
1960
1953
1966
1965 | 1940
1971
1970
1962
1962 | 1967
1962
1943
1971
1945 | 1966
1940
1944
1969 | | | NISA8
BDT9183230 | 000 | | | 3 8 8 8 | 9000
4 4 4 4 | | 00 4 | 900 | | | | 88 | 88 88 | 384 | 3888 | 8888 | 88 | 828 | 8 88 | • | | DRAINAGE
AREA | 3340.
202. | 762.
273.
221. | 1034. | 923.
8755.
9551.
1003. | 5841.
6245.
24. | 375. | 9879.
92.
503. | 342.
12479.
374. | | | TO JAYT
JTIS | M S | | N N N N | NS N | MS MS NS | AS S AS S | MS MS | N N N N | | | COUNTY | 105
105 | 055
065
065
065 | 045
045
025
025 | 045
195
161
073
015 | 187
153
153
073 | 049
153
077
125
181 | 181
153
153
153 | 125
123
123
125 | | | 3TAT2 | | | | 017
017
017
019 | 019
019
019 | 019
019
019 | 010
010
010
010 | 019
019
019 | | | LONGITUDE | 0890414
0885150 | 0895140
0895140 | 0894758
0894758
0893730
0893354 | 0892453
0894458
0901055
0900930
0935555 | 0935950
0934007
0933715
0942212
0942215 | 0935710
0934211
0943000
0931550
0932905 | 0933505
0933910
0933548
0933243
0933509 | 0931608
0925130
0925134
0925438 | | | LATITUDE | 23633
23547 | 30600
24040
24710 | 24653
23034
25520
25411 | 423642
414700
413335
412920
420440 | 421515
414050
413645
420627
414114 | 413200
413514
414700
411445
412015 | 412525
412725
413430
413650
412527 | 411441
411655
411653
411309 | | | STATION NAME AND LOCATION | ROCK RIVER AT AFTON, WI
TURTLE CREEK NEAR CLINTON, WI | MAUNESHA KIVER NEAK SUN PRAIKIE, WI
CRAWFISH RIVER AT MILFORD, WI
PECATONICA RIVER AT DARLINGTON, WI
EAST BR PECATONICA RIVER NEAR BLANCHARDVILLE | PECATONICA RIVER NEAR BLANCHARD VILLE, WI PECATONICA RIVER AT MARTINTOWN, WI MOUNT VERNON, WI WEST BRANCH SUGAR RIVER NEAR BELLEVILLE, WI | SUGAR RIVER NEAR BRODHEAD, WI
ROCK RIVER AT COMO, IL
GREEN RIVER NEAR GENESEO, IL
DES MOINES R NR BOONE IOWA | DES MOINES R NR STRATFORD IOWA DES MOINES RIVER NEAR SAYLORVILLE, IOWA DES MOINES RIVER AT DES MOINES, IOWA EAST FORK HARDIN CREEK NR. CHURDAN, IOWA MIDDLE RACCOON RIVER AT PANORA, IOWA | RACCOON R AT VAN METER IOWA
WALNUT CREEK AT DES MOINES, IOWA
M RACCOON R NR BAYARD, IOWA
WHITEBREAST C NR DALLAS IOWA
SOUTH R NR ACKWORTH IOWA | MIDDLE R NR INDIANOLA IOWA
NORTH R NR NORWALK IOWA
DES MOINES R. BL RACCOON R. AT DES MOINES, I
FOURMILE CREEK AT DES MOINES, IOWA
MIDDLE RIVER NEAR INDIANOLA, IOWA | WHITE BREAST CREEK NEAR DALLAS, IOWA
DES MOINES R'NR TRACY IOWA
DES MOINES RIVER NEAR TRACY, IOWA
CEDAP CREEK NEAR RUSSEY, IOWA | | | HYDROLOGIC
Unit
Code | 07090001 | 07090003
07090003
07090003 | 07090004
07090004
07090004 | 07090004
07090005
07090005
07090007 | 07 100004
07 100004
07 100004
07 100004 | 07100006
07100006
07100007
07100008
07100008 | 07 100008
07 100008
07 100008
07 100008 | 07 100008
07 100009
07 100009 | | | MEDIA | | | | | | | | | |-----------------------------------|--|--|--|---|---|---|---|-------------| | 90T2 G37 | 000 | <u> </u> | 40000 | 00000 | 00000 | 00000 | 0000 | | | NOITANIMADRO
3000 | USGS
USGS
USGS
USCE
USCE | USCE
USCE
MOOO:
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USG S
USGS
USGS | | | SUSP DISCHARGE | ×ш∢ | Σ | αΣΟ3 3 | αα≱Om | ፈፈଘ ፈ | ∢ Z⊙00 | 0474 | | | 3XIS TAA9 TAM 038 | | | Σ | | ш | | | | | MEDINOD GES REUZ
SIZ TAAR REUZ |
X H 4 O O | DMXXX
BM XX | ΣαΣΟ3 | αα≱Om
A m | m X 4 X 4 | W W W W | 3424 | | | | 4.02 | | 0 | 0.0 | in m | 42003 | 2454 | | | OW END
AA3Y | 197 | 1977 | 197 | 197 | 197 | | | | | DW BEGIN | 1967
1965
1967
1942
1940 | 1943
1939
1978
1967
1975 | 1977
1978
1963
1974
1965 | 1978
1968
1965
1965 | 1963
1961
1975
1961 | 1961
1975
1909
1970
1970 | 1974
1956
1974
1979 | | | MISAB
BOT91RJ230 | 00
00
4
4 | 014 | 8 88
4 44 | 00
4 4 0 | 0000
0000 | 8888
84444 | 8888
4424 | ···· | | DRAINAGE
AREA | 14300.00
105.00
87.70 | 171500.00
171500.00 | 174.00
1779.00
2294.00
5150.00 | 35.60
449.00
686.00
2091.00
8259.00 | 126.00
74.10
6.68
110.00 | 868.00
871.00
192.00
26.70
40.30 | 7.90
5093.00
26564.00
26.70 | | | TYPE OF
SITE | N N N N N | N N N N N | N N N N N | X X X X X X X X X X X X X X X X X X X | N N N N N | N N N N N | N N N N | | | утилоэ | 045
111
051
149 | 127
137
189
119 | 119
141
089
091 | 073
111
075
091
099 | 133
133
127
127 | 059
097
111
057 | 057
125
171
117 | | | 3TAT2 | 029
019
019
017 | 029
029
029
017 | 017
018
018
017 | 018
017
017
017 | 055
055
055
055 | 055
017
017
017 | 017 | | | LONGITUDE | 0913400
0912824
0922505
0904745
0910855 | 0912149
0914020
0901630
0901051
0900815 | 0901200
0862950
0872033
0874007 | 0871049
0871824
0873455
0874922
0884310 |
0881437
0881940
0883050
0881903
0881618 | 0881045
0881042
0881451
0900312
0900800 | 0900837
0895905
0903840
0900411 | | | LATITUOE | 402745
402633
404610
392635
394135 | 394324
393225
385127
385306
385141 | 385400
413350
411058
410936
412048 | 410200
405214
404925
410029 | 430017
425124
424105
423957
424046 | 423040
422845
422637
402951
402732 | 402824
400725
394210
391607 | | | STATION NAME AND LOCATION | DES MOINES RIVER AT ST. FRANCISVILLE, MO.
SUGAR CREEK NEAR KEOKUK, IOWA
FOX RIVER AT BLOOMFIELD, IOWA.
BAY C AT NEBO ILL
HADLEY C AT KINDERHOOK ILLINOIS | MISSISSIPPI R AT HANNIBAL MISSOURI
SALT R AT JOANNA MO
MILL CREEK
MISSISSIPPI RIVER AT ALTON, IL
MISSISSIPPI RIVER BELOW ALTON,ILL | MISS R ALTON WATER INTAKE I KANKAKEE RIVER NEAR NORTH LIBERTY; IND. KANKAKEE RIVER AT SHELBY, IND. KANKAKEE RIVER AT MOMENCE, IL KANKAKEE RIVER AT MOMENCE, IL | IROQUDIS RIVER AT ROSEBUD, IND. IROQUDIS RIVER NEAR FORESMAN, IND. IROQUDIS RIVER AT IROQUDIS, IL IROQUDIS RIVER NEAR CHEBANSE, IL ILLINDIS RIVER AT MARSEILLES, IL | FOX RIVER AT WAUKESHA, WI
MUKWONAGO RIVER AT MUKWONAGO, WI
SUGAR CREEK AT ELKHORN, WI
WHITE RIVER NEAR BURLINGTON, WI
FOX RIVER AT BURLINGTON, WIS. | FOX RIVER AT WILMOT, WI
FOX RIVER NEAR CHANNEL LAKE, IL
NIPPERSINK CREEK NEAR SPRING GROVE, IL
BIG CREEK AT ST. DAVID, IL
BIG CREEK NEAR BRYANT, IL | SLUG RUN NEAR BRYANT,IL
SANGAMON RIVER NEAR OAKFORD, IL
IŁLINDIS RIVER AT VALLEY CITY
BEAR CREEK AT CHESTERFIELD, IL | | | HYDROLOGIC
Unit
Code | 07 100009
07 110001
07 110004
07 110004 | 07110004
07110007
07110009
07110009 | 07110009
07120001
07120001
07120001 | 07 120002
07 120002
07 120002
07 120002
07 120005 | 07120006
07120006
07120006
07120006 | 07120006
07120006
07120006
07130005
07130005 | 07130005
07130008
07130011
07130012 | | | ROTZ GBZ
AIGBM | 00000 | 00000 | 00000 | 00000 | 00000 | ۵۵۵۵۵ | ۵۵ | |----------------------------|---|---|---|---|--|--|---| | ORGANIZATION
COOE | uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | uses | | SUSP DISCHARGE | 4 4 D D | 44244 | বৰবৰৰ | ∢ ₩ ∢ Z | 44444 | दब दब | ⋖ | | BED MAT TAM CBB | | | | | | | | | SSIZ TRAS SZUS | 444 m | বৰছবৰ | বৰৰৰৰ | 4 m 4 Z | 44444 | বৰবৰৰ | 44 | | SUSP SED CONCEN | A A A O O | 44244 | 44444 | 4 m & 4 Z | 44444 | 44444 | 44 | | OW END
PABY | 1979 | | | | | | | | OW BEGIN | 1979
1974
1975
1959 | 1975
1978
1974
1974 | 1978
1975
1975
1975 | 1978
1974
1970
1974
1974 | 1974
1974
1975
1974
1975 | 1975
1974
1979
1975 | 1978
1978 | | BASIN
DESCRIPTOR | 004
004
003 | 00
00
00
00
00
00
00 | 8 8 8 8
8 4 4 4 | 0
4
4
4
4
4
4
4
4 | 88888
44444 | 88
88
84
84 | | | | 88488 | 88888 | 90
90
90 | 88888 | 90
90 | 80000 | 06 | | DRAINAGE
AREĄ | 233.(
868.(
20.,
20.,
3788.(| 12.80
113.00
713200.00
794.00 | 213.
5.
18.
162. | 478.
2169.
473.
124. | 72.
154.
2.
464. | 15.
17.
37. | 5790. | | TYPE OF
SITE | ****** | MS SW
NS SW | ASS ASS | MS MS MS | MS MS | A S S A S S | 3.3
S S | | COUNTY | 061
061
163
189 | 157
157
003
055
077 | 077
077
145
145
077 | 077
077
029
027
189 | 163
163
163
163 | 163
163
163
163 | 157 | | STATE | 017
017
017
029
029 | 017
017
017
017 | 017
017
017
017 | 017
017
017
017 | 017
017
017
017 | 017
017
017
017 | 017 | | DE | | | | | | | 4 00 | | LONGITUDE | 0901011
0902340
0900246
0901058 | 0893846
0894222
0892750
0890050
0891309 | 0891231
0891020
0892903
0892903
0892245 | 0892236
0892045
0882450
0893736
0893739 | 0894356
0894945
0895029
0895226
0895914 | 0900243
0895815
0894912
0895141 | 0895916 | | LATITUDE | 391610
391403
383128
383703
383020 | 380041
375722
371300
375405
375608 | 375301
374230
375758
375752
375642 | 375412
374455
393459
383229
382702 | 381546
384300
382620
382422
382528 | 382254
381926
381539
381517
380713 | 38 18 36
38 18 36 | | STATION NAME AND LOCATION | HODGES CREEK NEAR ROCKBRIDGE, IL
MACOUPIN CREEK NEAR KANE, IL
PRAIRIE DU PONT CREEK NEAR CENTREVILLE. IL
MISSISSIPPI RIVER AT ST LOUIS MO
MESAMEC RIVER NEAR EUREKA, MO | NORTH FORK COX CREEK AT STEELEVILLE, IL
MARYS RIVER AT WELGE, IL
MISSISSIPPI RIVER AT THEBES ILL
BIG MUDDY RIVER AT PLUMFIELD, IL
SIXMILE CREEK AT DOWELL, IL | LITTLE MUDDY RIVER NEAR ELKVILLE, IL
SYCAMORE CREEK NEAR CARBONDALE, IL
PIPESTONE CREEK NEAR DENMARK, IL
BRUSHY FORK NEAR DENMARK, IL
GALUM CREEK NEAR PYATTS, IL | BEAUCOUP CREEK NEAR VERGENNES, IL
BIG MUDDY RIVER AT MURPHYSBORO, IL
KASKASKIA RIVER AT COOKS MILLS, IL
SUGAR CREEK AT ALBERS, IL
KASKASKIA RIVER NEAR VENEDY STATION, IL | MUD CREEK NEAR MARISSA, IL
SILVER CREEK NEAR TROY, IL
HEBERERS BRANCH NEAR FREEBURG, IL
SILVER CREEK NEAR FREEBURG, IL
DOUGLAS CREEK NEAR SMITHTON, IL | WEST FORK RICHLAND CREEK AT FLORAVILLE, IL RICHLAND CREEK NEAR HECKER, IL DOZA CREEK NR LENZBURG, IL DOZA CREEK NEAR NEW ATHENS, IL LITTLE PLUM CREEK NEAR WALSH, IL | KASKASKIA RIVER AT ROOTS, IL
BIG MUDDY RIVER NEAR MOUNT VERNON, IL | | HYDROLOGIC
Unit
Cobe | 07130012
07130012
07140101
07140101 | 07140105
07140105
07140105
07140106
07140106 | 07140106
07140106
07140106
07140106
07140106 | 07140106 B
07140106 B
07140201 P
07140204 S | 07140204
07140204
07140204
07140204
07140204 | 07140204
07140204
07140204
07140204
07140204 | 07140204 | | MEDIA | | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | |----------------------------|--------------|---|--|---|--|--|--|---|------------| | NOTZ G3Z | | | 00000 | 00000 | 00000 | 00000 | 0000 | | - - | | NOIT AS INA DAO
3000 | | USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USEPA
USEPA
AROO1 | AR001
AR001
AR001 | | | SUSP DISCHARGE | | МААМ | | St m | | | | | | | SIS TANY 92U2 | | <u> </u> | | | | | | | | | 2025 2ED CONCEN | | B H A A H | mmmm ₹ | αm33W | 00 00 00 ≥ 00 | m m ≥ ≥ m | ww
∞ ≥ ∞ | 80 80 80 | | | OW END | | 974
974
969
968 | 973
973
968 | 967
973
961
974 | 957
957
957
959 | 957
958
959
959 | 958
959
967
967 | | | | YEAR | | 974
973
1966
1966
1962 | 966
1962
1969
1967 | 967
970
958
1 | *** | 957
1958
1958
1957
1958 | 958
964
11
965
11
11 | 3 5 8
3 5 5
6 0 6 | | | OW BEGIN | | 00000 | <u> </u> | 0 0 0 0 0 | 195 | <u> </u> | <u> </u> | 0.000 | | | MISAU
ROTGIROS30 | _ 8 _ | | | | | | | | | | DRAINAGE
AREA | Z
O | | | | | | | | | | TYPE OF | _ <u></u> | X X X C X | AS
AS
AS | S E S E S E S E S E S E S E S E S E S E | ES ES | ES
ES
ES | ES
SE
SE | NS N | | | COUNTY | ш | 075
087
075
087
087 | 087
087
075
087
087 | 075
075
087
087
087 | 087
087
087
087
075 | 087
075
075
087
087 | 087
075
109 | 019
019
103
109 | | | 3TAT2 | C | 022
022
022
022
022 | 022
022
022
022
022 | 022
022
022
022
022 |
022
022
022
022
022 | 022
022
022
022
022 | 022
022
032
035 | 0055
0055
0055
0055 | | | LONGITUDE | PPI | 0892530
0892510
0891840
0892220
0891700 | 0891404
0891215
0891000
0892150
0892030 | 0891835
0890800
0892800
0891000 | 0891000
0890230 | 0890830
0890430
0890500
0890600 | 0890500 | | | | LATITUDE | ISSIPP | 301120
293740
294000
293615 | 293412
293255
293121
293940
293900 | 293740
292945
293800
294330
295000 | 295000
295000
295000
294100 | 293100
292900
292800
293900
293800 | 293300 | | | | | MISSIM | | | | | | | | · | | STATION NAME AND LOCATION | LOWER | R %SW PASS< AT EAST JETTY
SOUND AB GRAND IS, MISS.
BRETON SND AT MILE 14.1
BRETON SND AT MILE 19.0 | AT TOWER 2 MILE 9.5
AT TOWER 3 MILE 6.0
AT TOWER 4 MILE 3.0
BRETON SND AT MILE 18.3
BRETON SOUND AT RANGE 2620 | MR-GO AT MILE 13.7
MR-GO AT MI O.O %NAV LT C<
BRETON SOUND S OF POINT GARDNER
CHANDELEUR SND S OF CHICOT ISL
CHANDELEUR SOUND W OF NORTH IS | CHANDELEUR SOUND SW OF NORTH IS
CHANDELEUR SWD NR CHANDELEUR IS
GULF OF MEXICO NR CHANDELEUR ISL
CHANDLR SND 5.0 MI SE PT CHICOT
GULF OF MEX E GRAND GOSIER IS | CHANDELEUR SND NR BRETON IS TRE B
GULF OF MEX S GRAND GOSIER IS
GULF OF MEX 5.75 MI W BRETON IS
CHANDLR SND 10.0 MI SE PT CHICOT
GULF OF MEXICO NR CHANDELEUR IS | CHANDLEUR SND 12 MI SE PT LYDIA
CHAND SND 9 MI N W GRD GOSIER IS
MISS RNEW ORLEANS-H.P. LONG BR
MISSISSIPPI R AT NEW ORLEANS LA
MURFREESBORO ARK | ARK
LPHIA ARK
' ARK
T ARK | | | HYDROLOGIC
Unit
Code | | E MISS
E MISS.
E MR-GC
E MR-GC | E MR-GO
E MR-GO
E MR-GO
E MR-GO | m m m m m | w w w w w | mmmm | m m m m ₹ | 015 N AMITY ARK
015 N ARKADELPHIA
015 N CAMDEN ARK
015 N DELIGHT ARK | | | HYDR
D | | 080014
080014
080014
080014 | 080014
080014
080014
080014 | 080014
080014
080014
080014 | 080014
080014
080014
080014 | 080014
080014
080014
080014 | 080014
080014
080014
080014 | 080015
080015
080015 | | | MEDIA | | | | | | | | | |-------------------------------------|---------------------------------------|--|---|---|--|---|---|--| | MOTZ GBZ | 0000 | | 0000 | 00000 | 00000 | 00000
V | 0000 | | | NOITAS INADRO
3003 | | AROO1
USGS
USEPA
USEPA
USGS | KYOO
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USEPA
USGS
USGS | | | SUSP DISCHARGE | | w | ∢⊙ ₩₩ | ααα | AMKAA | Σবব | ⋖ | | | BSIS TRAS REUZ
BSIS TRAS TAM G38 | | Σ | | | | | | | | SUSPERIOR CONCEN | 8 8 8 8 8 | | Z A O M M | X X X Z Z | <u> </u> | ZAAZE
ZAA E | Z II Z A | | | ЯАЭХ | | | വവ | ນນນ | മരവ | 6 7 | 5 7 | | | OM END | | 1966 | 197 | 197 | 197
197
197 | 197 | <u> </u> | | | NIBBB WO
RABY | 1936
1935
1948 | 1935
1977
1966
1963
1963 | 1977
1979
1965
1965
1975 | 1975
1975
1975
1960
1965 | 1979
1971
1969
1959 | 1964
1977
1978
1975 | 1975
1965
1975
1975 | | | BASIN
BOT9183230 | | 000 | | | 00 4
00 4 | 004 | 8 | | | DRAINAGE
AREA | | 932800.00 | 372.00
1852.00
110.00 | 55.50
383.00 | 939.00
2169.00
277.00
47.60 | 1480.00
84.40
2308.00
262.00 | 699.00 | | | 40 39YT
3TI2 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | N MARKA
N N N N N | N N N N N N N N N N N N N N N N N N N | A A A A A | 3 3 3 3 3 S S S S S S S S S S S S S S S | A A A A A A A A A A A A A A A A A A A | A S S S | | | COUNTY | 109
059
097 | 125
049
075
157
039 | 105
183
131
131
075 | 095
131
095
017
183 | 045
095
003
109
069 | 069
075
167
157 | 157
157
157
157 | | | 3TAT2 | 005
005
005 | 005
028
021
047 | 021
047
047
047
021 | 047
047
047
047 | 047
028
028
047 | 047
047
047
047 | 047
047
047
047 | | | LONGITUDE | | 0891400
0900425
0884930 | 0885750
0885120
0891133
0891747 | 0892334
0892035
0892439
0882601
0884839 | 0892313
0883107
0883600
0884653 | 0885836
0892235
0893614
0893823
0900210 | 0894805
0900415
0894908
0895458 | | | LATITUDE | | 363445
350737
365708 | 363742
362420
361504
362632
363145 | 362752
362309
362109
355956
360705 | 360149
344914
345556
350446 | 351631
352702
353814
351837
351120 | 350659
350500
350259
350021 | | | STATION NAME AND LOCATION | GLENWOOF
MALVERN
MOUNT IC | BAUXIIE AKK
BENTON ARK
YAZOD R AT REDWOOD
MISSISSIPPI R HICKMAN MILE 920.5
MISSISSIPPI RIVER AT MEMPHIS, TENN. | BAYOU DECHIEN CLINTON
NORTH FORK OBION RIVER NEAR MARTIN, TENN (CE
OBION RIVER AT OBION, TENN.
REELFOOT CREEK NEAR SAMBURG, TENN.
RUNNING SLOUGH AT LEDFORD, KY | BIG SANDY CREEK AT NEW MARKHAM, TENN
INDIAN CREEK AT SAMBURG, TENN
REELFOOT LAKE SPILLWAY NEAR TIPTONVILLE, TN
BEAVER CREEK AT HUNTINGDON, TENN.
SOUTH FORK OBION RIVER NEAR GREENFIELD, TENN | N FK FORKED DEER RIVER AT DYERSBURG TENN (CE
TOMBIGBEE RIVER AT ABERDEEN, MS.
TUSCUMBIA RIVER CANAL NEAR CORINTH, MISS.
MOSSES C NR POCAHONTAS, TENN.
HATCHIE RIVER NEAR LACY, TN. | HATCHIE RIVER AT BOLIVAR, TENN.
BIG MUDDY CREEK AT STANTON, TN
HATCHIE RIVER AT RIALTO, TENN.
LOOSAHATCHIE RIVER NEAR ARLINGTON, TENN.
WOLF R.AT THOMAS ST BRIDGE HWY51 | WOLF RIVER AT GERMANTOWN, TN
MISSISSIPPI R MEMPHIS TENN MI 735.2
NONCONNAH CREEK NEAR GERMANTOWN, TENN.
JOHNS CPEEK AT HOLMES POAD, AT CAPLEVILLE, T | | | HYDROLOGIC
Unit
Code | 080015 N
080015 N
080015 N | 080015 0
080015 0
08001500
08010100 | 08010201
08010202
08010202
08010202 | 08010202
08010202
08010202
08010203 | 08010204
08010207
08010207
08010207 | 08010208
08010208
08010208
08010209 | 08010210
08010211
08010211
09010211 | | | NOTZ G32
A(G3M | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | |----------------------------|--|---|--|--|---|--|--|--| | ONGENIZATION
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | usas
usas
usas
usas | | | SUSP DISCHARGE | Z ¥ Z Z | Z A A W A | 4 4 W Z Z | α π Σ α \blacktriangleleft | 44 m4 | 44444 | 4444 | | | ISIS TAAS TAM 038 | | | | | | | | | | 3512 TAA9 92U2 | α ¥ Z Z | ZAANA | 44mxz | X m Z X | 441144 | <u> </u> | 444 | | | SUSPER CONCEN | αz xzz | ZAANA | 44 m22 | O S M Z M A | A A M A A | 00 00 | 0000 | | | OW END
RA3Y | 197 | | | 1980 | 1979 | 1980
1979
1979
1980 | 1980
1979
1980
1980 | | | OW BEGIN | 1974
1978
1977
1977 | 1977
1977
1978
1978 | 1978
1946
1955
1978 | 1977
1955
1977
1977
1978 | 1978
1950
1970
1978 | 1978
1978
1978
1978 | 1978
1978
1978
1978 | | | BASIN
DESCRIPTOR | 014 | | 014 | 024 | 024
024
024 | | | | | DRAINAGE
AREA | 1370.00 | 1788.00 | 2374.00
6475.00
4 6 51.00 | 6475.00 | 2106.00
535.00
768.00 | | | | | 40 39YT
3T12 | 33333 | 33333
00000 | N N N N N N N N N N N N N N N N N N N | A A A A A A A A A A A A A A A A A A A | N N N N N | M N N N N N N N N N N N N N N N N N N N | N N N N | | | COUNTY | 033
207
207
069 | 021
055
055
055
031 | 031
031
037
111
037 | 037
037
123
123
077 | 031
111
123
123
077 |
077
077
123
123
123 | 123
123
037
037 | | | STATE | 028
029
029 | 005
005
005
005 | 005
005
005
005 | 005
005
005
005 | 005
005
005
005 | 005
005
005
005 | 005
005
005 | | | LONGITUDE | 0900056
0901210
0901832
0900832 | 0900752
0902139
0902417
0902547 | 0902745
0902556
0903333
0902905 | 0903926
0904048
0903923
0904305 | 0902309
0902012
0905242
0905310
0904500 | 0904545
0904745
0905030
0905010 | 0905440
0905335
0905205
0904828 | | | LATITUDE | 345752
36752
363938
363953 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 355212
354916
351623
353215
352138 | 352145
351534
350841
350038
344635 | 354731
354020
350840
345820 | 344720
345020
345725
350000
350110 | 350220
350335
351130
351230 | | | STATION NAME AND LOCATION | HORN LAKE CREEK AT HORN LAKE, MISS.
ST FRANCIS R AT FISK MO
ST FRANCIS RIVER NR POWE, MO
WILHELMINA CUT-OFF NR CAMPBELL, MO
ST FRANCIS RIVER NR PIGGOTT, ARK | ST FRANCIS RIVER AT HOLLY ISL
BIG SLOUGH DITCH NR PARAGOULC
LOCUST CREEK DITCH NR PARAGOL
EIGHT MILE DITCH NR PARAGOULC
THOMPSON CREEK NR LESTER, ARP | BIG BAY DITCH NR LESTER, ARK ST. FRANCIS RIVER AT LAKE CITY, ARK. ST. FRANCIS RIVER AT PARKIN, ARK. ST. FRANCIS R FLOODWAY NR MARKED TREE, AR CROSS COUNTY DITCH NR BIRDEYE, ARK | STRAIGHT SLOUGH NR BIRDEYE, ARK ST. FRANCIS BAY AT RIVERFRONT, ARK. CLARK CORNER CUT-OFF NR COLT, ARK ST FRANCIS RIVER AT MADISON, ARK MARIANNA SEWAGE EFFLUENT (NEW POND) | COCKLE BURR SLOUGH DITCH NR BLACK OAK, ARK RIGHT HAND CHUTE OF LITTLE R AT RIVERVALE, A L'ANGUILLE RIVER NR COLT, ARK. L'ANGUILLE RIVER AT PALESTINE, ARK. L'ANGUILLE RIVER AT MARIANNA, ARK. | MARIANNA SEWAGE EFFLUENT (OLD) L'ANGUILLE RIVER & HWY 1 UNNAMED CREEK NR FORREST CITY, AR FORREST CITY OXIDATION POND CYPRESS CREEK NR PALESTINE, AR | SECOND CREEK NEAR HORTON, AR
FIRST CREEK & HORTON, AR
CANEY CREEK NR WYNNE, AR
WYNNE OXIDATION POND | | | HYDROLOGIC
Unit
Code | 08010211
08020203
08020203
08020203 | 08020203
08020203
08020203
08020203 | 08020203
08020203
08020203
08020203 | 08020203
08020203
08020203
08020203 | 08020204
08020204
08020205
08020205 | 08020205
08020205
08020205
08020205
08020205 | 08020205
08020205
08020205
08020205 | | | ANGEN COR | ٥٥٥٥٥ | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | |----------------------------|--|--|--|--|---|--|--| | ORGANIZATION
CODE | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USEPA
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | ZÑZ6 DIZCH¥BŒ€ | RAAAA | 444 m | ww w | 48444 | প্ৰৰ ৰ | ব বৰৰ | 4444 | | SSIS TRAN TAM 038 | | | | | | | | | NEC TARE SEE | N T T T T | <u> </u> | <u> </u> | | ~ ~ - | | | | | 0000 | 0
4 4 4 4 m | wI Zw | 444 | RAARA | 44444 | 4444 | | OW END
RA3Y | 1980
1980
1980
1979 | 197 | 1966 | 197,
197,
197, | 197
197
197
197 | 197
197
197
197 | 197,
197,
197, | | NIDBA WO
RABY | 1978
1978
1978
1978 | 1978
1978
1977
1977 | 1973
1946
1965
1972
1973 | 1975
1978
1974
1974 | 1971
1974
1974
1972
1972 | 1974
1974
1974
1974 | 1974
1974
1974
1974 | | BASIN
BOTAIRD230 | | 014 | 000
4
4
4
4
4 | 000 | 00
4 | | | | DRAINAGE
AREA | | 1037.00 | 421.00
25555.00
160475.00
1130600.00 | 37.10
53.90 | 262.00 | | | | 70 39YT
3T12 | A A A A A A A A A A A A A A A A A A A | A S A S A S | NS N | AS W | AS AS | AS S AS | 3 3 3 3 S | | COUNTY | 037
037
037
111 | 111
111
111
095 | 147
095
041
001 | 135
135
083
083 | 071
083
083
043
083 | 083
083
083
083 | E E E E E E E E E E E E E E E E E E E | | 3TAT2 | 005
005
005
005 | 005
005
005
005 | 005
005
005
005 | 028
028
028
028
028 | 028
028
028
028
028 | 028
028
028
028
028 | 028
028
028
028 | | LONGITUDE | 0905530
0904855
0904640
0904640 | 0904425
0904805
0904632
0911931
0911415 | 0910637
0911855
0911215
0911847 | 0895712
0895845
0901417
0901002
0901410 | 0893111
0901137
0901055
0894837
0901004 | 0901051
0901003
0901023
0901212 | 0901344
0901502
0901321
0901316 | | LATITUDE | 351505
352405
352410
353040 | 353415
353430
353515
344208
351610 | 351507
344108
335720
335920
3333327 | 335940
335842
333158
333340
3333138 | 341623
333222
333303
334720
333343 | 333312
333240
333138
333108 | 332906
333012
332749
332748 | | STATION NAME AND LOCATION | BRUSHY CREEK NEAR WYNNE,AR
WDLF CREEK NR CHERRY VALLEY, AR
L'ANGUILLE RIVER NEAR CHERRY VALLEY,AR
MCCRACKEN DITCH NEAR HARRISBURG,AR
L'ANGUILLE RIVER NEAR HARRISBURG,AR | HARRISBURG OXIDATION POND
SWAN POND DITCH NEAR HARRISBURG,AR
HOLLOW BRANCH NEAR HARRISBURG,AR
CACHE RIVER AT MOUTH NR. CLARENDON, AR.
CACHE RIVER AT PATTERSON, ARK. | BAYDU DEVIEW AT MORTON, ARK.
WHITE RIVER AT CLARENDON, ARK.
ARKANSAS RIVER AT YANCOPIN
ARKANSAS RIVER AT DAM NO. 2, NR GILLETT, ARK
MISSISSIPPI RIV NR ARKANSAS CITY, ARK. | TILLATOBA CREEK BELOW OAKLAND, MISS. SOUTH FORK TILLATOBA CREEK NR CHARLESTON, MS TALLAHATCHIE R AB PEMBERTON CUT NR GREENWOOD BIG SAND CREEK AT MOUTH NEAR GREENWOOD, MISS YAZOO R AB PEMBERTON CUT NR GREENWOOD, MISS. | YOCONA RIVER NEAR OXFORD, MISS. TALLAHATCHIE RIVER AT GREENWOOD, MISS. TALLAHATCHIE R AB YALOBUSHA R AT GREENWOOD, YALOBUSHA RIVER AT GRENADA, MISS. YALOBUSHA R AB BIG SAND C NR GREENWOOD, MISS | YALOBUSHA RIVER AT MOUTH NEAR GREENWOOD, MISS YAZOO R TR AB GRENADA JCT NR GREENWOOD, MISS YAZOO R BL GRENADA JCT NR GREENWOOD, MISS. YAZOO RIVER AT US49 BYPASS AT GREENWOOD, MISSEFLUENT DRAIN AT ELEC PLANT AT GREENWOOD, M | YAZOO R AB WALKER LK PUMP PLANT NR GREENWOOD
YAZOO RIVER AT FORT LORING, MISS.
YAZOO RIVER AB PELUCIA CREEK NR GREENWOOD, M
PELIJCIA CREEK AT MNITH NEAR RISING SUN, MISS | | HYDROLOGIC
Unit
Code | 08020205
08020205
08020205
08020205
08020205 | 08020205
08020205
08020205
08020301
08020302 | 08020302
08020303
08020401
08020401 | 08030202
08030202
08030202
08030202 | 08030203
08030205
08030205
08030205 | 08030205
08030205
08030205
08030205 | 08030205
08030206
08030206
090303030 | | AIGBM | | 00000 | ٥٥ | ۵ | ممدمد | 00004 | 0000 | ۵۵۵۵ | | |----------------------------|---|--|---|---|---|--|--|--|--| | MOITASINADRO
3000 | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
AROO1
AROO1 | USGS
AROO1
USCE
AROO1
AROO1 | USCE
USCE
USCE
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USCE
USCE
USCE
USEPA | | | SUSP DISCHARGE | | ∢ mm∢ | ⋖ | ш | m O | 40m4 | X | | | | BEIZ TAAR TAM 038 | | | | Δ. | ΣΣ | | ω | ΣΣΣ | | | BEIS THAN NEUS | | ш | ⋖ | ш <u>ш</u> | Σ Σ m tx | 4 Z m 4 m | WXXMX | ΣΣΣ ω | | | 2026 ZED CONCEN | | 4 m & 4 | <u> </u> | m a ≥ a a | Z m Z m C | A ₹ W K W | <u> </u> | Z Z Z | | | OW END
RABY | | 1974
1978
1975
1967 | 1975 | | 1972
1974
1972 |
1975
1974
1975
1973 | 1973 | 1972
1972
1970
1967 | | | NIDƏR WD
AAƏY | | 1974
1974
1973
1975 | 1972
1975
1943
1972
1971 | 1945
1971
1972
1969
1970 | 1961
1951
1963
1923
1977 | 1975
1971
1944
1975
1937 | 1970
1973
1978
1944
1943 | 1962
1959
1962
1964 | | | BASIN
BOT9183230 | | 0 1 4
0 0 4 | 004 | 014 | 014 | | 000
000
000 | | | | DRAINAGE
Area | | 7650.00 | 12603.00 | 5391.00 | 67500.00 | 51.00 | 303.00
782.00
309.00 | 1128900.00
1128700.00 | | | TYPE OF
SITE | | NS N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N | AS S W | ANNAN | AS S AS | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | AS SW | | | YTNUOD | | 083
083
027
125
049 | 149
055
059
051
051 | 103
109
003
125
125 | 029
029
029
079 | 029
029
017 | 017
021
041
083
065 | 029
157
029
029 | | | 3TAT2 | | 028
028
028
028
028 | 028
028
005
005
005 | 005
005
005
005 | 022
022
022
022
022 | 022
022
022
022
005 | 005
022
022
022
022 | 022
028
022
022 | | | LONGITUDE | | 0901400
0901619
0903430
0904305
0904900 | 0904902
0910045
0925600
0930500
0925000 | 0924905
0934000
0920629
0923100
0923400 | 0914125
0922634
0914300
0922634
0914327 | 0914108
0922634
0922430
0914942
0912055 | 0912010
0920427
0915537
0912830 | 0913612
0913725
0913549
0913730 | | | LATITUDE | | 332639
332348
341150
324853
322915 | 322914
324318
342800
3433000 | 333547
340400
330903
343300
343600 | 310355
311846
310535
311846
310235 | 310354
311846
313210
311618
330724 | 332743
320628
320421
322725
322555 | 310552
310030
310440
310020 | | | STATION NAME AND LOCATION | · | 6 YAZOO RIVER AT ROEBUCK, MISS.
6 YAZOO RIVER NR SHELL BLUFF, MS.
7 BIG SUNFLOWER RIVER AT CLARKSDALE, MISS.
7 BIG SUNFLOWER RIVER AT HOLLY BLUFF, MS.
8 YAZOO RIVER BELOW REDWOOD | YAZOO RIVER AT REDWOOD, MS. 9 STEELE BAYOU NEAR ONWARD, MS. 1 JONES MILL 1 BURCHWOOD BAY - HOT SPRINGS 2 MAGNET-BUTTERFIELD-MALVERN | OUACHITA RIVER AT CAMDEN, ARK. MOUNT MORIAH - MURFREESBORO OUACHITA RIVER NR CROSSETT AR WEST BAUXITE - BENTON SALEM - BENTON | OLD R OUTFLOW CH NR KNOX LDG,LA. 1 RED RIVER AT ALEXANDRIA, LA. 1 RED R ABOVE OLD R OUTFLOW CH, LA 1 RED R AT ALEXANDRIA. 1 RED RIVER NEAR SIMMESPORT | 1 OLD RIVER OUTFLOW CHANNEL NR KNOX LANDING 1 RED RIVER AT ALEXANDRIA, LA. (SEDIMENT) 4 BIG CREEK AT POLLOCK, LA 5 BLACK RIVER AT MOUTH 1 BOEUF RIVER NR EUDORA AR | 1 DIVERSION CA BOEUF R AT MACON LK AR
1 OUACHITA RIVER AT COLUMBIA, LA.
1 BOEUF RIVER NEAR FT. NECESSITY
2 BAYOU MACON NEAR DELHI, LA.
3 TENSAS RIVER AT TENDAL, LOUISIANA | MISS RIVER NR COOCHIE LA
O MISS RIVER AT TARBERT LDG, MISS.
O OLD R INFLOW CH NR KNOX LDG., LA
O MISSISSIPPI R AT TARBERT LANDING | | | HYDROLOGIC
Unit
Code | | 08030206
08030206
08030207
08030207
08030208 | 08030208
08030209
08040101
08040101 | 08040102
08040103
08040202
08040203 | 08040301
08040301
08040301
08040301 | 08040301
08040301
08040304
08040305 | 08050001
08050001
08050001
08050002 | 08060100
08060100
08060100
08060100 | | | J.05 | | | | | | | | | |----------------------------|--|---|---|---|--|---|---|---------------------------------------| | NOT2 G32
AIG3M | 00000 | 00000 | 00000 | 0000 | 00000 | 00000 | 0000 | | | NOTAXINADAD
3000 | USEPA
USEPA
USGS
USGS | USGS
USGS
USGS
USCE
USCE | USCE
USCE
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USCE | USGS
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE | | | 2026 DISCHARGE | О | кпп | 2.2 | с п | шшш | | | | | STIS THAN NEUE | шш зи | ш | 80 Z | σzw | z | | 3 | | | SUSP SED CONCEN | mm∑3 | SK ZE M FN CO | 80 N Z | Q Z W W E | Z W O O M | 800000 | <u> </u> | | | OW END
MA3Y | 1967
1967
1975
1975 | 75 | 1956
1975
1975 | 1976
1976
1973
1967 | 1974
1974
1974 | 1973
1973
1973
1973 | 1972 | · · · · · · · · · · · · · · · · · · · | | OW BEGIN | 1965
1965
1972
1972 | 1974
1972
1974
1958
1954 | 1955
1955
1948
1953
1953 | 1952
1957
1944
1944
1965 | 1951
1951
1969
1946 | 1973
1973
1973
1973 | 1970
1970
1970
1972 | | | NISAB
Rothirdrad | 410 | 904 | 904 | 000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0004 | | | | | DRAINAGE
AREA | 1144500.00 | 2810.00
750.00
1129000.00 | 1243000.00 | 1243500.00
1280.00
1294.00 | 646.00
87570.00 | | | | | TYPE OF
SITE | 33 X X X X X X X X X X X X X X X X X X | NA N | SEES | AS S AS S | SW | 88888 | ES
CN
CN | | | TNUDD | 149
149
149
157 | 00111 | 099
047
077
077 | 033
005
063
063 | 105
009
101
101 | <u> </u> | 5555 | | | 3TAT2 | 028
028
028
028 | | 022
022
022
022 | 022
022
022
022
022 | 022
022
022
022 | 022
022
022
022 | 022
022
022
022 | | | LONGITUDE | 0905430
0905430
0905430
0905425
091375 | 09005
09041
09106
09139
09139 | 0913000
0911407
0913952
0913952 | 0911155
0905840
0905925
0905820
0902004 | 0902142
0914754
0912207
0911239
0911740 | 0911945
0912005
0911735
0912120
0912150 | 0912113
0912020
0912215
0912658 | | | LATITUDE | 321830
321830
321845
320845 | 24226
22051
11920
05739
01738 | 300730
301731
305739
305739
304530 | 303025
300600
302750
302630 | 303023
305857
294209
294147
292720 | 292810
292550
292520
292435
292350 | 292520
292430
292430
294017 | | | STATION NAME AND LOCATION | MISSISSIPPI R VICKSBURG MISS
MISS R AT VICKSBURG-MILE 435.3
MISSISSIPPI RIVER AT VICKSBURG, MS.
MISSISSISPIP RIVER AT TARBERT LANDING ,MISS.
RIGERIACK PREAR IS HWY 61 | BIG BLACK RIVER NEAR CANTON, MISS.
BIG BLACK RIVER NR BOVINA, MS.
HOMOCHITTO RIVER AT ROSETTA, MS.
MISS RIV AT RED RIV LANDING, LA.
MISS RIVER AT PLAQUEMINE LA | BY CHENE CUT BL BY CHENE MI 75 BY PLAQUEMINE AT PLAQUEMINE LOCK LA MISSISSIPPI RIVER (TARBERT + RR LANDINGS) MISSISSIPPI RIVER (00060,70302,80155 /100) MISSISSIPPI RIVER NEAR ST. FRANCISVILLE, LA | MISSISSIPPI RIVER AT BATON ROUGE, LA.
BAYOU LAFOURCHE AT DONALDSONVILLE, LA.
AMITE RIVER NEAR DENHAM SPRINGS, LA.
AMITE R AT 4H CAMP NR DENHAM SPRINGS
TANGIPAHOA R NR PONCHATOULA LA | TANGIPAHOA RIVER AT ROBERT, LA.
ATCHAFALAYA RIV AT SIMMESPORT, LA
WAX LAKE OUTLET AT CALUMET, LA.
LOWER ATCH R AT MORGAN CITY, LA.
ATCH. BAY 1.5 MI SW OF SHELL IS | ATCH. BAY 3.5 MI SW OF SHELL IS ATCH. BAY 3.75 MI SW OF SHELL IS ATCH. BAY 4.25 MI SW OF SHELL IS ATCH. BAY 5.5 MI SW OF SHELL IS ATCH. BAY 6.5 MI SW OF SHELL IS | ATCH BAY 5.0 MI SW OF SHELL IS ATCH BAY 0.75 MI E OF LIGHT 43 ATCH BAY 0.75 MI W OF LIGHT 43 IWW AT WAX LK W CONTROL STR LA | | | HYDROLOGIC
Unit
Code | 08060100
08060100
08060100
08060100 | | 08070100
08070100
08070100
08070100 | 08070100
08070100
08070202
08070202 | 08070205
08080101
08080101
08080101 | 08080101
08080101
08080101
08080101 | 08080101
08080101
08080101
08080101 | | | MEDIA | | | | | | | | | |----------------------------|--|---|--|---|---|---
--|---| | 90T2 032 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 000 | | | MOITATIMADRO
3000 | USCE
USCE
USCE
USCE
USCE | USEPA
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGE
USCE
USCE
USCE | USGS
USGS
USGS
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE | | | SUSP DISCHARGE | | ОШАА | 44444 | Am m | 4 44 | Ш | | | | SSIS TRAY 92U2 | <u> </u> | m m m 4 4 | 4444 | 4 m | αxm | <u>> 0000</u> | | | | SUSP SED CONCEN | 8888 | M M M M | 44444 | 4 m D m O | SXM44 | 3 × 00 00 00 | 0000 | | | AA37 | 73
73
74 | 67 | വവവവവ | 75 74 74 74 74 | 0.0 | 0.4 | 4 | | | OM END | 197
197
197
197 | 6 6 6 | 197
197
197
197 | 0 000 | 197 | 197 | 197 | *************************************** | | OW BEGIN | 1971
1971
1971
1971 | 1965
1952
1975
1975
1975 | 1973
1975
1975
1975 | 1975
1966
1949
1968 | 1953
1944
1969
1972 | 1972
1970
1971
1974
1974 | 1974
1974
1974
1974 | | | NIZAB
Rotqirəzəd | | | | • | | | | | | DRAINAGE
AREA | | 87570.00 | | | 1381.00
1700.00
2310.00 | | 1129970.00 | | | 10 39YT
3T12 | 3 3 3 3 S | N N N N N N N N N N N N N N N N N N N | 3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3. | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | SESE | | | COUNTY | 101
101
101
101
000 | 101 | 660
660
660 | 099
099
113
113 | 053
003
019
019 | 019
075
075
075 | 075
075
075
075 | | | 3TAT2 | 022
022
022
022 | 022
022
022
022
022 | 022
022
022
022 | 022
022
022
022
022 | 022
022
022
022
022 | 022
022
022
022
022 | 022 | | | LONGITUDE | 0911430
0911405
0911529
0911610 | 0911230
0914754
0912646
0912719 | 0912940
0913212
0913155
0913549
0914306 | 0913819
0914945
0921140
0921820
0921548 | 0923525
0925455
0931118
0931903
0931818 | 0931817
0892105
0891600
0891615 | 0891540
0891510
0891615
0891615 | - | | LATITUDE | 293930
293518
293235
293032
305800 | 294145
305857
295340
295333
300722 | 300725
300831
301245
301248 | 302155
300415
294700
293316
294528 | 301123
303010
301759
300549 | 300624
291545
291100
290930
290920 | 290830
290825
290800
291015 | | | STATION NAME AND LOCATION | 1 LWR ATCH RIVER AT GIWW MI 120.8
1 LWR ATCH R AT N END SWEET BAY LK
1 LWR ATCH R AT AVOCA IS CUT-OFF BY
1 LWR ATCH R AT SHELL IS PASS
1 ATCHAFALAYA RIVER AT SIMMESPORT | ATCHAFALAYA-RR BR. AT MORGAN CTY
ATCHAFALAYA RIVER AT SIMMESPORT. LA.
CHICOT PASS AT MYETTE POINT (CE 03540)
GRAND LAKE NW OF MYETTE POINT
ATCHAFALAYA RIVER BASIN BAYOU SORREL | ATCHAFALAYA R. ABOVE MOUTH OF BAYOU SORREL ATCHAFALAYA RIVER BASIN BAYOU CHENE ATCHAFALAYA RIVER BASIN LITTLE TENSAS BAYOU ATCHAFALAYA RIVER BASIN BAYOU L'EMBARRAS ATCHAFALAYA RIVER AT INTERSTATE 10 | WHISKEY BAY PILOT CHANNEL AT INTERSTATE 10 BAYOU TECHE AT KEYSTONE LOCK, NR ST.MARTINVI IWW AT VERMILION LOCK %EAST FRESHWATER CANAL AT LOCK NORTH SCHOONER BAYOU AT CNTL STR, EAST | MERMENTAU RIVER AT MERMENTAU
CALCASIEU RIVER NR KINDER LA
CALCASIEU R NR LAKE CHARLES
CALCASIEU RIVER AB DEVILS ELBOW
CALCASIEU RIVER BL DEVILS ELBOW | INDUSTRIAL CANAL AT DEVILS ELBOW
THE JUMP AT VENICE, LA.
MISSISSIPPI R AT MI 2.8 AHP LA
MISSISSIPPI RIVER AT MILE O.7 AHP
MISSISSIPPI RIVER AT MILE O.2 AHP | MISSISSIPPI RIVER AT MILE O.3 BHP MISSISSIPPI R AT HEAD OF PASSES SOUTHWEST PASS AT MILE 1.3 BHP MISSISSIPPI RIVER AT MILE 1.2 AHP | | | HYDROLOGIC
Unit
Code | 08080101
08080101
08080101
08080101 | 08080101
08080101
08080101
08080101 | 08080101
08080101
08080101
08080101 | 08080101
08080102
08080103
08080202 | 08080202
08080203
08080203
08080206
08080206 | 08080206
08090100
08090100
08090100 | 08090100
08090100
08090100
08090100 | | | MEDIA | | | | | | | | | |----------------------------|---|--|---|--|--|---|--|-------------| | NOTZ G3Z | 0000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | ORDANIZATION
CODE | USCE | USCE
USCE
USCE
USCS | USGS
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE | | | SUSP DISCHARGE | | m⊻∢ | \mathbf{x} \mathbf{v} \mathbf{m} \mathbf{m} | mmmnv | พพพพ⊀ | m 4 m m | w w w | | | 3512 TRAY TAM CIRE | 888 | | | | | | | | | SUSP PART SIZE | 8 B B B B B B B B B B B B B B B B B B B | Z Z W W W Z A | X N M M M | | | m A m Z m | 2 m m | | | UWZI | 44+ | - 4-4 B | W et et et | | य य य य य | 40400 | 6464 | | | GN3 WO
RA3Y | 197, | | 197;
197,
197, | 1974
1974
1974
1974 | 197,
197,
197,
197, | 197
197
197
197 | 196
197
197
197 | | | NIGGE WO
AA3Y | 1971 | 1961
1957
1957
1962
1974 | 1958
1973
1973
1973 | 1959
1972
1972
1972
1972 | 1959
1972
1972
1972
1972 | 1968
1972
1973
1963 | 1957
1967
1970
1968 | | | NISA8
ROT91A3230 | | | 004 | | | | | | | DRAINAGE
AREA | | | 145.00 | | | | | | | TYPE OF
SITE | E O S S | | A A A A A A A A A A A A A A A A A A A | N N N N N | | N N N N N N N N N N N N N N N N N N N | SEES | | | YTNUOD | 075
075
075 | 057
057
051
057
075 | 103
089
089
103
095 | 103
103
105
105
089 | 051
051
103
071 | 071
071
087
071 | 071
071
071
071 | | | 3TAT2 | 022
022
022 | 00000 | 022
022
022
022 | 022
022
022
022
022 | 022
022
022
022
022 | 022
022
022
022
022 | 022
022
022
022 | | | LONGITUDE | 0891450
0891300
0891330 | 0901910
0902045
0900140
0990840
0895840 | 0901010
0902310
0902205
0895720 | 0900545
0900733
0901020
0901615
0901930 | 0900905
0901500
0894612
0895130
0895400 | 0894903
0895730
0891800
0895524
0895626 | 0895650
0900155
0900115
0894310 | | | LATITUDE | 290815
290840
291015 | 92055
92320
93105
91330
95125
01500 | 302940
300415
300450
301500 | 302131
301116
302150
301945
300600 | 300125
300415
301136
300945
301318 | 300555
300700
300615
300024
300017 | 295850
300205
295915
300942 | | | STATION NAME AND LOCATION | O SOUTH PASS AT MI O.6 BHP LA O PASS A LOUTRE AT MI 1.8 BHP LA O GUTLET OF SOUTH PASS AT MI 4.7 W | GRAND BY BLUE 2 MI AB BY CO
GRAND BAYOU BLUE AT BAYOU F.
BARAT WW 2.5 MI BL UCT BY CI
CAMINADA BAY NR BAY ST HONOI
MISSISSIPPI RIVER AT BELLE
LK PONT 6.5 MI SE TANGIPAHO | 1 TCHEFUNCTA RIVER NEAR COVINGTON, LA. 2 L PONT 1.5 MI N OF BY LA BRANCHE 2 L PONT 2.25 MI NNW BY LA BRANCHE 2 LK PONTCHARTRAIN AT BY LACOMBE 2 LK PONTCH AT ENTR PAS MANCHAC | LAKE PONTCHARTRAIN AT MANDEVILLE
2 LK PONT CENTER GR N.O. EXPY BR
2 LK PONTCH AT TCHEFUNCTA RIVER
2 LK PONTCH AT TANGIPAHOA RIVER
2 L PONT 5 MI NE BONNET CARRE SPLY | LK PONT S END OF GR N.O. EXPY BR 2 L PONT 5.5 MI N MOISANT INTNL AP 2 LK PONTCHARTRAIN AT HOWZE BEACH 2 LK PONT AT S BASCULE HWY 11 BR 2 LK PONTCH A MI SE OF BY LACOMBE | LK PONTCH AT CHEF MENTEUR PASS 2 L PONT 3.5 MI NW OF LITTLE WOODS 3 LK BORGNE 9.5 MI E LE PETIT ISL. 3 MISS RIVER-GULF OUTLET AT IWW 3 IWW AT PARIS RD BRIDGE N.O., LA. | BAYOU BIENVENULE AT HIGHWAY 47
3 LK PONTCHARTRAIN AT IHNC ENTR
3 IHNC AT JCT WITH IWW, MI 2.0
3 RIGOLETS, OPPOSITE SAWMILL PASS | | | HYDROLOGIC
Unit
Code | 08090100
08090100 | 08090100
08090100
08090100
08090100
08090100 | 08090201
08090202
08090202
08090202 | 08090202
08090202
08090202
08090202 | 08090202
08090202
08090202
08090202 | 08090202
08090202
08090203
08090203 | 08090203
08090203
08090203
08090203 | | | MEDIA | r | | | | | | | | |----------------------------|---|---|---
---|--|---|---|--| | AOT2 G32 | ۵۵۵۵ | 00000 | ں میں مم | ممممن | ۵۵۵۵۵ | 00000 | ں موم | | | ORGANIZATION
CODE | USCE | USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE | | | SUSP DISCHARGE | | | шш ш | шшш∢ | шшшшш | 4457 | шшш | | | SED MAT PART SIZE | | | | | | | | | | SUSP PART SIZE | шшш | | | ∢ | | | | | | | 4 4 4 0
mmm | 0 0 0 m + m m | ееее 4
— — — — — — — — — — — — — — — — — — — | + 4 ω ω ω
Σ ጠ ጠ π Δ | ω4ω∞ α
π π π π π π π | 00078
44mXm | | | | OW END
PASY | 197 | 197
197
197
196
196 | 197
196
197
197 | 196
197
197
197
197 | 197
197
197
196
196 | 196
196
196
196
196 | 1961
1961
1961 | | | DW BEGIN | 1968
1968
1968 | 1963
1957
1963
1963
1957 | 1963
1961
1961
1961
1957 | 1957
1961
1961
1961
1972 | 1961
1960
1966
1966
1966 | 1969
1969
1966
1966
1967 | 1967
1967
1967
1958 | | | BASIN
Descriptor | | | | | | | | | | DRAINAGE
AREA | | | | | | | | | | TYPE OF | N N N N | | AS S AS S | SESES | N N N N N N N N N N N N N N N N N N N | AS S AS | SKE | | | COUNTY | 071
071 | 087
087
087
087
087 | 087
087
087
087
087 | 087
087
087
087
087 | 087
087
087
087
087 | 087
087
087
087
087 | 087
087
087
087 | | | 3TAT2 | 022
022 | 022 | 022
022
022
022
022 | 022
022
022
022
022 | 022
022
022
022
022 | 022
022
022
022
022 | 022
022
022
022 | | | LONGITUDE | 0894120
0893819
0894815 | 895448
895235
895235
895030
894500 | 894440
894040
894100
893715 | 0892100
0893510
0893309
0893100 | 0892724
0892235
0892000
0892000
0892000 | 0892000
0892000
0892000
0892000
0892300 | 0892300
0892300
0892300
0892300 | | | LATITUDE | 301030
300928
3009410 | 300000
300000
295810
295630
295000
295415 | 295240
295124
295100
295125
294630 | 294400
294900
294731
294600
300654 | 294330
294110
293824
293824
293824 | 293824
293824
293824
293824
294030 | 294030
294030
294030
294130 | | | STATION NAME AND LOCATION | RIGOLETS, 2 MI E OF SAWMI
RIGOLETS AT RABBIT IS OPF
CHEF MENTEUR PASS O.75 MI | MR-GO AT BAYOU BIENVENUE (LA.) BAYDU BIENVENUE NR LAKE BORGNE MR-GO AT BAYOU VILLERE (LA.) MR-GO AT BAYOU DUPRE (LA.) BY TERRE AUX BOEUFS AT REGGIO LA MR-GO AT NAV LT 110, MILE 48.0 | MR-GO AT FLAT BAYOU (LA.) MR-GO AT BAYOU YSCLOSKEY (LA.) BAYOU YSCLOSKEY NEAR MR-GO (LA) MR-GO AT NAV LT 103 MI. 38.2 LA. LAKE ELDI AT BAYOU ELDI %LA.< | BRETON SOUND NEAR DEADMAN POINT MR-GO AT NAV LT 102 MI. 35.4 LA. MR-GO AT NAV LT 101 MI. 32.5 LA. MR-GD AT NAV LT 99 MI. 29.8 LA. LK BORGNE 5 MI NW MALHEUREUX PT | MR-GO AT LK ATHANASIO MILE 25
MR-GO NR GARDNER IS MILE 20.0
MR-GO OPP TOWER STA 2620 MI 16.4
MR-GO 500 FT. NORTH OF MI. 16.4
MR-GO 500 FT. SOUTH OF MI. 16.4 | MR-GO 800 FT. NORTH OF MI. 16.4 MR-GO 800 FT. SOUTH OF MI. 16.4 MR-GO 1000 FT. NORTH OF MI. 16.4 MR-GO 1000 FT. SOUTH OF MI. 16.4 MGO BRETON SND AT MILE 19.8 | MR-GD 500 FEET NORTH OF MI. 19.8
3 MR-GD 500 FEET SOUTH OF MI. 19.8
3 MR-GD 1000 FEET NORTH OF MI 19.8
3 BRETON SDUND NE OF GARDNER IS | | | HYDROLOGIC
Unit
Code | 08090203
08090203 | 08090203
08090203
08090203
08090203
08090203 | 08090203
08090203
08090203
08090203 | 08090203
08090203
08090203
08090203 | 08090203
08090203
08090203
08090203 | 08090203
08090203
08090203
08090203 | 08090203
08090203
08090203
08090203 | | | | · | | | | | | | | | |------------------------------|---|--|---|---|--|--|---|--|---------| | AOTZ G32 | | ممددد | مممدم | 00000 | 00000 | 00000 | ۵۵۵۵۵ | ممدم | | | NGITAZINABRO
3000 | | USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE | | | SUSP DISCHARGE | | ш | ж ш ж | 4 4 | шш | α ш | ш | αm | | | 3512 TAA9 TAM G3B | | | | | | | | | | | BZIZ TAAR AZUZ | | | | | | | | | <u></u> | | SUSP SED CONCEN | | 330 4 4 | m co c m cr | 44 m m m | шшшшш | ▲ Ш Ш Ш Ш | шшшшш | 4 B B H | | | ON3 WO
AA3Y | | 1961
1959
1974
1971
1974 | 1974
1970
1971
1974 | 1971
1971
1974
1971 | 1974
1974
1971
1974
1974 | 1971
1971
1974
1971 | 1971
1974
1971
1971 | 1966
1963
1971
1974 | | | DW BEGIN | | 1959
1958
1946
1961 | 1949
1966
1966
1955
1955 | 1962
1962
1957
1958
1961 | 1955
1962
1957
1958
1961 | 1957
1961
1962
1962
1962 | 1962
1962
1963
1964 | 1962
1957
1961
1962 | | | BASIN
DESCRIPTOR | | | | | | | | ······································ | | | OR ƥN AGE
AREA | , | | | | | | | | | | TYPE OF | | N N N N N N N N N N N N N N N N N N N | 33838 | 33333 | 33333
88888 | 3333
88888 | N N N N N | O C C S K | | | COUNTY | | 087
087
109
057
023 | 057
057
057
057
057 | 057
057
051
051
051 | 051
051
051
051
051 | 051
051
051
051 | 051
051
051
051 | 051
051
051
057 | | | 3TAT2 | | 022 | 022
022
022
022
022 | 022
022
022
022
022 | 022
022
022
022
022 | 022
022
022
022
022 | 022
022
022
022 | 022
022
022
022 | | | LONGITUDE | | 0892522
0891600
0904237
0902130 | 0902300
0901300
0901315
0901232
0900830 | 0901020
0900920
0900756
0900645 | 0900636
0895710
0900545
0900415 | 0900200
0900100
0900000
0895950
0895935 | 0895920
0895900
0895900
0895905
0895830 | 0895725
0895845
0900205
0900625 | | | LATITUDE | | 294037
294500
293556
293640
293930 | 293430
291330
290845
291452
291545 | 295200
294800
294429
294230
294130 | 294006
291715
293830
293600
293350 | 293230
292930
292800
292645
292530 | 292415
292150
292020
291920
291740 | 291640
292015
291310
291600 | | | STATION NAME AND LOCATION | | BRETON SOUND SE OF FIDDLER POINT CHANDELEUR SOUND E OF CHICOT IS INTRACOASTAL WATERWY AT HOUMA, L INW JCT DIXIE DELTA CANAL %LA. INTRACOASTAL WW AT MILE 22.5 | BAYOU LAFOURCHE 2.5 MI S LEEVLE
1 LWR BY LAFOURCHE 2.5 MI S LEEVLE
1 LWR BY LAFOURCHE 8.3 MI S LEEVLE
1 BAYOU LAFOURCHE AT LEEVILLE, LA.
1 SW LA CANAL AT BAYOU FER BLANC | BY SEGNETTE AT YANKEE CAMP POND BY SEGNETTE AT FIRST CROSS-CANAL BAYOU BARATARIA AT BARATARIA, LA BY BARAT AT FISHER BR %MI. 35.3 | BAYOU BARATARIA AT LAFITTE, LA.
1 BARATARIA WW AT BARAT, PASS LT.
1 BARATARIA WW AT BY DUPONT, MI 28
1 BARATARIA WW 3 MI BL BY DUPONT | BARATARIA WW AT JCT BAYOU CUTLER
BAYOU ST DENIS S END BY CUTLER
BARATARIA WW AT LT 37 %MI 15<
BARATARIA WWY AT MI 13.3 (LT 32)
BARATARIA WATERWAY AT MI 11.9 | | BARATARIA WW E OF BEAUREGARD ISL E CHAMPAGNE BAY N PT MNDCNT IS CAMINADA PS 1.1 MI NE GRND IS BR BAY LIZETTE AT SOUTHWEST LA CAN | | | HYDROLDGIC
Unit
Code | | 08090203
08090203
08090301
08090301 | 08090301
08090301
08090301
08090301 | 08090301
08090301
08090301
08090301 | 08090301
08090301
08090301
08090301 | 08090301
08090301
08090301
08090301 | 08090301
08090301
08090301
08090301 | 08090301
08090301
08090301 | | | The state Continue | | | | | | | |
--|----------------------------|--|---|---|--|---|--| | STATEM NAME AND UCATION LATTITURE LINE | SEO STOR | 00000 | مممم | 00000 | 00000 | OD | | | STATEM NAME AND UCATION LATTITURE LINE | 3000
NO: LYZINYONO | 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 0 0 0 C C C C C C C C C C C C C C C C C | 00000 | 00000 | CE
GS | | | Communication Communicatio | | S S S S S S S S S S S S S S S S S S S | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | us
C
C
C
C
C
C | S S | | | STATURE MANER AND LATTER LAND COUNTY AMERICAN AND LATTER AND LATTER LONDING AND LATTER AND LATTER LANDING LA | | ш | C CCC | шш кк | ⋖ m ∢ | ∢ | | | STATEM MANE AND DOLLING BANCH LAFOUNCHE AT BELLEGICE LA BANCH LAFOUNCHE AT LEBDEROLLE LA BANCH LAFOUNCHE AT LABOEROLLE LA BANCH LAFOUNCHE AT AMELIA, BANCH | | 4 % | | | | | | | BAYOU LAFOURCHE AT BELLEROSE LA 300000 0910227 022 007 SW BAREA AND LOCATION LAFOURCHE AT BELLEROSE LA 300000 0910227 022 007 SW BAREA LA SAREA AND LAFOURCHE AT HERDOLIVEL LA 284759 094027 022 007 SW BAREA LA AND LAFOURCHE AT HERDOLIVEL LA 284759 094027 022 007 SW BAREA LA AND LAFOURCHE AT HIRDOLIVEL LA 284759 094027 022 007 SW BAREA LA AND LAFOURCHE AT HIRDOLIVEL LA 284759 094027 022 007 SW BAREA LA AND LAFOURCHE AT HIRDOLIVEL LA 284759 094027 022 007 SW BAREA LA AND LAFOURCHE AT HIRDOLIVEL LA 284759 094027 022 007 SW BAREA LA AND LAFOURCHE AT HIRDOLIVEL LA 284759 094027 022 007 SW BAREA LA AND LAFOURCHE AT LAFOURCH AT AND | SUSP SED CONCEN | | шαш∢α | m m m ∢ ∢ | ш∢шш∢ | | | | BAYOU LAFOURCHE AT BELLEROSE LA 200000 0910227 022 007 SW BAYOU LAFOURCHE AT BELLEROSE LA 200000 0910227 022 007 SW BAYOU LAFOURCHE AT HEBOLIVILLE LA 291023 000032 002 007 SW BAYOU LAFOURCHE AT THEBOLIVILLE LA 291023 000032 002 007 SW BAYOU BOLIV AT AMELIA. LA 291020 000032 002 007 SW BAYOU BOLIV AT AMELIA. LA 291020 000032 002 007 SW BAYOU BOLIV AT AMELIA. LA 291020 000032 002 007 SW BAYOU BOLIV AT AMELIA. LA 291020 000032 002 007 SW BAYOU BOLIV AT AMELIA. LA 291020 000032 002 007 SW BAYOU BOLIV AT AMELIA. LA 291020 000032 002 007 SW BAYOU BOLIV AT | AA3Y | 67
67
74 | 7 | 4 | 1 1 4 7 7 4 4 7 4 4 4 4 4 4 4 4 4 4 4 4 | 73 | | | STATION MAME AND LIGHTION TO STATION MAME AND LIGHTION TO STATION MAME AND LIGHTION CONTRINED TO STATION MAME AND LIGHTION CONTRINED TO STATION MAME AND LIGHTION CONTRINED TO STATION ST | OM END | | 00000 | 00000 | 00000 | 6 | | | BAYOU LAFOURCHE AT BELLERGE LA 300000 0910227 002 007 SW BAYOU LAFOURCHE AT BELLERGE LA 300000 0910227 002 007 SW BAYOU LAFOURCHE AT LABORALY LAFOURCH LABORATOR SEVIL LAFOURCH AT LABORALY LAFOURCH AT LABORATOR SEVIL LAFOURCH AT | | ณณณณนั | 961
961
961 | 961
962
961
961 | 961 | 948
978 | | | BAYOU LAFURGUE AT BELLERGSE LA BAYOU LAFURGUE AT LEBADIAVILLE BAYOU LAFURGUE AT LEBADIAVILLE BAYOU LAFURGUE AT LEBADIAVILLA BAYOU LAFURGUE AT MELLERGSE LA BAYOU LAFURGUE AT MELLERGSE LA BAYOU LAFURGUE AT MELLERGSE LA BAYOU LAFURGUE AT MELLA BAYOU LAFURGUE AT MELLA BAYOU BAYOU GARDIA BAYOU BAYOU GONTON BAYOU BAYOU GONTON BAYOU BULE AT BAYOU GONTON BAYOU BULE AT BAYOU GONTON BAYOU BULE AT BAYOU GONTLON BAYOU BULE AT BAYOU GONTON | | **** | ++++ | **** | ++++ | | | | STATION MARK AND LOCATION BAYOU LAFDURCHE AT BELLEROSE LA BAYOU LAFDURCHE AT BELLEROSE LA BAYOU LAFDURCHE AT HABORIXY, BELLE AT HABORIXY, LA BAYOU BELLE AT HABORIXY, LA BAYOU BELLE AT BAYOU SOLUTION GRAND BY CA O. 3 MI AB UCT BY BLUE GRAND BY CA O. 3 MI AB UCT BY BLUE GRAND BY CA O. 3 MI AB UCT BY BLUE GRAND BY CA O. 3 MI AB UCT BY BLUE GRAND BY CA O. 3 MI AB UCT BY BLUE GRAND BY CA O. 3 MI AB UCT BY BLUE GRAND BY CA O. 3 MI AB UCT GRAND BY GRAND BY CA O. 3 MI AB UCT CAPAUL BY GRAND BY CA O. 3 MI AB UCT BY BLUE GRAND BY CA O. 3 MI AB UCT BY BLUE CALE DIL CA NA WAY OF LEFLILE. LA 222750 0001325 00022 057 5W GRAND BY CA O. 3 MI AB UCT GRAND BY CA 223750 0001325 00022 057 5W GRAND BY CA O. 3 MI AB UCT BY BLUE CALE OIL CA NA WAY OF LEFLILE. LA 223750 0001325 00022 057 5W CALE OIL CA NA WAY OF LEFLILE. LA 223750 0001400 0022 1009 ES 1003 100 100 | | 8 | | | | 05 | | | STATION NAME AND LOCATION LATTIONE LONGITURE LATTIONE LAT | DRAINAGE
AREA | | | | | | | | SATURN MAME AND LOCATION BAYOU LAFDURCHE AT BELLERGSE LA BAYOU LAFDURCHE AT LABADITVILLE LA BAYOU LAFDURCHE AT HIBRODALY. LA BAYOU LAFDURCHE AT MELLA. LA BAYOU LAFDURCHE AT HIBRODALY. LA BAYOU BELLE CA MELLA. LA BAYOU BELLE AT BAYOU SEVIN GRAND BY CA O.5 MI AB UCT BY BLUE GRAND BY CA O.5 MI AB UCT BY BLUE GRAND BY CA O.5 MI AB UCT BY BLUE GRAND BY CA O.5 MI AB UCT BY BLUE GRAND BY CA O.5 MI AB UCT BY BLUE GRAND BY CA O.5 MI AB UCT BY BLUE GRAND BY CA O.5 MI AB UCT BY BLUE GRAND BY CA O.5 MI AB UCT BY BLUE GRAND BY CA O.5 MI AB UCT BY BLUE BAYOU BLUE AT BAYOU SEVIN GRAND BY CA O.5 MI AB UCT BY BLUE CAL SHIP BY BAYOU BULE CAL SHIP BY CA O.5 MI AB UCT BY BLUE CAL SHIP BY CA O.5 MI AB UCT BY BLUE CAL SHIP BY CA O.5 MI AB UCT BY BLUE CAL SHIP BY CA O.5 MI AB UCT BY BLUE CAL SHIP BY CA O.5 MI AB UCT BY BLUE CAL SHIP BY CA O.5 MI AB UCT BY BLUE CAL SHIP BY CA O.5 MI AB UCT BY BLUE CAL SHIP BY CALLY CAMP DIL FLD SUBTICE OIL CARAD BY CA C | | ***** | A A A A A | MS MAN | A A A A A A A A A A A A A A A A A A A | SW | | | BAYOU LAFOURCHE AT BELLEROSE LA BAYOU LAFOURCHE AT LABADIEVILLE LA BAYOU LAFOURCHE AT HERDELVILLE LA BAYOU LAFOURCHE AT HERDELVILLE LA BAYOU LAFOURCHE AT HIRDOALX, LA. BAYOU LAFOURCHE AT THERDELVILLE LA BAYOU BELLEROSE LA GRAND BY CA O 3 MI WA LAROSE TIWW AT CUTOFF CA O 3 MI WA LAROSE BAYOU BELLEROSE, LA GRAND BY CA O 3 MI WA LAROSE GRAND BY CA O 5 MI AB GOT BRY S EN GRAND BY CA O 5 MI AB GOT GRAND BA GRAND BY CA O 5 MI AB JOT LIT LK GRAND BY CA O 5 MI AB JOT BAYOU SQUIN GRAND BY CA O 5 MI AB JOT BAYOU CULRA GRAND BY CA O 5 MI AB JOT BAYOU BULLE BAYOU BLUE AT BAYOU CULRA BAYOU BLUE AT BAYOU CULRA BAYOU BLUE AT BAYOU CULRA BAYOU BULLE WAT GRAND BY CA ZOUTION AT MI AB JOT BAYOU BULLE BAYOU BLUE AT BAYOU CULRA BAYOU BULLE AT BAYOU COURAN CA Z MI WO F BULLY CAMP OIL FLD BAYOU BLUE AT BAYOU COURAN BY CA I MI WO F LEVILLE, LA BAYOU BULLE AT BAYOU COURAN BAYOU BULLE AT BAYOU COURAN BAYOU BULLE AT BAYOU COURAN BAYOU BULLE BAYOU BULLE AT BAYOU COURAN BAYOU BULLE | | 007
007
057
057 | 057
057
057
057 |)57
)57
)57
)57 | 057
057
057
057 | 109 | | | STATION MAME AND LOCATION BAYOU LAFOURCHE AT BELLEROSE LA BAYOU LAFOURCHE AT RABADIEVILLE LA BAYOU LAFOURCHE AT THEODALY, LA. BOEUF AT AMELIA, LA. 1984 TO CUTOFF CA 3 MI W LAROSE BAYOU BOEUF AT AMELIA, LA. 228400 0903521 BAYOU BOEUF AT AMELIA, LA. 228400 0903521 BAYOU BULE AT BAYOU BOULE AT BAYOU BOULLON BAYOU BULE AT BAYOU BOULLEN BAYOU BULE AT BAYOU BOULLEN BY BULLON AT BAYOU BOULLEN BY BULLON AT BAYOU BOULLEN BY BULLON AT BAYOU BULE CA 2 MI W OF BULLY CAMP DIL FLD BY BOULLON H MI BA OCT BAYOU BULE CA 2 MI W OF BULLY CAMP BY CA CA 2 MI W OF BULLY CAMP BY CA CA 2 MI W OF BULLY CAMP BY CA CA 2 MI W OF BULLY CAMP BY CA CA 2 MI W OF BULLY CAMP BY COULT CA NA UCT GRAND BY CA CA 2 MI W OF BULLY CAMP BY BOULLON AT A OT GRAND BY CA CA 2 MI W OF BULLY CAMP BY BOULLON AT A OT GRAND BY CA CA 2 MI W OF BULLY CAMP BY BOULLON AT A OT GRAND BY CA CA 2 MI W OF BULLY CAMP BY
BOULLON AT A OT GRAND BY CA CA 2 MI W OF BULLY CAMP BY BOULLON AT A OT GRAND BY CA CA 2 MI W OF BULLY CAMP BY BOULLON AT A OT GRAND BY CA CA 2 MI W OF BULLY CAMP BY BOULLON AT A OT GRAND BY CA CA 2 MI W OF BULLY CAMP BY BOULLON BY CA CA 2 MI W OF BULLY CAMP BY BOULLON AT A OT GRAND BY CA CA 2 MI W OF BULLY CAMP BY BOULLON AT A DOT GRAND BY CA CA 2 MI W OF BULLY CAMP BY BOULLON AT A DOT GRAND BOULCH BY A DOT GRAND BY BOULLON AT A DOT GRAND BY BOULD A DOT GRAND BY BOULLON AT A DOT GRAND BY BOULLON AT A DOT GRA | 3TAT2 | 00000 | | | | 0.0 | | | BAYOU LAFOURCHE AT BELLEROSE LA BAYOU LAFOURCHE AT LABADIEVILLE LA BAYOU LAFOURCHE AT LABADIEVILLE LA BAYOU LAFOURCHE AT THEBODALX, LA. BAYOU LAFOURCHE AT AT THEBODALX, LA. BAYOU LAFOURCHE AT AMELIA, LA. BAYOU LAFOURCHE AT AMELIA, LA. BAYOU BEUF AT AMELIA, LA. BAYOU BEUF AT AMELIA, LA. CRAND BY CA 2 MI M LAROSE GRAND BY CA 0.5 MI AB JOT LIT LK CRAND BY CA 0.5 MI AB JOT BY BLUE GRAND BY CA 0.5 MI AB JOT BY BLUE GRAND BY CA 0.5 MI AB JOT BY BLUE GRAND BY CA 0.5 MI AB JOT BY BLUE GRAND BY CA 0.5 MI AB JOT BY BLUE GRAND BY CA 0.5 MI AB JOT BY BLUE CRAND BY CA 0.5 MI AB JOT BY BLUE CRAND BY CA 0.5 MI AB JOT BY BLUE CRAND BY BLUE, ENTR. CATFISH LK CRAND BY BLUE, ENTR. CATFISH LK CRAND BY BLUE CA 2 MI W OF BULL CAMP OIL FLD CA 2 MI W OF BULL CAMP OIL FLD COUST BY AT POINT AUFER ISLAND HOUMA NAVIGATION CANAL AT HOUMA 2937400 29275 | | | | | | | | | BAYOU LAFOURCHE AT BELLEROSE LA BAYOU LAFOURCHE AT LABADIEVILLE LA BAYOU LAFOURCHE AT LABADIEVILLE LA BAYOU LAFOURCHE AT THEBODALX, LA. BAYOU LAFOURCHE AT AT THEBODALX, LA. BAYOU LAFOURCHE AT AMELIA, LA. BAYOU LAFOURCHE AT AMELIA, LA. BAYOU BEUF AT AMELIA, LA. BAYOU BEUF AT AMELIA, LA. CRAND BY CA 2 MI M LAROSE GRAND BY CA 0.5 MI AB JOT LIT LK CRAND BY CA 0.5 MI AB JOT BY BLUE GRAND BY CA 0.5 MI AB JOT BY BLUE GRAND BY CA 0.5 MI AB JOT BY BLUE GRAND BY CA 0.5 MI AB JOT BY BLUE GRAND BY CA 0.5 MI AB JOT BY BLUE GRAND BY CA 0.5 MI AB JOT BY BLUE CRAND BY CA 0.5 MI AB JOT BY BLUE CRAND BY CA 0.5 MI AB JOT BY BLUE CRAND BY BLUE, ENTR. CATFISH LK CRAND BY BLUE, ENTR. CATFISH LK CRAND BY BLUE CA 2 MI W OF BULL CAMP OIL FLD CA 2 MI W OF BULL CAMP OIL FLD COUST BY AT POINT AUFER ISLAND HOUMA NAVIGATION CANAL AT HOUMA 2937400 29275 | 61701 | 022
671
892
353 | 244
240
260
151 | 240
192
193 | 221
223
244
261 | 170 | | | BAYOU LAFOURCHE AT BELLEROSE LA BAYOU LAFOURCHE AT LABADIEVILLE LA BAYOU LAFOURCHE AT LABADIEVILLE LA BAYOU LAFOURCHE AT THEBODALX, LA. BAYOU LAFOURCHE AT AT THEBODALX, LA. BAYOU LAFOURCHE AT AMELIA, LA. BAYOU LAFOURCHE AT AMELIA, LA. BAYOU BEUF AT AMELIA, LA. BAYOU BEUF AT AMELIA, LA. CRAND BY CA 2 MI M LAROSE GRAND BY CA 0.5 MI AB JOT LIT LK CRAND BY CA 0.5 MI AB JOT BY BLUE GRAND BY CA 0.5 MI AB JOT BY BLUE GRAND BY CA 0.5 MI AB JOT BY BLUE GRAND BY CA 0.5 MI AB JOT BY BLUE GRAND BY CA 0.5 MI AB JOT BY BLUE GRAND BY CA 0.5 MI AB JOT BY BLUE CRAND BY CA 0.5 MI AB JOT BY BLUE CRAND BY CA 0.5 MI AB JOT BY BLUE CRAND BY BLUE, ENTR. CATFISH LK CRAND BY BLUE, ENTR. CATFISH LK CRAND BY BLUE CA 2 MI W OF BULL CAMP OIL FLD CA 2 MI W OF BULL CAMP OIL FLD COUST BY AT POINT AUFER ISLAND HOUMA NAVIGATION CANAL AT HOUMA 2937400 29275 | N 01 | 0900
0900
0900 | 00000 | 00000 | 00000 | 090
090 | | | BAYOU LAFOURCHE AT BELLEROSE LA BAYOU LAFOURCHE AT HEBADIEVILLE LA BAYOU LAFOURCHE AT THIBDOAUX, LA. BAYOU LAFOURCHE AT THEODAUX, LA. BAYOU LAFOURCHE AT THIBDOAUX, LA. BAYOU BELOF AT AMELIA, LA. BAYOU BUCK AT MI AB GRO BY, SENGRAND BY CA O.5 MI AB UCT LIT LK GRAND BY CA O.5 MI AB UCT RIT LY GRAND BY CA O.5 MI AB UCT BY BLUE GRAND BY CA O.5 MI AB UCT BY BLUE GRAND BY CA O.5 MI AB UCT BY BLUE GRAND BY CA O.5 MI AB UCT BYOU SULE AT BAYOU SULE AT BAYOU SULE AT BAYOU BLUE AT BAYOU BLUE AT BAYOU BLUE CHAND BY BY BULL OUT BY BULL FLO GRAND BY CHAND BY BY BULL CA NEULL EVILLE, LA. LCOUST BY AT POINT AUFER ISLAND HOUMA NAVIGATION CANAL AT HOUMA | Ψ. | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 2000 | 30.00 | 20020 | | | | BAYOU LAFOURCHE AT BELLEROSE LA BAYOU LAFOURCHE AT HEBADIEVILLE LA BAYOU LAFOURCHE AT THIBDOAUX, LA. BAYOU LAFOURCHE AT THEODAUX, LA. BAYOU LAFOURCHE AT THIBDOAUX, LA. BAYOU BELOF AT AMELIA, LA. BAYOU BUCK AT MI AB GRO BY, SENGRAND BY CA O.5 MI AB UCT LIT LK GRAND BY CA O.5 MI AB UCT RIT LY GRAND BY CA O.5 MI AB UCT BY BLUE GRAND BY CA O.5 MI AB UCT BY BLUE GRAND BY CA O.5 MI AB UCT BY BLUE GRAND BY CA O.5 MI AB UCT BYOU SULE AT BAYOU SULE AT BAYOU SULE AT BAYOU BLUE AT BAYOU BLUE AT BAYOU BLUE CHAND BY BY BULL OUT BY BULL FLO GRAND BY CHAND BY BY BULL CA NEULL EVILLE, LA. LCOUST BY AT POINT AUFER ISLAND HOUMA NAVIGATION CANAL AT HOUMA | TITUE | 003(
950;
947;
940; | 933
933
945
930 | 932
920
922
924 | 925
927
927 | 934(| | | STATION NAME AND LOCATION BAYOU LAFOURCHE AT BELLEROSE LA BAYOU LAFOURCHE AT THIBODAUX, LA BAYOU LAFOURCHE AT THIBODAUX, LA BAYOU LAFOURCHE AT THIBODAUX, LA BAYOU LAFOURCHE AT MACELAND LA BAYOU LAFOURCHE AT MACELAND LA BAYOU BOEUF AT AMELIA, LA. IWW AT CUTOFF CA 3 MI W LARGSE IWW 1 MI SW OF LAROSE, LA. GRAND BY CA 1 MI AB GRD BY, S EN GRAND BY CA 3 MI AB JCT GRAND BY GRAND BY CA 3 MI AB JCT GRAND BY GRAND BYOU BLUE AT BAYOU COURAN GRAND BYOU BLUE AT BAYOU COURAN GRAND BYOU BLUE AT BAYOU SOUILLON BY BOUILLON 4 MI AB JCT BY BLUE CA 2 MI W OF BULLY CAMP OIL FLO GULF OIL CA NR JCT GRAND BY CA SW LA CA 1 MI W OF LEEVILLE, LA. LOCUST BY AT POINT AUFER ISLAND HOUMA NAVIGATION CANAL AT HOUMA | ΓA | 22222 | 22222 | 8 8 8 8 8 | 888888 | 7 7 7 | | | ###################################### | AND | BAYOU LAFOURCHE AT BELLEROSE LA
BAYOU LAFOURCHE AT LABADIEVILLE
BAYOU LAFOURCHE AT THIBODAUX, LA
BAYOU LAFOURCHE AT THIBODAUX, LA
BAYOU LAFOURCHE AT RACELAND LA
BAYOU BOEUF AT AMELIA, LA. | IWW AT CUTOFF CA 3 MI W LAROSE IWW 1 MI SW OF LAROSE, LA. GRAND BY CA 1 MI AB GRD BY, S GRAND BY CA 0.5 MI AB JCT GRAND BY CA 3 MI AB JCT GRAND | GRAND BY CA 2 MI AB JCT BY GRAND BAYOU BLUE AT BAYOU GRAND BAYOU BLUE AT BAYOU GRAND BY BLUE, ENTR. CATFIGRAND BAYOU BLUE JCT BAYOU | BAYOU BLUE AT BAYOU BOUILLON
BY BOUILLON 4 MI AB JCT BY E
CA 2 MI W OF BULLY CAMP DIL
GULF DIL CA NR JCT GRAND BY
SW LA CA 1 MI W OF LEEVILLE, | LOCUST BY AT POINT AUFER I
HOUMA NAVIGATION CANAL AT | | | | HYDROLOGIC
Unit
Code |
08090301
08090301
08090301
08090301 | 08090302
08090302
08090302
08090302 | 08090302
08090302
08090302
08090302 | 08090302
08090302
08090302
08090302 | 08090302
08090302 | | | wiga. | | | | | | | | | | |-------------------------------------|------------|--|---|---|--|--|---|---|--| | SED STOR | | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | MOITA SINADIIO
3000 | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USFS
USFS
USFS | | | BEO MAT PART SIZE
SUSP DISCHARGE | | O m Z 4 4 | шшш≯З | m X 4 O ß | 0044m | шаааа | AASRm | ш | | | 3512 TAA9 92U2 | | ▼ Ш | шшш | В М | ш ш | m 444 | 4 44m | ш | | | NEONOD CES ASINS | | 0 m Z 4 4 | шшш≯≯ | m X ∢ O ß | 004411 | шееее | ∢∢Z ΩШ | MZXX | | | OW END
RA3Y | | 1970 | | 1975 | 1975 | 1975 | 1979 | | | | DW BEGIN | | 1970
1970
1946
1953
1966 | 1945
1969
1965
1965 | 1962
1961
1975
1971
1965 | 1956
1968
1966
1963 | 1971
1954
1978
1978
1971 | 1969
1978
1962
1961
1962 | 1972
1966
1975
1975 | | | MISAB
ROT91RJ230 | _60 | 0
4
4
4
4 | 0 0 0
4 4 4 | 00
4 4 | 000 | | 00 0 | 900 | | | <u></u> | | 88888 | 88888 | 88888 | 88888 | 8888 | 8 888 | 8 | | | DRAINAGE
AREA | O | 8940.00
9470.00
11300.00
16900.00 | 6800.00
6820.00
2082.00
322.00
522.00 | 1040.00
21800.00
151.00
888.00
160.00 | 8190.00
8800.00
426.00
959.00
31200.00 | 740
265
52
65
16 | 3070
182
3350 | 1570 | | | 70 39YT
3T12 | _5_ | A A S A S | 33333
88888 | 33333 | AS S AS | NNNNN | N N N N N | N N N N N N N N N N N N N N N N N N N | | | YTNUOD | _ <u>Ü</u> | 075
101
049
009 | 017
017
077
027
027 | 097
107
107
107
091 | 073
077
119
089
099 | 099
089
067
067 | 099
099
019
019 | 069
075
137
075 | | | 3TAT2 | | 038
038
038
038 | 038
038
038
027
027 | 027
038
027
027
038 | 038
038
027
027
038 | 038
027
038
038
038 | 038
038
038
038 | 027
027
027
027 | | | LONGITUDE | Z | 1015728
1013018
1004345
1005729
0960710 | 0964700
0964705
0964700
0961945
0963740 | 0963940
0965100
0964550
0961440 | 0974044
0970005
0964852
0961011 | 0972210
0964902
0975250
0974621
0975141 | 0972430
0973207
0980323
0980020
0975500 | 0962746
0913900
0921228
0911904 | | | LATITUDE | -RA | 485924
482220
480935
485947
462010 (| 465140
465550
462805
465100
464620 | 465740 (472445 (471600 (473540 (| 462649 (463735 (473643 (481108 (481135 (| 481610 0482027 0483530 0483441 0484037 0 | 482524 (482703 (485500 (485155 (485450 (48540 | 485854 (474724 (474724 (| | | STATION NAME AND LOCATION | SOURIS-RED | SOURIS RIVER NR SHERWOOD, ND
SOURIS RIVER NR FOXHOLM, ND
SOURIS RIVER NR VERENDRYE, ND
SOURIS RIVER NR WESTHOPE, ND | RED RIVER OF THE NORTH AT FARGO, ND
REO RIVER OF THE NORTH BELOW FARGO, ND
WILD RICE RIVER NR ABERCROMBIE, ND
BUFFALO RIVER NEAR HAWLEY, MN
SOUTH BRANCH BUFFALO RIVER AT SABIN, MN | BUFFALO RIVER NEAR DILWORTH, MN
RED RIVER OF THE NORTH AT HALSTAD, MN
MARSH RIVER NEAR SHELLY, MN
WILD RICE RIVER AT TWIN VALLEY, MN
BEAVER CREEK NR FINLEY, ND | SHEYENNE RIVER AT LISBON, ND
SHEYENNE RIVER NR KINDRED, ND
SAND HILL RIVER AT CLIMAX, MN
THIEF RIVER NEAR THIEF RIVER FALLS, MN
RED RIVER OF THE NORTH AT OSLO, MN | FOREST RIVER AT MINTO, ND
MIDDLE RIVER AT ARGYLE, MN
NORTH BRANCH PARK RIVER AT GARDAR, ND
NORTH BRANCH PARK RIVER NR CRYSTAL, ND
CART CREEK AT MOUNTAIN, ND | PARK RIVER AT GRAFTON, ND
MIDDLE BRANCH PARK RIVER NR NASH, ND
PEMBINA RIVER NR VANG, ND
LITTLE SOUTH PEMBINA RIVER NR WALHALLA, ND
PEMBINA RIVER AT WALHALLA, ND | ROSEAU RIVER BELOW STATE DITCH 51 NR CARIBOU
STONEY R. TGON, R10W 18 M SE ELY
INDIAN SIDUX R.25MI.NW.ELY MINN
SILVER ISLAND 15MI.NE ISABELLA | | | HYDROLOGIC
Unit
Code | | 09010001
09010001
09010003
09010003 | 09020104
09020104
09020105
09020106 | 09020106
09020107
09020107
09020108 | 09020204
09020204
09020301
09020304 | 09020307
09020309
09020310
09020310 | 09020310
09020310
09020313
09020313 | 09020314
09030001
09030001
09030001 | | | MEDIA | | | | | | | |---------------------------------------|--|---
--|--|---|---| | 9OT2 032 | مممم | 00000 | 00000 | 0000 | | | | MOITASINADRO
BOOD | 6 6 6 6 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 75
75
75
75
75
75 | 10 10 10 10 | FS
FS
GS | | | | | uses
uses
uses
uses
uses | USFS
USFS
USFS
USGS
USGS | USFS
USFS
USFS | USFS
USFS
USFS
USGS | | | | SUSP DISCHARGE | | шш | | П | | | | SSIZ TAAN TAM GSB | | | | | | | | SUSP SED CONCEN | 4 G G G M | <u> пикии</u>
<u>е</u> п | 20077 | XXXM | | | | RA3Y | | | မှ မ | | | | | OW END | | | 197 | | | | | AA3Y | 65
7 4 4
7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 75
75
75
75 | 971
973
970
975 | 75 | | | | OM BECIN | 9 9 9 9 | 197
197
197
196
197 | 00000 | 197
197
197 | _ | | | DESCRIPTOR | 0004
0004
0024 | 004 | | 400 | | | | NISAB | | | | | | | | , , , , , , , , , , , , , , , , , , , | 00.00 | 8 | | ŏ | | | | DRAÍNAGE
AREA | 253
219
53
68 | 730. | | 460.00 | | | | DRA
A | | 17 | | - | | | | | | | | | | | | 30 39YT
3T18 | A A A A A A A A A A A A A A A A A A A | N S S S S S S S S S S S S S S S S S S S | SSSSS | N N N | | | | YTNUOD | 075
075
137
137 | 061
061
137
071
071 | 071
061
061
061 | 061
061
061 | | | | 3TAT2 | 027
027
027
027 | 027
027
027
027
027 | 027
027
027
027 | 027
027
027
027 | | | | | | | | | | | | LONGITUDE | 0913206
0914538
0915205
0915020 | 13710
13710
14915
13356 | 14236
13900
1440
14510 | 15 10
15 10
15 10
18 25 | | | | NOT | 99118 | 0933
0933
0933
0933 | 0934
0933
0941
0934 | 0934
0934
0934
0934 | | | | | 00000 | | | | | | | 300 | 1522
1139
155
155 | 220
220
127
355
355 | 1330
1330
1300
1300 | 300
300
145 | | | | LATITUDE | 4444
4444 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 483
473
474
473
473 | 473
473
473 | | | | | | | | | | | | | | MN
MINNESOTA | | | | | | | | ZE SI | | | | | | | | Z
Z
E E | | | | | | | | | | | | | | ¥ 0: | 2 | Z Z Z X X | AAN
SON, MAN | S TALMOON, MN.
S TALMOON, MN.
S TALMOON, MN.
BIG FALLS, MN | | | | OCATION | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | X X H M M | NO NO | N N N N N N N N N N N N N N N N N N N | | | | AND 1 | | 08
08
17
17 | LOM
ALMO | Z Q Z | | | | IE AI | ELY
3111
3111 | 16F | F L
AD
TAL | TAL
TAL
ALN
FA | | | | MAM | IRB
IRB
IEA | SH T | 0 0 8 0 0 | S | | | | NO | NEAR
R BABI
R BABI | SECHI | AST
BE
ET,
I. | H | | • | | STATION NAME | | 7 | # H = F = E | 3 MI.
3 MI.
3MI.
ER AT E | | | | | | S NEA | VEF
ILI
OU
R 3 | 0x 0x 0x > | | | | | 8 8 8 5 X | * * ¤ ¤ ¤ ¤ | <u> </u> | 2 | | | | | SHIWI R
RIVER
RIVER
ISLAND
BROOK | ROC
ROC
IVE
FO | RK
EA1
RI | 7 | | | | | S H | 8 Z Z Z Z | 5 × 5 = 1 | 777 | | • | | | KAWISHIWI RIVER
STONY RIVER NEA
DUNKA RIVER NEA
BEAR ISLAND RIV
GALE BROOK | GALE BROOK 3 MI. SE BIGFORK,MN. GALE BROOK 3 MI. SE BIGFORK,MN. DARK RIVER NEAR CHISHOLM,MINN LITTLE FORK RIVER AT LITTLEFORK LITTLE FORK RIVER AT LITTLEFORK | BIG FORK RIVER EAST OF LOM
STAR PEAT FILTER BED
ISLAND LAKE OUTLET,ROAD 33
TURTLE RIVER 3 MI. S TALMO
TURTLE RIVER 3 MI. S TALMO | TURTLE RIVER 3 MI
TURTLE RIVER 3 MI
TURTLE RIVER 3MI.
BIG FORK RIVER AT | | | | | | | | | | • | | 200 | 09030001
09030001
09030001
09030001 | 09030005
09030005
09030005
09030005 | 90000060
60300060
90000060
9000060 | 90030060
900300060
900300060 | • | | | HYDROLDGIC
Unit
Code | 030 | 030 | 080 | 030 | | | | ¥ | | | 0 0 0 0 0 0 | 0 0 0 0
0 0 0 0 | | | | | | | | | | | | MEDIA | | | | | | | | | | |----------------------------|----------|---|---|--|---|---|--|--|--| | #O12 G32 | | 000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | ORGANIZATION
GOOD | | I AOO7
USCE
USGS
USGS
USCE | USGS
USFS
USFS
USGS
USGS | USBLM
USBLM
USBLM
USBLM
USBLM | USBLM
USBLM
USBLM
USBLM
USBLM | USBLM
USBLM
USBLM
USBLM
USBLM | USBLM
USBLM
USBLM
USBLM
USBLM | USBLM
USBLM
USGS
USBLM | | | SUSP DISCHARGE | | Αm | m∢⊁m | | | | | × | | | 3512 TAA9 TAM G38 | | <u> </u> | | | | | | | | | SZIZ TRAN RZUZ | | > O < m m | ш∢Хп∑ | EEEEE | EEEE | EEEE | EEEE | O
EE×E | | | 8A3Y | | 7 9 2 | 6 | | | | | 80 | | | OM END | | 197 | - 19 | 10 10 10 10 | 10 10 10 10 | φφφφφ | (2.42.42.42 | 197 | | | OW BEGIN | | 1963
1966
1976
1970
1954 | 1976
1972
1970
1963
1976 | 1976
1976
1976
1976
1976 | 1976
1976
1976
1976
1976 | 1976
1976
1976
1976 | 1976
1976
1976
1976
1976 | 1976
1976
1977
1976 | | | NIZAB
RDT91R3230 | | | | | | | | 004 | | | DRAINAGE
AREA | N
O | 314600.00 | 30.90 | | | | | 280.00 | | | 70 39YT
3TI2 | | N N N N N | X X X X X X X X X X X X X X X X X X X | SEE | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N | N N N N N N N N N N N N N N N N N N N | | | YTNUOO | Ш | 133
095
037
193
193 | 019
029
003
035 | 88888 | 88888 | 88888 | 88888 | 8888 | | | 31AT2 | | 019
029
056
019
019 | 056
056
030
030 | 030000000000000000000000000000000000000 | 030000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 030000000000000000000000000000000000000 | 00000 | | | LONGITUBE | ASIN | 0955100
0943332
0962447 | 1073705
1133921
1124800 | 1124800
1124400
1124400
1124500 | 1131200
1131600
1131600
1131200 | 1131000
1131000
1124500
1131600 | 1131600
1131600
1131600
1123200 | 1123000
1123000
1124700
1125300 | | | LATITUDE | BA | 420400 (385725 (422910 (422910 (| 450025
484757
443800 | 443500
444100
443800
445900
445600 | 445500
445000
445000
445000
444800 | 450400
450500
445900
445000 | 445000
445000
444700
444500 | 444500
444500
443900
445500 | | | STATION NAME AND LOCATION | MISSOURI | GINGLES WATERSHEDS
KANSAS CITY MO BLUE R
DELANEY DR NR RED DESERT WY
MISSOURI RIVER AT SIOUX CITY, IOWA
MISSOURI R AT SIOUX CITY IA | CLEAR CREEK AT UCROSS WY
GREYBULL R.BELDW JACK CK
LITTLE BIGHORN R AT USGS 2890
SWIFTCURRENT CREEK AT MANY GLACIER MT.
MUDDY CREEK #1 | MUDDY CREEK #2 SHEEP CREEK #1 SHEEP CREEK #2 CLARK CANYON #2 SHENON #1 | SHENDN #2
BLACK CANYON #1
NIP AND TUCK #1
MIP AND TUCK #2
DIVIDE CREEK #1 | WATSON CREEK #1 WATSON CREEK #2 CLARK CANYON #3 N FORK EVERSON #1 N FORK EVERSON #2 | SO FORK EVERSON #1
JEFF DAVIS CREEK #1
JEFF DAVIS CR #2
LITTLE SAGE CREEK
BASIN CREEK #1 | BASIN CREEK NO 2
LITTLE BASIN
BIG SHEEP CREEK BELOW MUDDY CREEK, NR DELL,
CLARK CANYON #1 | | | HYDROLOGIC
Unit
Code | | 10 35 0
100031 K
100034 R
100036 M | 100042 G
100043 K
10010002
10010002 | 10020001
10020001
10020001
10020001 | 10020001
10020001
10020001
10020001 | 10020001
10020001
10020001
10020001 | 10020001
10020001
10020001
10020001 | 10020001
10020001
10020001 | | | MEDIA | | 00000 | 00000 | 00000 | 0.0 | 00 0 | 0000 | | |----------------------------|---|--|---|---|--|--|--|---------------------------------------| | ROTZ 032 | Z Z Z Z Z | ZZZZ | 44000 | <u> </u> | S S S | 00 0 | ۵۵۵۵ | · · · · · · · · · · · · · · · · · · · | | ONG ANIZATION SECOND | USBLM
USBLM
USBLM
USBLM | USBLM
USBLM
USBLM
USBLM
USBLM | USGS
USGS
USGS
USGS
USGS
USBLI
USBLI | USBLM
USBLM
USGS
USGS
USGS | USGS
USSC
USSC
USSC
USSC
USSC | USGS
USGS
USFS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP OISCHARGE | | | 8 | 7 | 0.0 | X 0/ | m Z U Z | | | LIS TAAN CAM CAB | | | | 0 | | ∢ ш | | | | 35.12 TAA9 92UE | | | | | ΑN | | ш « | | | SON SED CONCE | * * * * * * * * * * * * * * * * * * * | Z Z Z Z W | M U A E E | Z Z N Z Z |
000000 | ₹ 0 m ∑ | m Z U Z | · | | OW END
PABY | | 1975 | 1965 | 1965
1962 | 1972 | 1970
1975
1957
1969 | 1967
1966
1967 | | | OW BEGIN | 1976
1976
1976
1976 | 1976
1976
1976
1976
1963 | 1949
1949
1965
1976 | 1976
1976
1956
1962
1958 | 1960
1971
1977
1974
1974 | 1967
1958
1973
1956
1967 | 1949
1963
1962
1963 | | | NISAB
Rotairosao | | 014 | 124
124
124 | 024
124
024 | 124 | 004
014
004 | 124
004
024
004 | | | DRAINAGE
Area | | 2322.00 | 2737.00
3619.00
935.00 | 2476.00
35.60
36.00 | 7632.00
7683.00 | 1065.00 | 14669.00 | | | TYPE OF | X X X X X X X X X X X X X X X X X X X | M M M M M M M M M M M M M M M M M M M | N A A A A A A A A A A A A A A A A A A A | MS A A S | A A A A A A A A A A A A A A A A A A A | N N N N N | N N N N N N N N N N N N N N N N N N N | · · · · · · · · · · · · · · · · · · · | | COUNTY | 88888 | 88888 | 001
057
057
093
093 | 093
093
057
001 | 057
057
043
043
043 | 039
057
031
031
049 | 007
049
049
049 | | | 3TAT2 | 000000000000000000000000000000000000000 | 030 | 030 | 030 | 030 | 020
030
030
030 | 020 | | | LONGITUDE | 1122200
1122200
1122200
1122400 | 1122400
1121100
1121100
1121100 | 1124459
1122707
1121950
1124000 | 1123800
1123800
1124203
1124910 | 1121945
1121659
1115300
1120630 | 1104815
1113446
1111200
1111609 | 1112518
1120719
1120713 | | | LATITUDE | 444500
444700
444700
445200
445400 | 445400
445100
445100
450012 | 450659
452301
453030
454500 | 454 100
454 100
453 136
452650
452246 | 453650
454110
455900
461220 | 442633
445322
450400
452951
462900 | 460846
465357
465350
465507 | | | STATION NAME AND LOCATION | DYCE CREEK #1
DYCE CREEK #2
DYCE CREEK #3
TAYLOR CREEK #1
TAYLOR CREEK #2 | TAYLOR CREEK #3 E FORK BLACKTAIL #1 E FORK BLACKTAIL #2 E FORK BLACKTAIL #3 BEAVERHEAD RIVER NEAR GRANT, MT. | BEAVERHEAD RIVER AT BARRETTS, MT.
BEAVERHEAD RIVER NEAR TWIN BRIDGES, MT.
RUBY RIVER NEAR TWIN BRIDGES, MT.
MOOSE CREEK #1 | CAMP CREEK #1
CAMP CREEK #2
BIG HOLE RIVER NEAR MELROSE, MT.
WILLOW CREEK NEAR GLEN, MT.
BIRCH CREEK NEAR GLEN, MT. | JEFFERSON RIVER NEAR TWIN BRIDGES, MT.
JEFFERSON RIVER AT SILVER STAR, MT.
BOULDER R NR CARDWELL MT
LITTLE BOULDER R NR BOULDER MT
BOULDER R NR BOULDER MT | FIREHOLE R AB DIV DAM NR OLD FAITHFUL YNP
MADISON RIVER AT KIRBY RANCH NEAR CAMERON, M
SAGE CREEK
GALLATIN RIVER NEAR GALLATIN GATEWAY, MT. | MISSOURI RIVER AT TOSTON, MT.
SIEBEN RCH DITCH BL CLARK C, NR
L PRICKLY PEAR C AT SIEBEN R NR WOLF CREEK,
L PRICKLY P C AB MED ROCK C, NR | | | HYDROLOGIC
UNIT
CODE | 10020002
10020002
10020002
10020002 | 10020002
10020002
10020002
10020002 | 10020002
10020003
10020004
10020004 | 10020004
10020004
10020004
10020004 | 10020005
10020005
10020006
10020006 | 10020007
10020007
10020008
10020008 | 10030101
10030101
10030101 | | | MEDIA | | | | | | | | | |----------------------------|---|--|---|--|--|--|--|--| | 9012 032 | ۵۵۵۵ | o o o | 0000 | S S | 00000 | <u> </u> | | | | MOITAS INABRO
3000 | uses
uses
uses
uses | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | USGS
USGS
USGS
USGS | USGS
USSCS
USSCS
USCE
USCE | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USSCS | USSCS
USCE
USGS
USGS | | | SUSP DISCHARGE | ₹ ₹₹ | | ∀ | LU . | OAXAR | E 2 E 2 | I | | | ISIS THAN TAM 038 | | | ш | | | | | | | SIS TRAS 42U2 | | ⋖ ш | Σ | ш о | ш | ошкп | <u> ₹₩0</u> | | | SUSP SED CONCEN | A Z Z Z | | m A A m Z | m w w ≥ ⇔ | DAXAG | 2 11 2 11 12 | M E W I | | | OW END
AA3Y | 196
196
196 | 196 | 1953
1965
1967
1957
1969 | | | 1966 | 1969
1964 | | | OW BEGIN | 1963
1963
1964 | 1962
1973
1972
1968
1966 | 1947
1965
1964
1954
1962 | 1973
1975
1975
1968 | 1970
1976
1975
1976
1976 | 1964
1972
1961
1973
1974 | 1974
1948
1953
1960 | | | BASIN
DESCRIPTOR | 004 | | 124
014
124 | | 124
003
004 | 124
024
014 | 014 | | | DRAINAGE
AREA | 29.40 | 381.00
24749.00
282.00
314.00 | 3242.00
6995.00
1307.00 | 34379.00 | 40987.00
287.00
100.20
521.00 | 1855.00
12840.00
5941.00
7846.00 | 538.00
22332.00 | | | 30 39YT
3TI2 | N N N N | A A A A A A A A A A A A A A A A A A A | M S M S M S M S M S M S M S M S M S M S | M M M M M M M M M M M M M M M M M M M | A A A A A A A A A A A A A A A A A A A | M S M S M S M S M S M S M S M S M S M S | MS SW | | | COUNTY | 049
049
049 | 049
073
059
059
013 | 101
015
049
099
015 | 015
027
027
105
027 | 027
055
055
033
033 | 069
111
069
069
041 | 041
105
105
105 | | | 3TAT2 | 000000000000000000000000000000000000000 | | 00000 | 030000000000000000000000000000000000000 | 030000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000 | | | LONGITUDE | 1120736
1120800
1120718
1120718 | | 1115320
1103447
1120448
1113312 | 1101519
1091600
1092200
1062349
1085600 | 1084113
1061025
1060910
1065433
1062147 | 1075600
1081901
1075500
1075318
1094200 | 1094400
1062150
1064015
1062150 | | | LATITUDE | 465606
465600
465625
470022 | 470020
482124
464605
463800
473730 | 482538
475647
475839
475545
480014 | 480014
465900
470200
480026
474400 | 473751
472420
473212
471856 | 465540
465415
465600
465941 | 482500
480750
480652
480752 | | | STATION NAME AND LOCATION | MEDICINE ROCK CREEK NEAR WOLF CR
LYONS CREEK NEAR WOLF CREEK, MT.
L PRICKLY P C BL LYONS C, NR WOL
WOLF CREEK AT WOLF CREEK, MT. | | MARIAS RIVER NEAR SHELBY, MT.
MARIAS RIVER NEAR LOMA, MT.
SHEEP CREEK NEAR WOLF CREEK, MT.
TETON RIVER NEAR DUTTON, MT.
MISSOURI R AT VIRGELLE MONT | MISSOURI RIVER AT VIRGELLE, MT.
E F BIG SPRINGS C BL RE
E F BIG SPRINGS C AB BIG SPRINGS C
MISSOURI RIVER @ FT PECK
MISSOURI RIVER @ FT PECK | MISSOURI RIVER NEAR LANDUSKY, MT. TIMBER CREEK NEAR VAN NORMAN, MT. NELSON CREEK NEAR VAN NORMAN, MT. BIG DRY CREEK AT JORDAN, MT. | FLATWILLOW CREEK NEAR MOSBY, MT. YELLOWSTONE RIVER AT HUNTLEY, MT. MUSSELSHELL RIVER NEAR MOSBY, MT. MUSSELSHELL RIVER AT MOSBY, MT. | BEAVER C BL RE NR HAVRE MT
MILK R AT NASHUA MONT
WILLOW CREEK NEAR GLASGOW, MT.
MILK RIVER AT NASHUA, MT. | | | HYDROLOGIC
Unit
Code | 10030101
10030101
10030101
10030101 | 10030101
10030103
10030103
10030104
10030104 | 10030203
10030203
10030205
10030205 | 10040101
10040103
10040103
10040104 | 10040104
10040104
10040105
10040105 | 10040203
10040203
10040205
10040205 | 10050004
10050012
10050012
10050012 | | | MEDIA | | | | | | | | | | |----------------------------|-----------|--|--|--|---|---|---|---|--| | AOT2 G32 | | 0000 | 00004 | 01000 | 00000 | 00000 | 00000 | 0000 | | | ONDANIZATION
CODE | (| USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGE | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USFS
USFS
USFS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | ZEKA | wzoz | FMNAAA | ш ш 7 | αΣαΣ | S ANK | ск ск ш си | | | 3512 TAA9 TAM 038 | | | | ···· | | | | | | | SUSP PART SIZE | | Z H K A | | W E Y Y Y | <u>пп2пп</u> | K M M M M M M M M M M M M M M M M M M M | A A A A A | 2 M M M | | | | | | e | | 01010 | 0000 | വര | 8.8 | | | ON3 WD
Ra3Y | 0,1 |
<i>-</i> | 407 | 1970
1970
1970 | 197
196
196 | 197
197
197
197 | 197 | 197 | | | OM BECIN | 0,70 | 1973
1975
1975
1975 | 1975
1964
1964
1974
1949 | 1964
1978
1968
1968 | 1965
1967
1970
1965
1965 | 1974
1970
1972
1970
1969 | 1969
1965
1971
1938
1971 | 1972
1972
1964
1972 | | | BASIN
DESCRIPTOR | | 000 | 004 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 014
024
004
024 | 0000
0000
0004
0004 | 124 | 024
004 | | | | | 885 | 8888 | 88 | 88888 | 8 8 | 88 | 8.8 | | | DRAINAGE
AREA | | 57556.
352.
201. | 1974.
362.
534.
722. | 91557. | 2623.
3551.
226.
523.
543. | 337. | 371.
975. | 1154.
98. | | | 17PE 0F
3TI2 | 3 | N N N N N | MS MS MS | MS MS MS | MS MS | N N N N N | MS MS | NEER | | | COUNTY | l u | 055
055
055
055 | 055
019
019
083 | 083
091
029
029
029 | 067
067
097
097
067 | 111
095
095
095 | 095
095
029
029
029 | 029
029
009
029 | | | STATE | OEO. | 030000000000000000000000000000000000000 | 030
030
030
030 | 030
030
056
056
056 | 030 | 030000000000000000000000000000000000000 | 030
030
056
056
056 | 056
056
030
056 | | | LONGITUDE | Consider | 1055200
1055200
1054234
1053654 | 1051254
1054140
1052430
1052513
1042820 | 1042830
1043042
1104456
1104218
1103736 | 1104737
1103355
1101200
1095617
1103705 | 1084532
1094746
1095048
1095040
1094727 | 1094336
1092312
1092500
1092600
1091900 | 1092557
1091301
1090353
1090038 | | | LATITUDE | | 480239
475956
480052
472529 | 475407
485930
490000
485111 | 480724
484022
445336
445640
445622 | 450643
453550
453317
455003
455310 | 453915
452607
452717
452717
452616 | 452840
453304
444500
444600
445030 | 444550
444354
450037
445530 | | | STATION NAME AND LOCATION | 100 cm | MISSOURI RIVER BELOW FORT MISSOURI RIVER BELOW FORT PRAIRIE ELK CREEK NEAR OSW SAND CREEK NEAR WOLF POINT HORSE CREEK NEAR CIRCLE MT | REDWATER RIVER NEAR VIDA, MT.
POPLAR RIVER AT INTERNATIONAL BOUNDARY
EAST POPLAR RIVER AT INTERNATIONAL BOUNDARY
EAST FORK POPLAR RIVER NEAR SCOBEY, MT.
MISSOURI R NR CULBERTSON MT | MISSOURI RIVER NEAR CULBERTSON, MT.
BIG MUDDY CREEK NEAR ANTELOPE MT
GARDNER R AB DIV DAM NR MAMMOTH YNP
GLEN CR AT MAMMOTH DIV NR MAMMOTH YNP
LAVA CR AB LUPINE CR NR MAMMOTH YNP | YELLOWSTONE RIVER AT CORWIN SPRINGS, MT. YELLOWSTONE RIVER NEAR LIVINGSTON, MT. BOULDER RIVER NEAR CONTACT, MT. BOULDER RIVER AT BIG TIMBER, MT. SHIELDS RIVER AT CLYDE PARK, MT. | YELLOWSTONE RIVER AT LAUREL MT
STILLWATER RIVER ABOVE WEST FORK AT NYE, MT.
CASTLE CREEK NEAR NYE, MT
WEST FORK STILLWATER RIVER NEAR NYE, MT.
STILLWATER RIVER AT NYE, MT. | STILLWATER RIVER AT BEEHIVE, MT. STILLWATER RIVER NEAR ABSAROKEE. MT. DEAD INDIAN CK BELOW CAMPGROUND SUNLIGHT CK & PICNIC GROUND CLARKS FORK R.® EAST FOREST BDY | SUNLIGHT CR NR CLARK WYO PAT OHARA CR NR CLARK WYO CLARKS FORK YELLOWSTONE RIVER NEAR BELFRY MT BIG SAND CL AB ST DITCH NR BADGER BASIN, WY | | | HYDROLOGIC
Unit
Code | · COCCOCO | 10060001
10060001
10060001 | 10060003
10060003
10060003
10060003 | 10060005
10060006
10070001
10070001 | 10070002
10070002
10070002
10070003 | 10070004
10070005
10070005
10070005 | 10070005
10070005
10070006
10070006 | 10070006
10070006
10070006 | | | AIG3M | | | | | | | | | |----------------------------|--|---|--|---|---|---|--|-------------| | AUS GB2 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | ONGEANIZATION
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USFS | USFS
USFS
USFS
USGS | | | SUSP DISCHARGE | NN€N€ | NUUDA | 8888 | ααш | X < O Z Z | 4 U m tx ∢ | RAAR | | | SI2 TAA TAM 038 | | | ····· | ⋖ | | | | | | SUSP PART SIZE | ma 0a | AARX | N N N N N | 0 | 442 | шош | <u>α</u> | | | | 0 U ⊗ U € | 808
808 | 44 R | n α
ααπο Σ | O 0 | 4 E H S A | 4 W X A A A | | | OW END
YEAR | 197
196
196
197 | 196
197
197 | 197.
197. | 1978 | 1970 | 197 | 1974 | | | DW BEGIN | 1972
1967
1960
1959
1960 | 1960
1960
1964
1949
1973 | 1973
1973
1974
1973
1974 | 1973
1947
1947
1947
1950 | 1975
1970
1971
1974
1976 | 1947
1949
1949
1969
1972 | 1973
1969
1972
1961 | | | BASIN
DESCRIPTOR | 000
000
000
000 | 004
024
024
024 | | 004
014
014 | 004
014
024 | 000
4 4 4 | 014 | | | | 86558 | 8888 | | 888 | 90 | 888 | 8 | | | DRAINAGE
AREA | 134.
87.
8 .
28. | 46.
53.
2032.
11795. | | 232.
486.
427. | 88.
1891. | 2309.
354.
1904. | 733. | | | 70 39YT
3T12 | N N N N N N N N N N N N N N N N N N N | A A A A A | 33333 | N N N N N | X X X X X X X X X X X X X X X X X X X | N N N N N | 3333
8888 | | | COUNTY | 600
600
600 | 009
009
009
111
013 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 00000
0000
0000 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 013
013
013
013 | 0
0
0
0
13
0
13 | | | 3TAT2 | 030
030
030 | 030
030
030
030 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056 | 056
056
056
056 | | | LONGITUDE | 1090332
1085831
1084650
1084804 | 1085201
1085403
1085035
1082812
1094800 | 1093400
1095000
1095400
1095900
1100000 | 1093900
1093300
1094533
1093754
1092757 | 1092434
1090035
1085340
1082614 | 1082232
1082539
1082229
1084900
1085600 | 1084200
1085130
1085130
1080927 | | | LATITUDE | 450016
450932
451845
451954 | 452154
452258
452757
454748
433300 | 432500
434300
434000
434200 | 434000
434400
433443
433153
432716 | 432044
431433
431345
430202 | 430038
425716
425951
424400 | 424000
423600
423500
430853 | | | STATION NAME AND LOCATION | BIG SAND CL AT WY-MONT STATE LINE
SILVER TIP CREEK NEAR BELFRY, MT.
NORTH FORK BLUEWATER CREEK BRIDGER, MT.
BLUEWATER CREEK NEAR BRIDGER, MT.
BLUEWATER C AT SANFORD RANCH NR BRIDGER, MT. | BLUEWATER CREEK NEAR FROMBERG, MT.
BLUEWATER CREEK AT FROMBERG, MT.
CLARKS FORK YELLOWSTONE RIVER AT EDGAR, MT.
YELLOWSTONE RIVER AT BILLINGS MT | WARM SPRINGS CK & UNION PASS RD
DUNDIR CK BELOW FORKS & BRIDGE
WEST FK LONG CK & LONG CK ROAD
BROOKS LAKE CREEK & HIWAY 26-287
BROOKS LAKE NR OUTLET | HORSE CK & BRIDGE BEL CAMPGROUND
WIGGINS FORK NR DOUBLE CABIN CG
WIND RIVER NEAR DUBDIS, WYO.
WIND RIVER AT DUBDIS WYO
EAST FORK WIND RIVER NR DUBDIS WYO | EAST FORK WIND RIVER NR DUBDIS WYO
DINWOODY CREEK ABOVE LAKES, NEAR BURRIS, WYO
WIND RIVER NEAR CROWHEART, WYO.
WYOMING CANAL NEAR LENDRE, WYO.
LECLAIR CANAL NR RIVERTON | WIND R AT RIVERTON, WY BEAVER CREEK NR ARAPAHOE WYO LITTLE WIND R NR RIVERTON WYO MID.POPO AGIE R.® SINKS CG FTBRG ROARING FORK CK AB.WORTHEN RESVR | LIT.POPO AGIE R. BELOW CANYON
LIT.POPO AGIE R. LOOP ROAD BRDG
LOUIS CK & LOOP ROAD BRIDGE
MUSKRAT CREEK NEAR SHOSHONI, WYO. | | | HYDROLOGIC
Unit
CODE | 10070006
10070006
10070006
10070006 | 10070006
10070006
10070007
10080001 | 10080001
10080001
10080001
10080001 | 10080001
10080001
10080001
10080001 | 10080001
10080001
10080001
10080001 | 10080001
10080002
10080003
10080003 | 10080003
10080003
10080004 | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | |----------------------------|---------------------------------------|--|--
---|---|--|---|---|--| | SED STOR | | 00040 | 0000 | 04000 | 00000 | 40000 | 40000 | 00 0 | | | ONGANIZATION
3000 | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USBLM
USGS | | | SUSP DISCHARGE | | XU4 U | 00000 | 0 000 | 00000 | 4 00 | 0044
4 | ₹ 70 | | | ISIS TRAY TAM 038 | | | | | | | | | | | BSIZ TRAS SUZ | | AAm A | 4 4 4 | 0 | AOA m | AARZ | OKKAM | ΥΣO | | | SUSP SED CONCEN | | XUAEU | 96999 | 00000 | 00000 | DAWUU | P P D D G | 4000 | | | ON3 WO
AA3Y | | 1979
1975
1975
1949 | 1975
1975
1975
1975 | 1975
1950
1975
1965
1975 | 1975
1975
1975
1975 | 1950
1966
1975
1972
1978 | 1976
1973
1973
1966 | 1966
1973
1972 | | | OW BEGIN | | 1975
1948
1960
1949 | 1947
1947
1947
1949
1949 | 1947
1949
1948
1948 | 1947
1947
1949
1949 | 1949
1966
1949
1949 | 1976
1964
1964
1966
1966 | 1966
1946
1981
1946 | | | BASIN
DESCRIPTOR | | 024
014
014
024 | 88888
444444 | 000 - - 000 - 00 | 000
424
000
44
014 | 0000
4 4 4 4 | 124
000
4
000
4
000 | 124 | | | DRAINAGE
AREA | | 118.00
118.00
118.00 | | 356.00 | 18.60 | 4.46
500.00
267.00
332.00 | 165.00
415.00
182.00
52.60 | 808.00 | | | 3712
3712 | | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | N N N N N N N N N N N N N N N N N N N | X X X X X X X X X X X X X X X X X X X | SESEE | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | | | YTWUOD | | 013
013
031
013 | 013
013
013 | 013
013
013
013 | 013
013
013
013 | 013
013
013 | 013
013
013
013 | 013
013
017 | | | 3TAT2 | | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056 | | | LONGITUDE | | 1084600
1084204
1084204
1084 150
1083700 | 1083000
1083408
1082800
1082700
1082500 | 1082500
1082500
1082400
1082354
1082300 | 1082100
1081850
1081500
1081306 | 1081200
1074702
1080817
1083608
1081630 | 108 1737
1074 144
1074316
1074610
1075445 | 1075835
1080446
1075750
1081208 | | | LATITUDE | | 431400
431804
431804
431756
431500 | 431300
431156
431300
431200 | 431200
431200
431200
431214
431200 | 431100
431138
431200
431320 | 431400
431037
431412
432146
431710 | 432105
431553
431722
431715
431652 | 431820
431609
435430
433846 | | | STATION NAME AND LOCATION | • | WYOMING CANAL BELOW PILOT DIVERSION NR MORTO FIVEMILE C AB WYO CA NR PAV WYO FIVEMILE C AB WYO CA NR PAV WYO FIVEMILE CREEK NR PAVILLION WYO POWERLINE WASTEWAY NR PAVILLION WYO | PAVILLION DRAIN NR PAVILLION WYD
OCEAN DRAIN NR PAVILLION, WY
OCEAN DRAIN NR PAVILLION WYD
DUDLEY WASTEWAY NR PAVILLION WYD
KELLETT DRAIN NR PAVILLION WYD | DEWEY DRAIN NR PAVILLION WYO FIVEMILE 76 DRAIN NR RIVERTON WYO SAND GULCH DRAIN AND WASTEWAY NR RIVERTON WY FIVE MILE CREEK NEAR RIVERTON, WYO LOST WELLS BUTTE DRAIN NR RIVERTON WYO | COLEMAN DRAIN NR SHOSHONI WYO
SAND GULCH NR SHOSHONI WYO
EAGLE DRAIN NR SHOSHONI WYO
LATERAL P-34.9 WASTEWAY NR SHOSHONI WYO
FIVEMILE CREEK NEAR SHOSHONI, WYO. | LATERAL P-36.8 WASTEWAY NR SHOSHONI WYD
DEAD MAN GULCH NR MONETA WYD
POISON CREEK NR SHOSHONI WYO
MUDDY CREEK NEAR PAVILLION, WYO.
MUDDY CREEK NEAR SHOSHONI, WYO. | COTTONWOOD CREEK NR BONNEVILLE WYO BADWATER CREEK NEAR LYSITE, WYO. BRIDGER CREEK NEAR LYSITE, WYO. DOLUS CR NR LYSITE WYO DOLUS CR NR LYSITE WYO | HOODOO CR NR BONNEVILLE WYO BADWATER CREEK AT BONNEVILLE, WYO. NOWATER CREEK NEAR COLTER WYOMING BIGHORN RIVER AT THERMOPOLIS, WYO. | | | HYOROLOGIC
Unit
Cooe | | 10080005
10080005
10080005
10080005 | 10080005
10080005
10080005
10080005 | 10080005
10080005
10080005
10080005 | 10080005
10080005
10080005
10080005 | 10080005
10080005
10080005
10080005 | 10080005
10080006
10080006
10080006 | 10080006
10080006
10080007 | | | MEDIA | | | | | | | | | |----------------------------|--|--|---
---|---|---|---|----| | 9012 G32 | 04000 | 00000 | 0000 | 04000 | 40000 | 00000 | 0000 | | | MOITAXIMADRID
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USFS
USFS
USFS
USFS | USGS
USGS
USGS
USGS
USGS | USFS
USFS
USGS
USGS | | | SUSP DISCHARGE | ጠ ፍጽፍ | R 4 X X N | R 4 4 0 0 | ы ∨ 4 | $X \triangleleft X X$ | VEIK M | 4 M 4 4 | | | SSIZ TRAY TAM G38 | | | | ⋖ | | | | | | SUS TAN SED CONCEN | 2 2 2 | Ω m X X 4 | α « α × ο | ш 00 | | ⋖ ⋖ | | | | | m Z G X G | 0 O | ₩ 4 ₩ 70 0 0 | M Z U U A | 2 X 4 X X | V T AM | S S S S S S S S S S S S S S S S S S S | | | OW END
RABY | 1947 | 197 | 1966 | 1951
1971
1975
1967 | 195 | 196 | 197 | | | OM BEGIN | 1974
1947
1977
1977 | 1977
1965
1978
1977
1965 | 1978
1966
1978
1951
1965 | 1974
1950
1948
1946
1967 | 1950
1968
1970
1972
1972 | 1967
1967
1969
1967
1965 | 1972
1975
1970
1975 | | | BASIN
DESCRIPTOR | 004 | 014
004
014 | 004 | 004
014
014
024 | 004 | 0000
4 4 4 4 | 00
4
4
4 | | | DRAINAGE
AREA | 85.50
509.00 | 416.00
95.00
361.00 | 149.00
518.00
10810.00 | 11020.00
11048.00
96.90 | | 57.90
803.00
72.00
1.59
2000.00 | 7.66 | | | TYPE OF | ************************************** | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | NS N
NS N
NS N
NS N | AS SW | | | COUNTY | 017
017
017
010
710 | 017
043
017
017
043 | 043
043
043
043 | 0033
0033
0033 | 043
003
003
003 | 043
043
003
003 | 029
029
039
029 | | | STATE | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056 | | | LONGITUDE | 1085202
1081100
1084030
1082800 | 1082336
1080910
1084525
1083112
1080348 | 1075546
1075928
1081343
1080042
1075808 | 1075808
1075559
1075500
1075900
1080150 | 1080202
1072000
1071300
1073100 | 1072320
1072539
1071740
1075430 | 1090600
1091100
1091839
1091752 | | | LATITUDE | 433953
434300
434540
435540
435332 | 435214
435145
440000
440014
435522 | 435455
435826
440412
440114 | 440048
440330
441200
441600 | 442128
440500
441100
441737 | 435730
440048
440030
441633
441634 | 435600
435600
435210
435233 | | | STATION NAME AND LOCATION | S F DWL C NR ANCHOR WYD
DWL CREEK NEAR LUCERNE, WYO.
COTTONWOOD C AT COUNTY BR NR HAMILTON DOME W
COTTONWOOD C AT ST HWY 120 NR HAMILTON DOME
GRASS C AB L GRASS C NR GRASS CREEK WY | GRASS C NR MOUTH NR HAMILTON DOME WY COTTONWOOD CREEK AT WINCHESTER WYO GOOSEBERRY CREEK AT DICKIE, WYO. GOOSEBERRY C AT ST HWY 431 NR GRASS CREEK WY GOOSEBERRY CREEK AT NEIBER, WYO. | EAST FORK NOWATER CREEK NEAR COLTER, WYO.
NOWATER C 4 MI SO OF WORLAND, WYO
MIDDLE FORK FIFTEEN MILE CR NR WORLAND WYO
FIFTEEN MILE CREEK NEAR WORLAND, WYO.
BIGHORN R AT WORLAND WYO | BIGHORN R AT WORLAND WYO
SLICK C 3.5 MILES NE OF WORLAND WY
BIGHORN R NR MANDERSON WYO
BIGHORN R AT MANDERSON WYO
ELK CR NR BASIN WYO | ANTELOPE C 2 MILES S OF BASIN WY
TENSLEEP CK AT FOREST BOUNDARY
LAKE CK AT HIWAY 16 AB MEADOWLAR
PAINTROCK CK AB HYATT RANCH
MEDICINE LODGE CK AT USGS 2730 | SPRING CR NR TEN SLEEP WYO
NOWOOD R NR TENSLEEP, WY
CANYON CREEK BELOW COOKS CANYON, NEAR TENSLE
NOWOOD RIVER TRIB NO 2 NR MANDERSON WYO
NOWOOD R AT MANDERSON, WYO | WOOD R.NEAR GUARD STA.AB BROWN C
TH WOOD R AT BROWN MTN CG
WOOD RIVER NEAR KIRWIN, WYO. | `~ | | HYDROLOGIC
Unit
Code | 10080007
10080007
10080007
10080007 | 10080007
10080007
10080007
10080007 | 10080007
10080007
10080007
10080007 | 10080007
10080007
10080007
10080007 | 10080007
10080008
10080008
10080008 | 10080008
10080008
10080008
10080008 | 10080009
10080009
10080009 | | | MEDIA | | | | | | | | | |----------------------------|---|---|---|---|---|---|--|--| | NOTZ G32 |
0000 | 00000 | 00000 | 00000 | 00 00 | 00000 | 0000 | | | OND-ANIZATION
BOOD | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USFS
USFS
USGS | USGS
USGS
USGS
USGS
USGS | USFS
USFS
USFS
USFS | USES
USES
USES
USES
USES | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USFS
USFS | | | SUSP DISCHARGE | NAMAA | 44750 | AMUA | বৰৰমৰ | 44 I | 0 U A H U | 4m X Z | | | BEIZ THAS SZUZ | | | | | | | | | | NEONOD GES ASINS |
ZUM44 | 44X4N
0 | 4 H U 4 A | 44414 | A A O E I | 22A
22A
22A
22A | 0 M X S
m m | | | MM31 | വവ വവ | വവ | - 88 · | ល4 ល | 0.0 | | Ω | | | OW END
AA3Y | 197
197
197 | 197 | 196 | 197 | 197 | 1971 | 197 | | | OW BEGIN | 1975
1954
1951
1975 | 1975
1975
1971
1971 | 1967
1951
1946
1970
1970 | 1972
1972
1970
1970
1972 | 1972
1972
1949
1965
1974 | 1950
1958
1976
1967
1945 | 1968
1968
1971
1970 | | | NIZAB
Rotqiadzego | 0
4
4
4
4
4 | 124 | 004
000
004 | | 014
004
124 | 124
124
004 | 124 | | | DRAINAGE
AREA | 194.00
681.00
1115.00 | 433.00 | 145.00
560.00
15765.00
28.80 | | 2350.00 | 381.00
2989.00
100.00
22885.00 | 428.00
1294.00 | | | 10 19YT
3712 | A A A A A A A A A A A A A A A A A A A | N A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | A S A S A S A S A S A S A S A S A S A S | N N N N N N N N N N N N N N N N N N N | N A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | | | COUNTY | 029
029
003
029
029 | 029
029
003
003 | 003
003
003
003 | 029
029
029
029
029 | 029
029
017
003
003 | 003
003
037
103 | 003 | | | 3TAT2 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
030
030 | 030
030
056
056 | | | LONGITUDE | 1085235
1081110
1090816
1090838 | 1090528
1090300
1074244
1075200
1080300 | 1074244
1080252
1081051
1081750
1095600 | 1094000
1094300
1093700
1093100
1093400 | 1093315
1085459
1085118
1082600
1082600 | 1082700
1081951
1085002
1080033
1072800 | 1072336
1073327
1072810
1072600 | | | LATITUDE | 440215
440920
442424
435543
435608 | 435919
440155
443354
445000
443000 | 443354
443034
444531
445831
443000 | 442800
442700
442800
442800 | 441230
444023
444318
445020 | 445100
445131
444105
452840
460850 | 451038
454408
444702
444500 | | | STATION NAME AND LOCATION | WOOD RIVER AT SUNSHINE, WYO.
GREYBULL RIVER AT MEETEETSE, WYO.
GREYBULL RIVER NEAR BASIN, WYO.
M F WOOD R NR KIRWIN WY | DICK C NR KIRWIN WY
SUNSHINE RES TRIB NR MEETEETSE WY
SHELL CK AT USGS 2785 NR SHELL
PORCUPINE CK AT STAFF NR MOCNWHL
DRY CREEK AT GREYBULL WYO | SHELL CREEK NEAR SHELL WYO
SHELL C NR GREYBULL, WYO
BIGHORN R AT KANE WYO
BIG COULEE NEAR LOVELL, WYO.
NORTH FORK SHOSHONE R AB PAHASKA | CLEARWATER CK & HIWAY 14-16-20
MOSS CK BELDW HOMES NR HIWAY
ELK FORK CK & ELK FK CG
NORTH FK SHOSHONE R & FOREST BDY
CLOCKTOWER CK & HIWAY 14-16-20 | SOUTH FK SHOSHONE R NR VALLEY SHOSHONE R BEL WILLWOOD DAM NR RALSTON WYO ALKALI C NR RALSTON WY SHOSHONE RIVER NEAR LOVELL WYO SHOSHONE RIVER NEAR LOVELL WYO | | LITTLE BIGHORN R BL PASS CREEK, NR WYOLA, MT
LITTLE BIGHORN RIVER NEAR HARDIN, MT.
SOUTH TONGUE R AT USGS 2970
PRUNE CK AT STAFF AB SIBLEY LAKE | | | HYDROLOGIC
Unit
Code | 10080009
10080009
10080009
10080009 | 10080009
10080010
10080010
10080010 | 10080010
10080010
10080010
10080010 | 10080012
10080012
10080012
10080012 | 10080013
10080014
10080014
10080014 |
10080014
10080014
10080015
10080015 | 10080016
10080016
10090101
10090101 | | | SED STOR | ۵۵۵۵ | 00000 | 00000 | 00440 | L. L. | | ٥٣ | | |----------------------------|--|--|--|--|---|---|---|--| | OMGANIZATION
BOOD | USFS
USFS
USFS | പ്രവരവ | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
WYOO4
WYOO4 | WY 004
WY 004
WY 004
WY 004 | WYOO4
WYOO4
USGS
USGS | | | SUSP DISCHARGE | 4 X X X Y | | ፈፈ ደጠ | 4422 | zz | | YΣ | | | 35:2 TAA9 TAM G38 | | | | | | | | | | SUSP SED CONCEN | 4 X X X · | 4 A D A A Z | M A A & A | 222 | 22222 | <u> </u> | ZZXZ | | | OW END
YEAR | | 1975
1975
1967 | | 1975 | | | | | | OW BEGIN | 1968
1975
1968 | 1968
1946
1967
1977
1959 | 1975
1976
1964
1975
1950 | 1975
1975
1979
1979 | 1979
1979
1976
1976 | 1976
1976
1976
1976 | 1976
1976
1974
1979 | | | NIZAB
Rotqiad230 | | 004 | 124 | 004
004
014 | 000 | | 014 | | | DRAINAGE
AREA | | 37.80
18.00
392.00 | 33.60
358.00
1477.00
38.30
1770.00 | 31.30 | | | 2533.00 | | | TYPE OF
STI2 | ************************************** | N A A A A A | A S A S A S A S A S A S A S A S A S A S | N N N N N N N N N N N N N N N N N N N | A A A A A A A A A A A A A A A A A A A | A A A A A A A A A A A A A A A A A A A | MS SW | | | COUNTY | 033 | 033
033
033 | 003
003
003
003 | 087
087
003
003
003 | 003
033
033 | 033
033
033
033 | 033
033
087
087 | | | STATE | 056
056
056 | | 030
030
030
030 | 030 | 030
030
056
056
056 | 056
056
056
056
056 | 056
056
030
030 | | | LONGITUDE | 107 1800
107 3200
107 105 1 | 107 1 100
107 1 401
107 0 2 49
107 0 1 49
106 5 7 40 | 1065536
1065015
1065008
1064209
1064615 | 1064252
1063555
1062529
1062708
1062435 | 1062751
1062832
1065918
1065847
1070110 | 1065753
1065625
1065430
1065813
1065633 | 1065513
1065021
1063128
1062725 | | | LATITUDE | 445100
444700
444208 | 44304/
444621
445432
445408
44925 | 450305
445905
450032
450319
450829 | 451228
451717
450007
450259
450409 | 450517
450750
445435
445441
445406 | 445426
445658
445758
44543
445638 | 445836
445902
452019
452443 | | | STATION NAME AND LOCATION | TONGUE R AT CAMPGROUND NR DAYTON
NORTH TONGUE R NR BURGESS RS
BIG GOOSE CK AT USGS GAGE 3020
LITTLE GOOSE CK AT USGS STA 3035 | W FR BIG GOOSE CR AT USGS 3019 RAPID CK & STAFF AB B.GOOSE ROAD WOLF CREEK AT WOLF, WYO. SLATER CREEK NEAR MONARCH, WYO TONGUE RIVER AT MONARCH WYO GOOSE CREEK BELOW SHERIDAN WYO | SQUIRREL CREEK NR DECKER, MT. PRAIRIE DOG CREEK NEAR ACME, WYO. TONGUE RIVER AT STATE LINE NR DECKER MONT DEER CREEK NEAR DECKER, MT. TONGUE RIVER AT TONGUE R DAM, NEAR DECKER, M | FOURMILE CREEK NEAR BIRNEY, MT. BULL CREEK NEAR BIRNEY, MT. HANGING WOMAN C AT STATELINE NR OTTER MT WADDLE CREEK NEAR OTTER MT EAST TRAIL CREEK NEAR OTTER MT | CORRAL CREEK NR OTTER MT
HORSE CREEK NR BIRNEY MT
GOOSE C #1
GOOSE C #3
TONGUE R #1 | TONGUE R #3 TONGUE R #3 TONGUE R #4 TONGUE R #5 TONGUE R #5 | TONGUE R #7 ON YOUNGS C TONGUE R #8 ON PRAIRIE DOG C TONGUE RIVER BL HANGING WOMAN C., NR BIRNEY. TONGUE, P AT RIRNEY DAY SCHOOL BRIDGE NR BIRN | | | HYDROLOGIC
Unit
Code | 10090101
10090101
10090101 | 10090101
10090101
10090101
10090101 | 10090101
10090101
10090101
10090101 | 10090101
10090101
10090101
10090101 | 10090101
10090101
10090101
10090101 | 10090101
10090101
10090101
10090101 | 10090101
10090101
10090102
10090103 | | | SED STOR | 0 | 00000 | 0000 | 0000 | 00000 | 04000 | 0000 | | |----------------------------|---|--|--|--|--|---|--|--| | ORGANIZATION
CODE | uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USFS | USES
USES
USES
USES
USES | USFS
USFS
USFS
USFS | | | SUSP DISCHARGE | Y 4 Z Y (| | ▼ □ ₹ | DEDN | ∢ | Z 000 | *** | | | ISIS TAA9 TAM 038 | | | | | Ø | | | | | SUS TAA9 92U2 | Z (|) 44 Z4 | 4 m4 | 00 W | | 2 0 | | | | 2026 SED CONCEN | Y ∢ Z Y (| O 442Z4 | ₹ 2 0 0 10 | DEPNO | AUEOA | ZENNE | XXXX | | | OW END
RABY | 1975 | | 1970 | 1976 | 1952 | 1975
1951
1968
1975 | 1974 | | | OW BEGIN | 1975
1975
1975 | 97
97
97
97 | 1975
1975
1946
1949 | 1949
1949
1976
1946
1976 | 1976
1950
1952
1951
1970 | 1970
1951
1964
1950
1949 | 1970
1972
1968
1971 | | | BASIN
Rotqirds30 | | 00 | 024
124
014 | 014 | 014
004 | 0
4
4
4
4
4
4 | | | | DRAINAGE
AREA | 58.70 | 70.70
102.00
86.94 | 386.00
697.00
5379.00
450.00 | 980.00
3090.00
151.00
6050.00
36.80 | 1150.00
765.00 | 51.70
174.00
945.00
956.00 | | | | TYPE OF | ************************************** | N N N N N N N N N N N N N N N N N N N | N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | A S S S | | | COUNTY | 075
087
075
087 | 017
017
075
075
075 | 017
017
019
019 | 019
019
033
033 | 019
019
019 | 019
019
019 | 033
019
019 | | | 3TAT2 | 020
030
030 | | 030
030
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056 | | | LONGITUDE | 1061220
1060925
1061139 | | 1054010
1054124
1054824
1064829
1060400 | 1063148
1061750
1060620
1060800
1065555 | 1062033
1063436
1062204
1062030
1065600 | 1065600
1064647
1063940
1061025
1060900 | 1065555
1065242
1065611
1064610 | | | LATITUDE | 451220
453046
453235 | 55409
60153
53220
54240
54600 | 455150
461342
462130
433851
442700 | 434135
434154
441250
443845
443450 | 434129
433710
433719
434102
441000 | 441200
441138
440450
442915
442900 | 443450
442722
443326
442000 | | | STATION NAME AND LOCATION | BEAR CREEK AT OTTER, MT.
THREEMILE CREEK NEAR ASHLAND, MT.
HOME CREEK NEAR ASHLAND MT
BEAVER CREEK NEAR ASHLAND, MT. | LISCOM CREEK NEAR ASHLAND, MT. FOSTER CREEK NEAR VOLBORG, MT. PUMPKIN CREEK NEAR SONNETTE, MT. LITTLE PUMPKIN CREEK NEAR LOESCH, MT. | PUMPKIN CREEK NEAR VOLBORG, MT. PUMPKIN CREEK NEAR MILES CITY MT TONGUE RIVER AT MILES CITY, MT. M F POWDER R ABOVE KAYCEE, WYO. FORTIFICATION CREEK AT THE POWDER | POWDER RIVER NEAR KAYCEE, WYO. POWDER RIVER AT SUSSEX, WYO. DEAD HORSE CREEK NEAR BUFFALO, WYO. POWDER R AT ARVADA WYO NORTH PINEY CREEK NEAR STORY, WYOMING | POWDER R AB SALT CR NR SUSSEX WY
SOUTH FORK POWDER R. NR. KAYCEE, WYO.
SALT CREEK NEAR SUSSEX, WYO.
SALT C 2MI W OF SUSSEX WY
NORTH FK CRAZY WOMAN C STAFFGAGE | POLE CK BEL BIWAY 16 & STAFFGAGE N FK CRAZY WOMAN CR BL SPRING DR NR BUFFALO, N FK CRAZY WOMAN CR NR GREUB, WYO. CRAZY WOMAN CREEK AT UPPER STA, NEAR ARVADA, CRAZY WOMAN CREEK NEAR ARVADA, WYO. | NORTH PINEY CK AT USGS STA 3215
ROCK CK AT USGS GAGE 3200 NR BUF
SOUTH PINEY CK AT USGS 3210
CLEAR CK AT USGS GAGE 3185 | | | HYDROLOGIC
Unit
Code | 10090102
10090102
10090102 | 10090102
10090102
10090102
10090102 | 10090102
10090102
10090102
10090201 | 10090202
10090202
10090202
10090202 | 10090202
10090203
10090204
10090204 | 10090205
10090205
10090205
10090205 | 10090206
10090206
10090206
10090206 | | | | r | | | | | | | |----------------------------
--|--|---|--|---|---|---| | SED STOR | 00000 | 00000 | 00000 | 000 | 00010 | 00 0 | 000" | | CODE
OMENIZATION | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USBLM
USBLM
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USBLM
USBLM
USBLM
USBLM | USGS
USGS
USGS
USGS | | ZOŻŁ DIZCHYKOE | বাম ব | বৰৰৰ | ш >О | ПАА | ∢m≥Z ⊻ | z z | Z 3 w Z | | 3512 TRAY TAM G38 | A A | ····· | | | | | | | SUS TRAY 92UZ | - W T - | | <u> </u> | <u> </u> | 4 | <u> </u> | Z W W Z | | | 6
A M X A A | 0 0 | 0
A H A ¥ D | 0 00 4 4 4 | ∀ M≯ZX | 2 2 0 0 2 | Z 3 w Z | | OW END
REAR | 197 | 197 | 197 | | ···· | | | | OW BEGIN | 1976
1975
1975
1975 | 1977
1977
1977
1977 | 1978
1950
1976
1951
1974 | 1980
1980
1975
1975 | 1969
1975
1950
1979 | 1975
1975
1980
1980 | 1974
1974
1967
1979 | | NIZAB
Rotqirdzego | 024
024
124 | | 0
4
4
4 | | 014 | 00
00
00
00
00
00
00 | 024
000
004
04 | | DRAINAGE
AREA | 120.00
322.00
409.00
118.00 | | 267.00
1110.00
8088.00
8748.00 | | 1235.00
13194.00
129.00 | 510.00 | 40339.00
42847.00
101.99 | | 40 34YT
3T12 | N N N N N N N N N N N N N N N N N N N | X X X X X X X X X X X X X X X X X X X | N N N N N | X X X X X X X X X X X X X X X X X X X | N N N N N | N N N N N N N N N N N N N N N N N N N | 3335
0000 | | COUNTY | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 019
019
019
019 | 033
033
019
075 | 005
005
005
005 | 005
005
017
017 | 017
019
019
019 | 087
087
017
733 | | 3TAT2 | 056
056
056
056 | 056
056
056
056
056 | 056
056
030
030 | 056
056
056
056
056 | 056
030
030
030 | 030
030
056
056
030 | 030 | | LONGITUDE | 1064636
1063913
1063206
1064920 | 1064635
1064649
1064631
1064510
1064258 | 1063225
1060456
1064258
1055210
10552415 | 1052400
1052300
1053350
1051840
1051740 | 1051850
1052106
1051844
1050745
1053140 | 1052340
1051734
1060900
1060900
1072055 | 1064609
1064143
1055336
1065310 | | (ATITUDE | 441958
442144
443309
443210 | 443128
443100
443127
443116
443339 | 443345
445218
443339
450404
452540 | 444500
443030
442530
443610 | 443900
445545
462656
462520
453230 | 455600
461539
435400
435400
461506 | 460510
461553
462351
452139 | | STATION NAME AND LOCATION | CLEAR CREEK NEAR BUFFALO, WYO. CLEAR C BL ROCK C NR BUFFALO WY CLEAR CREEK AT UCROSS WY PINEY CREEK AT KEARNY, WYO. SHELL CR AB LK DE SMET NR BUFFALO, WYO | PINEY CR AB LAKE DE SMET OUTLET NR BUFFALO.
LK DESMET OUTFLOW TO PINEY C NR KEARNEY
PINEY CR BEL LAKE DE SMET OUTLET NR BUFFALO.
PINEY CR BL LAKE DE SMET OUTLET NR BUFFALO.
PINEY CRL SENFF DRAW NR UCROSS WY | PINEY CREEK AT UCROSS WYO
CLEAR CREEK NEAR ARVADA WYO
PINEY C BL SENFF DRAW NR UCROSS WY
POWDER RIVER AT MODRHEAD, MT. | LITTLE POWDER RIVER RAWHIDE CRK AT JCT WITH COTIONWD C RAWHIDE CREEK AT U S HIGHWAY 14-16, NR GILLE L POWDER RIVER AB COTTONWOOD CREEK NEAR WEST COTTONWOOD C NR WESTON WY | L POWDER R NR WESTON WY L POWDER RIVER AB DRY C NR WESTON, WY POWDER RIVER NEAR LOCATE, MT. LOCATE CREEK NEAR ISMAY MT MIZPAH CREEK AT OLIVE, MT. | MIZPAH CREEK NEAR VOLBORG, MT.
MIZPAH CREEK NEAR MIZPAH, MT.
WILLOW CREEK AT THE POWDER RIVER
WILLOW CR AT THE POWDER RIVER
YELLOWSTONE RIVER AT MYERS, MT. | WEST FORK ARMELLS CREEK NEAR FORSYTH, MT. YELLOWSTONE RIVER AT FORSYTH, MT. YELLOWSTONE RIVER NEAR MILES CITY, MT. ROSEBUD C AT RESERVATION BOUNDARY NR KIRBY M | | HYDROLOGIC
Unit
Code | 10090206
10090206
10090206
10090206 | 10090206
10090206
10090206
10090206 | 10090206
10090206
10090206
10090207 | 10090208
10090208
10090208
10090208 | 10090208
10090209
10090209
10090209 | 10090210
10090210
10090902
10090902 | 10100001 | | MEDIA | | | | 00 | | 0000 | | |----------------------------|--|---|--|---|---|---|---| | NOT2 032 | 001100 | <u> </u> | Z Z | <u> </u> | <u>00 0</u>
∑ | 0000 | <u> </u> | | MOITAZINADRO
3003 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USBLI
USBLI
USGS
USGS
USGS | USCE
USGS
USBLM
USFS | USFS
USFS
USGS
USBLM
USFS | USGS
USGS
USFS
USFS
USFS | USGS
USGS
USBLM
USBLM | | 2024 DISCHYNCE | ~ < Z ~ Z | 200 X | 88 | W | | ٩ | шю | | SIZ TRAY TAM GBB | | | - | | O | 4 | | | ZUSP SED CONCEN | α ZαZ
α 4 Z α Z | 2 mmm | × 0 | | X X ∑ 10 00 | E A X X X | ш
ш | | | വ | X O D m X | 50 BB B | ນູນ | य यय | | <u> </u> | | ON3 WO
AA3Y | 197 | | 195 | 197 | 197 | 1976
1975
1975
1975 | | | OW BEGIN | 1977
1975
1979
1974 | 1977
1975
1948
1945
1966 | 1980
1980
1949
1945 | 1968
1947
1980
1975 | 1975
1975
1976
1980
1975 | 1976
1976
1975
1975 | 1950
1950
1980
1980 | | 8A51N
80T41R3230 | 00
40 | 004
124
004 | 00
4 | 000 | | 024 | 007 | | BRAINAGE
AREA | 27.23 | 233.00
69103.00
164500.00
74.00 | 671.00
4640.00
6190.00 | 8310.00 | | 128.00 | 1527.00
2070.00 | | 3112
3112 | ************************************** | N K K K K K K K K K K K K K K K K K K K | X X X X X X X X X X X X X X X X X X X | A A A A A A A A A A A A A A A A A A A | ***** | N N N N N N N N N N N N N N N N N N N | Ж Ж Ж Ж Ж Ж Ж Ж Ж Ж Ж Ж Ж Ж Ж Ж Ж Ж Ж | | COUNTY | 087
087
087
087
079 | 079
083
053
053 | 0111 | 053
053
027
005
009 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 0009 | 0000 | | | | | | | | | | | 3TAT2 | 000000000000000000000000000000000000000 | 030
030
038
038 | 030
030
038
038 | 038
038
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056 | | LONGITUDE | 1063410
1062508
1062702
1062830 | 1051927
1042546
1040922
1034300
1024605 | 104 1200
1043600
1042400
1035506
1033140 | 1031522
1031505
1052130
1052000
1053300 | 1053600
1052000
1054300
1050300 | 1054000
1054204
1051700
1051100
1051000 | 1050243
1041600
1051600
1053700 | | LATITUDE | 454603
454857
45151
461553 | 465100
472220
474042
480640
474714 | 450300
445600
450100
461744
465510 | 473525
473525
441600
433500 | 431800
432900
431200
432500 | 431321
431253
434000
434000 | 432545
432200
430600
430000 | | STATION NAME AND LOCATION | ROSEBUD CREEK NEAR COLSTRIP, MT.
GREENLEAF CREEK NEAR COLSTRIP, MT.
COW CREEK NEAR COLSTRIP MT
ROSEBUD CREEK AT MOUTH, NEAR ROSEBUD, MT.
YELLOWSTONE RIVER NEAR TERRY, MT. | CHERRY CREEK NEAR TERRY MT
BURNS CREEK NEAR SAVAGE, MT.
YELLOWSTONE RIVER NEAR SIDNEY, MT.
MISSOURI RIVER NR WILLISTON, ND
BEAR DEN CREEK NR MANDAREE, ND | LITTLE MISSOURI RIVER AT ALZADA MT
N FORK LITTLE MISSOURI RIVER
LITTLE MISSOURI RIVER AT ALZADA, MT.
LITTLE MISSOURI RIVER AT MARMARTH, ND
LITTLE MISSOURI RIVER AT MEDORA, ND | LITTLE MISSOURI R NEAR WATFORD
LITTLE MISSOURI RIVER NR WATFORD CITY, ND
DONKEY CREEK NEAR ROZET
PORCUPINE CR AT HILIGHT RD
UPPER ANTELOPE CR | BEAR CREEK
ANTELOPE CR AT IRWIN RD
PORCUPINE C AB BOSS C NR TECKLA
DRY FORK CHEYENNE RIVER
AT FIDDLEBACK CROSSING | DRY FORK CHEYENNE RIVER NEAR BILL, WYO DRY FORK CHEYENNE R NR ORPHA WY UPPER LITTLE THUNDER CREEK LOWER LITTLE THUNDER CREEK SCHOOL CR AT STOCK WATER
RES | CHEVENNE RIVER NR DULL CENTER WY LANCE CREEK NR RIVERVIEW WY BOX CREEK AT HIGHWAY 59 SAGE CREEK | | HYDROLOGIC
UNIT
CODE | 10100003
10100003
10100003
10100003 | 10100004
10100004
10110101
10110101 | 10110201
10110201
10110203
10110203 | 10110205
10110205
10120001
10120101 | 10120101
10120101
10120101
10120102 | 10120102
10120102
10120103
10120103 | 10120103
10120104
10120105
10120105 | | MEDIA | | | | | | | | | | |----------------------------|--------------------------------|---|---|---|--|---|--|--|--| | MOTZ 03Z | ٥٥ | | 0000 | 0 00 | 00000 | 00000 | # # # D O | 000 | | | ONGANIZATION
CODE | USGS | USBLM
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USBLM
USBLM
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USCE
USCE | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | ⋖ | 2 E | 0 0 0 | m 00 | N 4 | T 0 0 m m | | Om | | | SEE THAN TAM COR | | | | 4 4 | ⋖ | | m G G | ⋖ | | | SUSP PART SIZE | V 4 | M M Z | M Q M D N | <u>α</u> | <u> </u> | H 62 E E | <u> </u> | <u> пп А</u> | | | | | | 6 6 | m 8 8 0 0 | 40444 | 6 | 000m≥ | 2
A E G E | | | OW END
AA3Y | | 196 | 197 | | | 197 | 196
196
196
197 | 196 | | | OW BEGIN | 1976
1976 | 1980
1951
1852 | 1949
1949
1951
1963
1972 | 1970
1980
1975
1975 | 1978
1945
1977
1975 | 1965
1964
1954
1969 | 1959
1959
1959
1946
1968 | 1970
1965
1965
1946 | | | BASIN
DESCRIPTOR | | 8 | 014
004
124 | 124
004
004 | 014 | 124 | 000
0 4 4 | 0
4
4
4
4
4 | | | | | 88 | 88888 | 8 88 | 8 | 88888 | | 8888 | | | tAGE
EA | | ة <u>ة</u> | 320.
044.
100.
83. | 95. | 670. | 315.
530.
870.
210. | | 8889 | | | DRAINAGE
AREA | | 5270.00
8710.00 | 1320
1044
9100
83
21600 | 23900
495
594 | .6 | 315
530
5870
7210
471 | | 181400.00
186400.00
191700.00
5510.00 | | | TYPE OF
SITE | N S | N N N | N N N N N N N N N N N N N N N N N N N | X X X X X X X X X X X X X X X X X X X | X X X X X X X X X X X X X X X X X X X | 33333
33333 | ****** | X X X X X X X X X X X X X X X X X X X | | | COUNTY | 000 | 027 | 045
047
047
103
055 | 137
005
005
005
005 | 011
011
005
005
005 | 019
019
093
093
019 | 019
019
093
015
057 | 057
015
059
031 | | | JIAT2 | 056
056 | 046
056
046 | 056
046
046
046 | 046
056
056
056
056 | 056
056
056
056
056 | 046
046
046
046
046 | 046
046
038
038 | 038
038
046 | | | DE | | | | | | | 12 50 50 | | | | LONGITUDE | 233 | 040800
033343 | 040702
033516
032612
034948
015934 | 292
243
120
231 | 203
203
203
203 | 112
201
201
381
335 | 191 | 255
191
141
382 | | | E CO | 1052337 | 1040
1040
1033 | | 1012924
1050430
1051200
1052316
1051935 | 1050348
1045835
1052408
1052030
1052330 | 1034122
1032017
1030811
1023356
1040254 | 10049 | 1012550
1004912
1004418
1003820 | | | | 35 | 8885 | 44
45
49
16 | 5 6 8 4 8
5 8 8 4 8 | 8 4 8 0 0 | 30
47
11
26 | | 3008
1851
1922
1940 | | | LATITUDE | 430435 | 432500
431819 | 433207
431446
432042
440049
443116 | 443610
441030
440500
435904
440130 | 441658
441744
441628
441550
441650 | 444851
443930
443047
442211
443426 | 464800
473010 | 4730
4648
4639
4539 | | | STATION NAME AND LOCATION | BOX C BL CONFLUENCE NR BILL WY | CHEYENNE RIVER NEAR EDGEMONT SD
CHEYENNE RIVER NR RIVERVIEW WY
CHEYENNE R NEAR HOT SPRINGS SD | BEAVER CREEK NEAR NEWCASTLE, WYD.
HAT CR NEAR EDGEMONT SD
CHEYENNE R BELOW ANGOSTURA DAM SD
CASTLE CR ABOVE DEERFIELD RES NEAR HILL CITY
CHEYENNE R NEAR PLAINVIEW SD | CHEYENNE R AT CHERRY CREEK SD
RAVEN CREEK AT BELLE FOURCHE RIVER
CABALLO CREEK AT BELLE FOURCHE R
BELLE FOURCHE R BL RATTLESNAKE C NR PINEY WY | DONKEY C NR MODRCROFT WY
BELLE FOURCHE RIVER BELOW MODRCROFT, WYO.
DONKEY C O.4MI AB LEE DRAW AB WYODAK MINE WY
DONKEY CR BL WYODAK MINE NR GILLETTE WY
DONKEY C O.5MI BL LEE DRAW AB WYODAK MINE WY | INDIAN CR NEAR ARPAN SD
HORSE CR NEAR VALE SD
BELLE FOURCHE R NEAR STURGIS SD
BELLE FOURCHE R NEAR ELM SPRINGS SD
REDWATER CR AT WY-SD STATE LINE | WHITEWOOD C NR VALE SD
INDIAN C NR NEWELL SD
BELLE FOURCHE R NR HEREFORD SD
MISSOURI R AT BISMARCK ND
MISSOURI RIVER AT GARRISON DAM | MISSOURI RIVER AT GARRISON DAM. ND MISSOURI RIVER AT BISMARCK. ND MISSOURI RIVER NR SCHMIDT. ND GRAMD B. MEAB WAKPALA SD | | | HYDROLOGIC
Unit
Code | 10120105 | 10120106
10120106
10120106 | 10120107
10120108
10120109
10120110 | 10120112
10120201
10120201
10120201
10120201 | 10120201
10120201
10120201
10120201 | 10120202
10120202
10120202
10120202
10120203 | 101238 E
101238 E
101238 E
10130101 | 10130101
10130101
10130102
10130102 | | | AIG3M | | | | | | | | ~~ | |----------------------------|---|---|--|---|--|---|--|----| | 80T2 G32 | 0.0 | | 00040 | 00 44 | 40000 | 0000 | 0000 | | | ORGANIZATION
3000 | USGS
USCE
USGS | | USGS
USGS
USGS
USGS | USGE
USGS
USGE
USGS
USGS | USGS
USGE
USGS
USGS
USGS | USGS
USGS
USCE
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | ппип | 0 m 0 | w | 6 m | 2
E
0 | 3 0 3 0 € | | | SEIZ TRAN TAM 038 | ם × | E | | | | | | | | BS12 TAA9 92U2 | οω× | | ∢ ш≻≻ | m + m + m | $mm \times m$ | m X m 4 | wwz× | | | SUSP SED CONCEN | 0 m g | | <u> </u> | <u></u> | <u> </u> | <u> </u> | | | | ON3 WD
Ra3y | 1958 | 1969 | 1972 | 1979 | 1979 | 1979 | 1970
1979
1967
1979 | | | OW BEGIN | 1946
1968
1945 | 1946
1946
1946
1946
1946 | 1949
1970
1950
1946 | 1968
1945
1971
1950
1975 | 1975
1968
1945
1969 | 1946
1969
1968
1950
1970 | 1963
1945
1964
1948 | | | MIZAB
AOT91A3230 | 000 | | 0 1 4
4 1 0 | 004 | 000
014
014 | 000
124
000
44 | 8888
4444 | | | DRAINAGE
AREA | 5223.00 | 1230.00
549.00
2240.00
1240.00 | 1710.00
3310.00
580.00
1140.00 | 4100.00
509.00
1190.00 | 1350.00
3120.00
5370.00 | 2660.00
4880.00
243500.00
3107.00 | 1500.00
2200.00
3000.00
5000.00 | | | TYPE OF
STIE | X X X | ** *********************************** | A A A A A | N N N N N N N N N N N N N N N N N N N | A A A A A A A A A A A A A A A A A A A | AS S AS S | N N N N | | | COUNTY | 041
137
055 | 057
057
057
058
059 | 037
059
041
037 | 059
085
011
011 | 105
031
105
031
041 | 105
041
117
117 | 113
113
071 | | | 3TAT2 | ပ ပ ပ | | 038
038
038
038 | 038
038
038
046 | 046
046
046
046 | 046
046
046
046 | 046
046
046 | | | LONGITUDE | 1003609
1011305 | 1013700
1020339
1015531
1013726
1021827 | 1014805
1005827
1023305
1020230
1014955 | 1005600
1005603
1034443
1030709 | 1023827
1004835
1021141
1004904
1005033 | 1020922
1005033
1002300
1002220 | 1024841
1024929
1022930
1013128 | | | LATITUDE | 452042
444140
444144 | 471700
470940
471710
471706
464446
465002 | 463550
465012
462536
462130
460155 | 462300
462233
455906
455739
454810 | 453856
453942
454525
453028 | 451152
451521
441940
442225
441936 | 430433
431517
433052
434509 | | | STATION NAME AND LOCATION | MOREAU R AT
CHEYENNE RI
CHEYENNE RI | MISSOURI R AT OAHE DAM SD KNIFE R AT HAZEN N D KNIFE RIVER NR GOLDEN VALLEY, ND SPRING CREEK AT ZAP, ND KNIFE RIVER AT
HAZEN, ND HEART RIVER NR RICHARDTON, ND HEART R NEAR MANDAN, NO DAKOTA | HEART R BELOW HEART BUTTE DAM NR GLEN ULLIN
HEART RIVER NR MANDAN, ND
CANNONBALL RIVER AT REGENT, ND
CANNONBALL RIVER BELOW BENTLEY, ND
CEDAR CREEK NR PRETTY ROCK, ND | CANNONBALL RIVER NEAR BREIEN CANNONBALL RIVER AT BREIEN, ND NF GRAND R NR HALEY N D NORTH FORK GRAND RIVER AT HALEY, ND NORTH FORK GRAND RIVER AT HALEY, ND | SOUTH FORK GRAND R NEAR CASH SD GRAND R NEAR LITTLE EAGLE GRAND R AT SHADEHILL SD GRAND R AT LITTLE EAGLE SD MOREAU RIVER NEAR WHITEHORSE SD | MOREAU R NEAR FAITH SD
MOREAU R NEAR WHITEHORSE SD
BAD RIVER NEAR FT PIERRE
MISSOURI R AT PIERRE SD
BAD R NEAR FORT PIERRE SD | WHITE R AT SLIM BUTTE SD WHITE R NEAR OGLALA SD WHITE R NEAR ROCKYFORD SD WHITE R NEAR KADOKA SD | | | HYDROLOGIC
Unit
Code | | 10130105
10130201
10130201
10130201
10130202
10130203 | 10130203
10130203
10130204
10130204
10130205 | 10130206
10130206
10130301
10130301 | 10130302
10130303
10130303
10130303 | 10130306
10130306
10140102
10140102 | 10140201
10140201
10140201
10140202 | | | AIG3M | | | | | | | | | | | |----------------------------|-------------|--|----------------------|---|---|---|---|---|---|--| | 9012 G32
A1G3M | | ٥٥٥ | ۵ ۵ | 00000 | 4044 | 00400 | 00000 | 00000 | 0000 | | | ONDANIZATION
3000 | | USGS
USCE | USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGE
USGS
USGS
USGS
USGS | USGS
USGS
USCE
USCE
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | ν μ | 2 נ | R 0 4 9 R | 2 | 0 & | 4 Z Q | m m tx | шшшш | | | SIS TRAS TAM 038 | | Σ | Σ | 022 | ош ш | NΣ | | × | | | | SUSP PART SIZE | | УШп
ХШп | | | 0 11 11 0 0 | MEZA | <u> </u> | X A M A | ш | | | | | 6 | | R C 4 C R | 0 + 0 0
3 0 m 0 0 | m D Z K Z | 4 X X X Q | 9 7 9 7
7 8 H R R | 0000 | | | OW END
RABY | | 197 | 196 | 197 | 195
197
195
197 | 1950 | 197 | 197
196
197
196 | 197
197
197 | | | OW BEGIN | | 1950
1968 | 1975 | 1949
1946
1947
1946
1955 | 1950
1947
1947
1948 | 1968
1958
1947
1952
1960 | 1957
1952
1968
1939
1973 | 1955
1979
1960
1960
1966 | 1973
1960
1966
1970 | | | MISA8
ROT41R3230 | | 0 C | 8 | 004
424
421
424 | 000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 124
004
014 | 004
014
014 | 124
004
014 | 8888
4444 | | | | | 8 8 | 8 | 88 88 | 8888 | 8 88 | 88 8 | 8 88 | 8885 | | | DRAINAGE
AREA | | 1570.00 | 505. | 1790.
4290.
8090.
8390. | 390.
660.
320.
1070. | 12600.
4390.
7050. | 1820.
21550.
263500. | 279500.
860.
1680. | 241.
1800.
125.
73. | | | 70 39YT
3T12 | | NON | | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | N N N N N N N N N N N N N N N N N N N | SSSSSS | SSES | | | YTNUOD | | 095
085 | 258 | 161
161
031
031
103 | 103
017
031
121
123 | 107
107
107
045
013 | 049
067
027
135
023 | 135
051
125
027
027 | 029
029
029
057 | | | 3TAT2 | | 046
046 | 0346 | 031
031
031 | 031
031
031
046 | 031
031
031
038
046 | 046
046
031
046 | 046
031
046
046 | 046
046
046
046 | | | LONGITUDE | | 1004452 | 0985030 | 1024140
1021240
1011720
1002140
1000206 | 0995045
0994120
1005100
1002120
0994645 | 098 1245
098 1245
098 0220
098 18 15
098 1930 | 0984414
0973807
0972900
0972400
0983311 | 0972337
0964100
0970315
0965749
0965750 | 0970953
0970845
0970331
0965723 | | | LATITUDE | | 433604 | 25625 | 423800
423800
424950
425410
425413 | 424505
424120
423920
431230
430142 | 424425
424425
423915
462120
453705 | 450304
431109
425100
425200
430354 | 425158
423430
432110
425927
424704 | 450022
445633
445417
444352 | | | STATION NAME AND LOCATION | | LITTLE WHITE R BELOW WHITE RIVER SD 4 WHITE RIVER AT ST HWY 47 | KEYA PAHA RIVER AT I | MIOBRARA RIVER NR HAY SPRINGS, NEBR. MIOBRARA RIVER NEAR GORDON, NEBR. MIOBRARA RAT CODY NEBR MIOBRARA RIVER NEAR SPARKS, NEBR. | MIDBRARA R NR MEADVILLE NE
1 LONG PINE CREEK NEAR RIVERVIEW, NEBR.
5 SNAKE RIVER NEAR BURGE, NEBR.
5 KEYA PAHA R NEAR HIDDEN TIMBER SD
8 KEYA PAHA R AT WEWELA SD | PISHELVILLE BRIDGE NEAR VERDEL 7 NIOBRARA RIVER NR. VERDEL, NEBR. 7 VERDIGRE C NR VERDIGRE NE 8 JAMES RIVER AT LAMOURE, ND 9 JAMES R AT COLUMBIA SD | SOUTH FORK SNAKE CR NEAR ATHOL SD JAMES R NEAR SCOTLAND SD POWERHOUSE OUTFLOW GAVINS PT DAM MISSOURI R AT YANKTON S D MISSOURI R AT FORT RANDALL SD | MISSOURI R AT YANKTON SD
MISSOURI RIVER NEAR PONCA, NEBRASKA
2 VERMILLION R NR CHANCELLOR S DAK
2 VERMILLION R NEAR WAKONDA SD
2 VERMILLION R AT VERMILLION, S.D. | BIG SIOUX R NEAR WATERTOWN SD BIG SIOUX R AT WATERTOWN SD WILLOW CR NEAR WATERTOWN SD STRAY HORSE CR NEAR CASTLEWOOD SD | | | HYDROLOGIC
Unit
Code | | 10140203 | 10150001 | 10150003
10150003
10150004
10150004 | 10150004
10150004
10150005
10150006 | 10150007
10150007
10150007
10160003 | 10160008
10160011
10170101
10170101 | 10170101
10170101
10170102
10170102 | 10170202
10170202
10170202 | | | Third Thir | Vignu | | | | | | | | | |--|----------------------------|---|---|---|--|--|--|---|-------| | STATION NAME AND INCLINES AND ADDRESS OF A STATE S | AOTZ 032
AIGBM | ۵۵۵۵ | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | ~ | | STATION NAME AND LUCATION CO. NEER ESTATION | | USGS
USGS
USGS
USGS
USGS
USGS | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 X X X X X X X X X X X X X X X X X X X | 00000 | (7 (7 (7 (7 LL | STSTS | 25 T S T S |
| | STATURN WARE AND LECKTONN HITTER STOLLY RIVER NEAR BESTELLINE SD 12 STATURN WARE AND LECKTONN HITTER STOLLY RIVER RANGE REDOKATIONS SD 13 STATURN CR AT ENGLAND HITTER STOLLY RIVER RANGE REDOKATIONS SD 14 2256 SO 664455 ONG 60 11 554 15 STOLLY RIVER RANGE REDOKATIONS SD 15 STATURN CR AT ENGLAND HITTER STOLLY RIVER REDOKATIONS SD 15 STATURN CR AT ENGLAND HITTER STOLLY RIVER RANGE REDOKATIONS SD 16 STOLLY RIVER RANGE REDOKATIONS SD 17 STATE CON | SUSP DISCHARGE | шш∢шш | пппкп | 4 4 | 44400 | ከ | | | | | THE CANADIAN RIVER OF WEAR ESTELLINE SD 4438642 09864417 046 077 SW 164.00 004 1970 1979 IT INTERCHANCE STATEM WARE NOT INTERCHANGES SD 4432642 09864417 046 077 SW 164.00 004 1970 1979 IT INTERCHANCES SD 443262 09864417 046 077 SW 164.00 004 1970 1979 IT INTERCHANCES SD 443262 09864417 046 077 SW 164.00 004 1970 1979 IT INTERCHANCES SD 443262 09864417 046 077 SW 164.00 004 1970 1979 IT INTERCHANCES SD 443262 09864417 046 077 SW 164.00 004 1970 1979 IT INTERCHANCES SD 443262 09864417 046 077 SW 164.00 004 1970 1979 IT INTERCHANCES SD 443262 09864417 046 077 SW 164.00 004 1970 1979 IT INTERCHANCES SD 443262 09864417 046 079 SW 164.00 004 1970 1979 IT INTERCHANCES SD 443262 09864417 046 079 SW 164.00 004 1970 1979 IT INTERCHANCES SD 443262 09864417 046 079 SW 1670 1970 IT INTERCHANCES SD 443262 09864417 046 079 SW 1670 IT INTERCHANCES SD 443262 09864417 046 079 SW 1670 IT INTERCHANCES SD 443262 09864417 046 079 SW 1670 IT INTERCHANCES SD 443262 09864417 046 079 SW 1670 IT INTERCHANCES SD 443262 09864417 046 079 SW 1670 IT INTERCHANCES SD 443262 09864417 046 079 SW 1670 IT INTERCHANCES SD 443262 09864417 046 079 SW 1670 IT INTERCHANCES SD 443262 09864417 046 079 SW 1670 IT INTERCHANCES SD 443262 09864417 046 079 SW 1670 IT INTERCHANCES SD 443262 09864417 046 079 SW 1670 IT INTERCHANCES SD 443262 09864417 046 079 SW 1670 IT INTERCHANCES SD 443262 09864417 046 079 SW 1670 IT INTERCHANCES SD 443262 09864417 04846 IT INTERCHANCES ST 54226 08846 IT INTERCHANCES ST 54226 09864417 08864 IT INTERCHANCES | | | | | | | | | | | HIDEWOOD CR WEAR ESTELLINE SD 4425642 OB66447 O46 057 SW 164.00 O04 1970 1979 155.00 O04 1970 1979 155.00 O04 1970 1979 156.00 1970 1970 1970 1970 1970 1970 1970 | | | | | | | | | - | | TATION TO BE NOT THE RESTRICTIVE SD 443642 OBSE441 OAS 1015 SW 164 CO OA4 1970 1970 1970 1970 1970 1970 1970 1970 | SUSP SED CONCEN | | | | XXXXX | | | | ***** | | STATION NAME AND LICKTION L | | 97
97
96 | 97
97
97 | 97
97 | | 97
97
97
97 | 97 | 97
97
97 | | | STATION NAME AND IDICATION LATTION LATTI | | 1970
1970
1966
1960
1960 | 1960
1966
1970
1960
1966 | თთთთთ | თთთთთ | 1964
1976
1976
1976
1976 | 97
97
97
97 | 97
97
97 | | | HIDEMODD CR MEAR ESTELLINE SD 443642 0965417 046 057 SW 164. 164. 164. 164. 164. 164. 164. 164. | • | 000
004
000
004 | 000000
444444 | | | | | | | | HIDEWOOD CR NEAR ESTELLINE SD 442046 0965447 046 057 SI SI SIGNATURE RANDON SO SIGNATE CR NEAR DETELLINE SD 442046 0964451 046 017 SI | DRAINAGE
AREA | | | 18.
56. | 23.
35.
52.
58. | 431. | | | | | HIDEWOOD CR NEAR ESTELLINE SD | 1 | X X X X X X X X X X X X X X X X X X X | MS N MS N N N N N N N N N N N N N N N N | MS MS MS NA | X X X X X X X X X X X X X X X X X X X | A A A A A A A A A A A A A A A A A A A | M S A S A S A S A S A S A S A S A S A S | AS S AS | | | HIDEWOOD CR NEAR ESTELLINE SD 10 | COUNTY | 057
011
057
101
099 | 099
099
149 | വവവവവ | വവവവവ | 057
057
057
057 | 000
007
007 | 007
007
007 | | | Independent | 3TAT2 | 046
046
046
046 | 046
046
046
019
019 | 88888 | 88888 | 008
008
058
058 | 056
056
056
056
056 | 056
056
056
056 | | | Independent | LONGITURE | 96541
96541
96584
96445 | 0964726
0963755
0963354
0963345
0962022 | 1060200
1060400
1063400
1062657
1062207 | 1062322
1063034
1062658
1060356
106 1409 | 1062021
1063115
1061650
1061726 | 1061410
1061550
1062610
1062710
1062530 | 1061930
1062030
1062840
1062900 | | | HIDEWOOD CR NEAR ESTELLINE SD SIXMILE CR NR BROOKINGS SD BIG SIOUX RIVER 114MS1W300D BIG SIOUX RIVER 114MS1W300D BIG SIOUX RIVER PROOKINGS SD BIG SIOUX RALES SD BIG SIOUX RALES SD BIG SIOUX RAT STORING SO | LATITUDE | 44440 | 33201
33625
33659
24942
31158 | 403100
402400
404400
402936
403123 | 403327
403424
403457
404143
402829 | 405610
403425
403657
405447
411540 | | 7 4 6 6 | | | ###################################### | | HIDEWOOD CR NEAR ESTELLINE SD
SIXMILE CR NR BROOKINGS SD
BIG SIOUX RIVER 114N51W3OOD
BIG SIOUX RIVER NEAR BROOKINGS
BIG SIOUX R NEAR DELL RAPIDS SD | SKUNK CR AT SIOUX FALLS SD
BIG SIOUX R NEAR BRANDON SI
SPLITROCK CR AT CORSON SD
BIG SIOUX R AT AKRON IA
ROCK R NR ROCK VALLEY IOWA | MICHIGAN RIVER .5 MI S GOULD ILLINDIS R.AT RD #775 LONE PINE CR.NR FRST BDRY. GRIZZLY_CREEK NEAR SPICER, CO. BUFFALO CREEK NEAR HEBRON, CO. | GRIZZLY CREEK NEAR HEBRDN, CO. LITTLE GRIZZLY CREEK ABOVE COALMONT, CO. LITTLE GRIZZLY CREEK ABOVE HEBRON, CO. CANADIAN RIVER NEAR LINDLAND, CO. CANADIAN RIVER NEAR BROWNLEE, CO. | NORTH PLATTE RIVER NEAR NORTHGATE, CO.
LITTLE GRIZZLEY CR. AB CHEDSEY CR. NR. COALM
ILLINDIS R NR LARAND
PINKHAM CR NR NORTHGATE
ABOVE UPPER DOUGLAS TIMBER SALE | BLOWE UPPER DOUGLAS TIMBER
BELOW UPPER DOUGLAS TIMBER
NORTH PLATTE BL DOUGLAS CR
N PLATTE AT A BAR A RANCH
LOWER DOUGLAS CREEK | AB WEST MULLEN TIMBER SALE
BELOW WEST MULLEN TIMBER SAL
FRENCH CREEK
BELOW N BARRETT TIMBER SALE | | | | HYDROLOGIC
UNIT
CODE | 10170202
10170202
10170202
10170203 | | | | | 10180002
10180002
10180002
10180002 | | | | #012 032
AIG3M | ٥٥ | 000 | 0000 | ۵۵۵۵۵ | 00000 | 00000 | ۵۵۵ | ۵۵۵ | | |----------------------------|--------------|----------------------------------|--|--|--|---|--|---|--| | ORGANIZATION
GODE | 7.2 | USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USES
USES
USES
USES | | | SUSP DISCHANDE | | | | | | | | ΙZΨ | | | SIS THAS SZUZ | | | | | | | | 2 4 | | | ZNZL ZED CDMCEM | 4 2 | ZZZ | ανααα | YZ 4 4 Œ | 4444 | Y4444 | αααΣΣ | ¥IZW | | | OW END
RA3Y | 1975 | 97 | 1975
1976 | 1975
1975
1975
1975 | | 1975
1975
1975 | 1975 | | | | OW BEGIN | 1975 | 1976
1976
1976 | 1975
1975
1976
1976 | 1969
1975
1975
1975 | 1975
1975
1975
1975 | 1975
1973
1975
1975 | 1975
1973
1969
1977 | 1977
1964
1972
1959 | | | BASIN
ROT91RJ230 | | | | | | | | 004
014
124 | | | DRAINAGE
AREA | | | | | | | | 72.70
263.00
4175.00 | | | 17 39YT
3T12 | 3 A | NA A | N X X X X | 33333 | M | 3 3 3 3 3
0 0 0 0 0 | 3333 | MS MS NS | | | COUNTY | 007 | 0007 | 007
007
007
007 | 007
007
007
007 | 007
007
007
007 | 007
057
057
057
057 | 057
057
057
007 | 007
007
007 | | | 3TAT2 | 0.56
0.56 | 056
056
056 | 056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
008
008
008
008 | 008
008
008
056
056 | 056
056
056
056 | | | LONGITUDE | 1062640 | 1063000
1063110
1063240 | 1065250
1065240
1064710
1062710
1064910 | 1064540
1064530
1064750
1064750 | 1065700
1065700
1065840
1065810 | 1070630
1064450
1064100
1064320
1064340 | 1064850
1064850
1064830
1064535 | 1064927
1065917
1070325 | | | LATITUDE | 11940 | 12040 | 410200
410940
410740
412910
410100 | 410120
410120
410030
410030 | 411000
411000
410900
411820 | 411550
405950
405940
405930
405950 | 405930
410000
405920
410128 | 410125
413453
415220 | | | STATION NAME AND LOCATION | | | HOG PARK RESERVOIR N FORK ENCAM BL BOTTLE CR ENCAMPMENT RIVER WATER VALLEY PASS CREEK EAST FORK WIER | UPPER EAST FORK STREAM GAUGE
COON CREEK STREAM GAUGE
RYAN CR AT CONF WITH EAST FORK
EAST FORK ENCAMP BELOW RYAN CR
MAIN ENCAMP BELOW EAST FORK | NELLIE CR ABOVE COW CR
LOWER HIDDEN TREASURE GULCH
NELLIE CR BELOW BATTLE TOWN SITE
HIDDEN TREASURE GULCH AB HW 70
JACK CR BL JACK CR PARK | JACK CR AB JACK CR GUARD STATION DAMFINO CREEK STREAM GAUGE DAMFINO CREEK AT HEADWATERS TRIBUTARY TO DAMFINO CR %UPPER< | RYAN CREEK AT HEADWATERS
AT HOG PARK GUARD STATION
WEST FORK ENCAMP AT JEEP TRAIL
COON CREEK STREAM GAGE
UPPER EF ENCAMPMENT RIVER | HDG PARK GUARD STATION
ENCAMPMENT RIV AB HOG PARK CR NR ENCAMPMENT
SAGE CREEK NEAR SARATOGA, WYD
N PLATTE R AB SEMINOE RES NR SINCLAIR WYO | | | HYDROLOGIC
UNIT
CDDE | 10180002 | 10180002
10180002
10180002 | 10180002
10180002
10180002
10180002 | 10180002
10180002
10180002
10180002 | 10180002
10180002
10180002
10180002 |
10180002
10180002
10180002
10180002 | 10180002
10180002
10180002
10180002 | 10180002
10180002
10180002 | | | MEDIA | γ | | | | | | | | | |----------------------------|---|---|--|---|--|--|---|---|--| | ROTZ G32 | | 0 040 | ممممم | 00000 | 222 | 2000 | <u> </u> | SSSSS | | | ONGENIZATION
GODE | | USGS
USGS
USGS
USGS
USGS | USES
USES
USES
USES
USES | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USBLM
USBLM
USBLM | USBLI
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USSC
USSC
USSC
USSC | | | SUSP DISCHARGE | | α 4 θ | ₹ 00 | ANDZX | 4 4 | жии т | N 4 | | | | SIS THAN 92UZ | | Ø ∑ | 4440 | ш | 4 4 | σш | n 0 4 8 | m m m m | | | ZOZE ZED CONCEN | | READA | AAEOE | ANDZX | 44888 | 8 5K 41 42 m | 0 0 Z Z 4 B | 8888 | | | AA3Y | | 76 | ဖ | வம | ω ω | ĺù | ဖ | ဖွစ္တွစ္ | | | OM END | | 6 6 | 197 | 197 | 197 | 197 | 197 | 197
197
197 | | | OW BEGIN | | 1976
1977
1976
1976 | 1976
1975
1965
1965
1975 | 1975
1956
1956
1976
1964 | 1976
1976
1980
1980 | 1980
1964
1956
1949
1970 | 1947
1959
1979
1976 | 1975
1975
1975
1975 | | | MISA8
GOT41A3230 | | 004 | 004
014
004
124 | 014 | | 124
014
124
014 | 124 | | | | | | 00 | 8888 | 86.89 | | 888 | 88 | | | | AGE
A | | 9.0 | 7.30 | 00 10 | | ο, ω, ω, | 4 80 | | | | DRAINAGE
AREA | | 1 2 | 21.
2338.
963.
177. | 232. | | 10812.
393.
11449. | 13538 | | | | TYPE OF | | N N N N N N N N N N N N N N N N N N N | 3 3 3 3 3 S S S S S S S S S S S S S S S | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | MS M | A S S S S | | | YTNUO3 | | 057
007
007
007 | 007
007
007
007 | 013
013
013
025 | 041
013
009
025
025 | 025
025
025
025
025 | 025
009
009
009
025 | 025
025
025
025
025 | | | 3TAT2 | | 008
056
056
056 | 056
056
056
056 | 056
056
056
056 | 056
056
056
056 | 056
056
056
056 | 056
056
056
056 | 056
056
056
056 | | | 10E | | | | (0, 0), (0, 10, 10 | | | | | | | LONGITUDE | | 3406
4840
4801
4806
2319 | 134
303
304
505
525 | 4 4 6 5 1 4 6 5 1 | 081857
081450
054400
063000 | 3600
3609
3210
1909 | 453
453
200
200 | 360
250
273
260 | | | LON | | 1063406
1064840
1064801
1064806
1062319 | 1061349
1063030
1063045
1060938
1085256 | 1084626
1084452
1084446
1075145 | 1081857
1081450
1054400
1063000 | 1063600
1064131
1063609
1063210
1061909 | 1061253
1054530
1054209
1062000 | 1063600
1062500
1062732
1062600 | | | <u></u> | | | | | | | | | | | LATITUDE | | 05750
10110
15607
15644
13127 | 413445
420022
420035
415712
422230 | 3259
3057
3047
22056 | 121848
121940
125100
130100
124900 | 24100
23427
24034
24315
25126 | 125140
125010
130245
123200 | 4000
3700
3231
3800 | | | LAT | | 4444 | | 44444 | 4444 | 44444 | 44 44 | 4444 | | | STATION NAME AND LOCATION | | S.F. BIG CR NR PEARL
LOWER EF ENCAMPMENT RIVER
BIG DITCH NR COYOTE SPRINGS WY
NORTH DITCH NR COYOTE SPRINGS WY
MEDICINE BOW RIVER | ROCK CREEK
HANNA DRAW NR HANNA WY
MEDICINE BOW RIVER ABOVE SEMINOE RESERVOIR N
L MEDICINE BOW R NR MEDICINE BOW WYO
SWEETWATER RIVER NEAR SOUTH PASS CITY, WYOMI | ROCK CREEK ABOVE ROCK CREEK RESERVOIR, WYO. SLATE CREEK NEAR ATLANTIC CITY, WYO. ROCK CREEK AT ATLANTIC CITY, WYO. W F CROOKS CREEK NEAR JEFREY CITY, WY SWEETWATER RIVER NEAR ALCOVA, WYO. | SOUTH FORK SULFUR C SITE M WEST ALKALI C NR SWEETWATER STAT SAND CREEK AT THE N PLATTE RIVER CASPER CREEK NR ILLCD POISON SPIDER CREEK AT N PLATTE R | BATES CREEK AT THE N PLATTE R
NORTH PLATTE R AT ALCOVA WYO
BATES C NR ALCOVA WYO
N PLATT R NR GOOSE EGG WYO
NORTH PLATTE R AT CASPER WYO | NORTH PLATTE RIVER BL CASPER WYO
N PLATTE R NR GLENROCK WYO
SAND C NR CLAYTON WY
FRANK DRAW TRIB NO 1 NR DRPHA WY
BATES CREEK | BATES CREEK @ 220 BRIDGE
BATES CREEK @ 220 BRIDGE
STINKING CREEK @ STOCK TRAIL
BIG RED | | | HYDROLOGIC
Unit
Code | | 10180002
10180002
10180003
10180003 | 10180004
10180004
10180005
10180005 | 10180006
10180006
10180006
10180006 | 10180006
10180006
10180007
10180007 | 10180007
10180007
10180007
10180007 | 10180007
10180007
10180007
10180007 | 10180007
10180007
10180007 | | | AIG3M | 000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0.000 | | |----------------------------|---
--|---|--|--|---|--|---------------------------------------| | 4012 GB2 | νν. | 00000 | 00000 | 00040 | 00000 | 00000 | <u> </u> | | | NOITATINADRO
3000 | USSC
USSC
USSC
USSS
USSC
USSC | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | SGS
 SGS
 SGS
 SGS | | | SUSP DISCHARGE | 9 H 9 | 0 & E | 23235 | | 22222 | 2222 | | | | IZ TRAS TAM 038 | | 00 | 4 m 4 0 4 | A A E O | | | | · · · · · · · · · · · · · · · · · · · | | BEIS TANN MEUZ | . ввопо | ОАПАА | 4 m 4 0 4 | 4 4 Z 0 Z | | | 0 40 | | | SUSP SED CONCEN | 2 | SENEE | 4 m 4 0 4 | A A E O E | 44727 | ~~~~ | 0 11 0 0 | | | OW END
YEAR | 1976
1976
1975 | 1975 | 1965
1965
1965
1965 | 1965
1965
1962
1962 | 1976
1976 | 1976 | 1970
1959
1959 | | | XEAR
OW REGIN | 1975
1975
1966
1966 | 1969
1969
1964
1964 | 1961
1961
1961
1961 | 1961
1961
1961
1969 | 1976
1976
1975
1975 | 1975
1975
1975
1975 | 1968
1974
1958
1958 | | | MISA8
ROT41A3230 | 124 | 124
124
124 | 024
024
024
024 | 024
024
024
124 | | | 124
014
004
004 | | | DRAINAGE
AREA | 14379.00
14888.00
15837.00 | 16237.00
25095.00
22218.00 | | 26700.00 | | | 1071.00 | | | TYPE OF | 8 8 8 8 8
8 8 8 8 | AS SA S | MS MS | N N N N N N N N N N N N N N N N N N N | MS M | MS MS | AS S AS | | | COUNTY | 025
005
009
031 | 031
015
015
157
015 | 157
157
157
157 | 157
157
123
123
069 | 88888 | 88888 | 001 | | | STATE | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 056
056
056
031 | 031
031
031 | 031
031
031 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056 | | | LONGITUDE | 1062500
1082800
1052326
1050946 | 1044515
1042102
1042102
1040257
1040248 | 1035033
1035000
1033500
1033726
1034057 | 1033000
1032600
1032008
1031856
1023800 | 1060130
1060230
1061700
1061420 | 1060950
1060910
1061100
1061050 | 1053627
1053656
1051114
1050400 | | | LATITUDE | 423800
423900
424100
423902 | 421650
420613
420613
415925
415927 | 415230
420000
415400
415413
414654 | 415200
415300
415018
415003
413000 | 4 10 820
4 10 100
4 12 120
4 12 135 | 412010
411910
412030
412030 | 411936
412450
415308
420228 | | | STATION NAME AND LOCATION | CORRAL CREEK
LITTLE RED CREEK
NORTH PLATTE RIVER NR DOUGLAS WYO
NORTH PLATTE R. AT ORIN, WYO.
NORTH PLATTE RIVER NR CASSA WYO | NORTH PLATTE R BL GUERNSEY RE, WYO NORTH PLATTE RIVER NEAR LINGLE, WYO. NORTH PLATTE RIVER NEAR LINGLE, WYO. N PLATTE R AT WYO-NEBR STATE LINE N PLATTE R AT WYO-NEBR STATE LINE | BROWN CANYON DR NR MITCHELL NEBR
DUTCH FLATS DR NR MITCHELL NEBR
WINTER CREEK AT TRISTATE CA NR SCOTTSBLUFF,N
HALE DRAIN NR SCOTTSBLUFF NEBR
GERING DR AT MITCHELL-GERING CAN NR GERING N | ALLIANCE DR NR MINATARE NEBR
NINEMILE DRAIN NR MINATARE NEBR
WEST WILDHORSE DR NR BAYARD NEBR
WILDHORSE DR NR BAYARD, NEBR.
NORTH PLATTE RIVER AT LISCO, NEBR. | FOX CREEK
BOSWELL CREEK
LIBBY CR ABOVE HW 130
TELEPHONE CR ABOVE HW 130
NASH FORK ABOVE HW 130 | N FORK LITTLE LARAMIE R AB HW13O
LIBBY CR AT FOREST BOUNDRY
NASH FORK AB MED BOW SKI AREA
NASH FORK BL MED BOW SKI AREA
SOUTH FORK LITTLE LARAMIE RIVER | LARAMIE RIVER AT LARAMIE, WYD.
LARAMIE RIVER AT HOWELL, WY
WHEATLAND CA NO 1 NR WHEATLAND WYO
WHEATLAND CA 2 NR WHEATLAND WYO | | | HYDROLOGIC
Unit
Code | 10180007
10180007
10180008
10180008 | 10180008
10180009
10180009
10180009 | 10180009
10180009
10180009
10180009 | 10180009
10180009
10180009
10180009 | 10180010
10180010
10180010
10180010 | 10180010
10180010
10180010
10180010 | 10180010
10180010
10180011 | | | MEDIA
MEDIA | 0 | | 00000 | 04000 | `۵۵۵۵۵ | 00000 | ۵۵۵۵ | | |----------------------------|---------------------------------------|--|---|--|--|--|--|---| | OROANIZATION
GOOT | S S S S S S S S S S S S S S S S S S S | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USFS
USFS | USFS
USFS
USGS
USGS
USGS | USFS
USFS
USGS
USCE
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 8.2 | | шОшZА | Х Ш | 000 | m 4 | АА ШШ | | | BED MAT PART SIZ | | ⋖ | < | | | | | | | SUSP PART SIZE | | M 4 4 M M | шош | W O W 7 7 | V V 01 = M | ш « | 44 11 11 | | | SINGS CED CONCEN | | NO BO | M X M X Z | R D M Z Z | ΣΧΧΟΙΦ | Ω Θ+ | 44 | | | OW END
RA3Y | 197 | L 9 L L | ,
n
- | 197 | 1961
1961 | 197
197 | 197 | | | OW BEGIN | 195 | 1965
1977
1964
1963
1969
1975 | 197
195
196
197
197 | 1978
1973
1962
1975 | 1975
1975
1957
1961
1961 | 1975
1975
1945
1957 | 1971
1971
1957
1957 | | | BASIN
DESCRIPTOR | 124 | 124
004
024
124
124 | 124
124
024
024 | 124 | 004
004
024 | 024 | | | | DRAINAGE
AREA | 4440.00 | | 2.10
9598.00
13245.00
212.00
52.00
72.00 | 424.00
137.00
1055.00 | 28.60
35.90
111.00 | 23138.00 | | | | 77PF 0F
3T12 | MS
MS | *** ********************************** | | N N N N N | M M M M M M M M M M M M M M M M M M M | N N N N N N N N N N N N N N N N N N N | N M M M | | | COUNTY | 031 | 015
157
093
059
059
005 | 123
123
087
013
013 | 123
069
061
001 | 001
001
039
039 | 001
001
115
131
047 | 047
047
047
047 | | | 3TAT2 | | | 8 8 8 8 8 | 008
008
056
056 | 056
056
008
008
008 | 056
056
008
031
031 | 031
031
031 | | | LONGITUDE | 1044633 | 1041211
1040000
1054305
1051031
105101
1050107 | 1051105
1043346
1035517
1051534
1051812 | 1050053
1053048
1051326
1052500
1052320 | 1052210
1051920
1043200
1043216
1042830 | 1052420
1052600
1021515
0990000
1000923 | 1000930
1000933
0993224
0993223 | | | LATITUBE | 420816
421202 | 414035
415500
391742
392432
392433
393708 | x 4 6 6 8 6 | 400929
402242
403952
411300 | 411120
411130
391235
391238
392014 | 411500
411510
405846
404055 | 405425
405420
404057
404048 | | | STATION NAME AND LOCATION | E WYD | NCH NEAR LA GRANGE SON, CO. OUTH PLATTE, CO. LETON, CO. SEWER AT DENVER, C | WOMMAN CREEK AI RUCKY FLAIS PLANI, CU. SOUTH PLATTE RIVER NEAR WELDONA, CO. SOUTH PLATTE RIVER NEAR WELDONA, CO. ST. VRAIN CREEK AT LYONS, CD. LEFT HAND CREEK NEAR BOULDER, CO. LEFT HAND CREEK AT MOUTH, AT LONGMONT, CD. | ST. VRAIN CREEK BELOW LONGMONT, CO. BIG THOMPSON RIVER AT ESTES PARK, CO. CACHE LA POUDRE R A MO OF CN, NR FT COLLINS, 1 MILE ABOVE WALLIS PG BELOW BLAIR PG | RES OUTLET AT VEDAUWOD CG
AT FOREST RD ND 700
KIDWA CREEK AT ELBERT, CO.
WEST KIDWA CREEK AT ELBERT, CO.
KIOWA CREEK AT KIOWA, CO. | LODGEPOLE CR AT POLE CR CAMPGR
LODGEPOLE CR AT UPPER TIE CITY
SOUTH PLATTE RIVER AT JULESBURG, CO.
MISSOURI R AT NEBR CITY NE
PLATTE R. AT GOTHENBURG, NEBR. (NORTH CHAN.) | PLATTE R. AT GOTHENBURG, NEBR. (MIDDLE CHAN.) PLATTE R. AT GOTHENBURG, NEBR. (SOUTH CHAN.) PLATTE R NR OVERTON N CHAN PLATTE R NR OVERTON S CHAN | · | | HYDROLOGIC
Unit
Code | | | 10190003
10190003
10190005
10190005 | 10190005
10190006
10190007
10190009 | 10190009
10190009
10190010
10190010 | 10190015
10190015
10190018
10200101 | 10200101
10200101
10200101 | | | MEDIA | | | | | | | | | |----------------------------|---
--|---|---|--|---|---|-------------| | SED STOR | ٥٥٥٥ | 00400 | 000 | 00000 | 00000 | 40004 | 0000 | | | ORGANIZATION
3000 | USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USCE
USCE | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 5
E | 4 m X4 | Dee | 0 4 H 4 H | 40404 | 4 m tx | ບ ບ 4 S | | | 3512 TRAY 92U2 | *** *** *** *** | ш | Σ | ш | ш ш | шш И | ш∑ | | | SOUS SED CONCEN | | | D A A M M | Q 4 m 4 m
m 4 Σ 4 m | <u>т т п</u> | □4 ₹ 10 | | | | OW END
YEAR | 975 | 968
975
973
972 | 973 | | 975
972
975 | 955 | 975
975
968 | | | NEGIN
RA3Y | 1950
1946 1 | 1966
1948
1971
1952
1960 | 1970
1973
1975
1964 | 1951
1970
1970
1947
1966 | 1948
1958
1943
1946 | 1949 1
1946
1971
1975 | 946 1
956 1
957 1 | | | BASIN
DESCRIPTOR | 124 | 124 | 000 | 00000
444444 | 124 | 024 | 000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | DRAINAGE
AREA | 57700.00
379.00
60900.00 | 270.00 | 85800.00 | 684.00
119.00
1051.00
1850.00 | 2040.00
41.90
8090.00 | 3750.00
4290.00
14400.00 | 762.00
1060.00
1220.00 | | | 30 39YT
3TI2 | A A A A | A A A A A A A A A A A A A A A A A A A | A S S A S S | MS MS NS | MS MS | A A A A A A A A A A A A A A A A A A A | A S A S A S A S A S A S A S A S A S A S | | | COUNTY | 047 | 037
141
053
025
025
025 | 153
025
025
025
109 | 109
109
025
009
171 | 009
163
093
093
019 | 175
093
125
125
011 | 077
125
125
089 | | | 3TAT2 | 031
031
031 | 03 03 | 031
031
031 | 031
031
031 | 031
031
031 | 031
031
031 | 031 | | | LONGITHDE | 0993224
0991148
0972941 | 0,000000 | 0960928
0960715
0955746
0962703 | 0964054
0963239
0962701
1000600
1003130 | 1000605
0985204
0982650
0982650
0984425 | 0985517
0982650
0974920
0974325
0980450 | 0982648
0980453
0980015
0983030 | | | LATITUDE | 404057
404756
412204 | 124
131
100
100
100
100 | 410055
410005
410102
405803 | 405049
410056
405756
414950
414645 | 414923
411736
411155
411155
410153 | 411535
4112331
412505
414550 | 414241
412826
412345
422342 | | | STATION NAME AND LOCATION | PLATTE RIVER NEAR OVERTON, NEBR. (TOTFLO) WOOD RIVER NEAR RIVERDALE, NEBR. S PLATTE RIVER NEAR DOUNCAN, NEBR. | PLATTE RIVER NR. SCHUYLER,
SHELL CREEK NEAR COLUMBUS,
PLATTE RIVER AT NORTH BEND,
PLATTE R NR LOUISVILLE NE
PLATTE RIVER NEAR SOUTH BEN
MILL CREEK AT LOUISVILLE NE | PLATTE R AT LOUISVILLE NE CEDAR CREEK NEAR LOUISVILLE NEBR FOURMILE CREEK NEAR PLATTSMOUTH, NEBR. SALT C AT GREENWOOD NE OAK C NR RAYMOND NEBR | SALT CREEK AT LINCOLN, NEBR. ROCK CREEK NEAR CERESCO, NEBR. SALT CREEK AT GREENWOOD, NEBR. MIDDLE LOUP RIVER AT DUNNING, NEBR. DISMAL RIVER NR THEDFORD NEBR | DISMAL RIVER AT DUNNING, NEBR. OAK CREEK NEAR LOUP CITY, NEBR. MIDDLE LOUP R. AT ST. PAUL, NEBR. UNKNOWN STATION SOUTH LOUP R AT ST. MICHAEL, NEBR. | NORTH LOUP RIVER AT ORD, NEBR. 7 NORTH LOUP RIVER NR ST PAUL NEBR 9 LOUP R POWER CA AT DIV NR GENDA, NEBR. 1 LOUP RIVER NEAR GENDA, NEBR. 9 BEAVER CR AT LORETTO NEBR | CEDAR RIVER NEAR SPALDING, NEBR. CEDAR R AT BELGRADE NEBR CEDAR RIVER NEAR FULLERTON, NEBR. | | | HYDROLOGIC
Unit
Code | 10200101
10200102
10200103 | 10200201
10200201
10200202
10200202
10200202 | 10200202
10200202
10200202
10200203 | 10200203
10200203
10200203
102 10001
102 10002 | 102 10002
102 10003
102 10003
102 10003 | 10210007
10210007
10210009
10210009 | 102 100 10
102 100 10
102 100 10
102 2000 1 | | | MEDIA | | | | | | | | | |----------------------------|--|--|---|---|--|---|--|-------------| | AOT2 032 | 000 | 0 04000 | 04000 | <u> </u> | | 00004 | 4000 | | | MOITAXINADRO
3000 | 8951
8950
8950
8950 | S S S S S S S S S S S S S S S S S S S | USGS
USGE
USGS
USGS
USGS | USCE
USCE
USCE
IAOO7
USCE | USCE
USCE
USCE
USCE
USCE | USGS
USGS
USGS
USGS
USCE | USGE
USGS
USGS
USGS | | | SUSP DISCHANGE | шш | ш ∢ с хшш | 0 ш00 | | | M 2 2 | I 0 m | | | SSIS TRAN NEWS | ₩ Σ | ш И | <u> </u> | | | 3 | 3 | | | ZOZE ZED CONCEN | | | 0 2 ⊓ 3 ⊓ | E E E 3 | 33202 | EZEP NO N | N A M | | | GN3 WO
RA3Y | 1979 | 1968
1978
1968 | 1975
1969
1973
1973 | 1967
1969
1969 | 1967
1973
1969 | 1969 | 1973 | | | KEVB
OM BECIN | 1948
1960
1962 | 1963
1960
1965
1948
1948 | 1967
1968
1968
1950 | 1957
1939
1963
1965 | 1965
1965
1956
1939 | 1962
1970
1969
1968 | 1968
1945
1962
1973 | | | BASIN
DESCRIPTOR | 000 4
000 4
000 4 | | 00
00
00
00
00
00
00
00
00
00
00
00
00 | | | 004 | 888
444 | | | DRAINAGE
AREA | 1400.00
320.00
210.00 | 2790.00
700.00
6900.00
731.00 | 1334.00
2500.00
2730.00 | | | 9.26
129.00
322800.00 | 871.00
6.97
80.10 | | | TYPE OF | 3 3 3 3
3 3 3 3 | A A A A A A A A A A A A A A A A A A A | MS M
NS M
NS M
NS M | ASK ASK | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | 3 3 3 3
3 3 3 3 | | | YTWUOO | 089
0003 | ന നനന ന | 149
143
143
143
143 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 055
055
055
055 | 085
085
055
047 | 047
085
085
025 | | | 3TAT2 | 031
031
150 | 0 00000 | 910
910
910
910 | 019
019
019
019 | 031
031
019
031 | 019
019
019
019 | 019
019
019 | | | LDNGITUDE | 0982011
0982011
0982018 | 0974400
0972840
0972904
0972415
0961705 | 0961843
0955820
0950234
0954749 | 0960441
0960245
0955930
0955100 | 0960243
0960615
0955009
0955520 | 0955615
0955327
0955520
0955520 | 0952003
0954657
0954820
0960710 | | | LATITUDE | 421603
421603
420820 | 20245
20020
21044
20159
11725
20640 | 423436
415755
430106
422820
420456 | 421534
421557
415755
420400
411003 | 411840
411822
411713
411530
411600 | 414510
413754
411532
411532
420540 | 420033
413833
414420
405118 | | | STATION NAME AND LOCATION | ELKHORN RIVER AT EWING, NE
SOUTH FORK ELKHORN RIVER A
CLEARWATER C NR CLEARWATER | | FLOYD RIVER AT JAMES, IOWA L SIDUX R NR TURIN IOWA LITTLE SIDUX RIVER NEAR GILLETT GROVE, IOWA LITTLE SIDUX RIVER AT CORRECTIONVILLE, IOWA LITTLE SIDUX RIVER AT KENNEBEC, IOWA | WF DITCH NR HOLLY SPRINGS IOWA
WOLF C NR HOLLY SPRINGS IOWA
MONONA HARRISON D NR TURIN IOWA
GINGLES WATCRSHEDS
WB PAPILLION NR PAPILLION NEBR | L PAPILLION C AT IRVINGTON NEBR
BIG PAPILLION C AT FORT ST OMAHA
INDIAN C N BROWY COUNCIL BLUFFS IA
MISSOURI R AT OMAHA NE
L PAPILLION C A PEONY PARK OMAHA NE | STEER CREEK NEAR MAGNOLIA, IA. WILLOW CREEK NEAR LOGAN, IOWA MISSOURI RIVER AT OMAHA, NEBRASKA BOYER RIVER AT DELOIT IA | E F BOYER RIVER NR DENISON IA
BOYER RIVER AT LOGAN, IOWA
THOMPSON CREEK AT WOODBINE, IA.
WEEPING WATER CR AT WEEPING WATER, NEBR. | , | | HYDROLOGIC
Unit
Code | 10220001
10220001
10220001 | 10220001
10220001
10220002
10220003
10220003 | 10230002
10230003
10230003
10230003 | 10230004
10230004
10230004
10230005
10230006 | 10230006
10230006
10230006
10230006 | 10230006
10230006
10230006
10230006 | 10230007
10230007
10230007
10240001 | | | | | | -, | | | | | | |----------------------------|--
---|--|--|---|---|---|--| | #OT2 G32
AIG3M | ٥٥٥٥٥ | 00000 | 00000 | 00000 | 44000 | 0000 | 0404 | | | MOITASINADAD
3003 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USCE
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USCE
USGS
USCE | | | SUSP DISCHARGE | 4 4mm∑ | 入ととと人 | ጠዪኧኧ | N N 4 0 0 | のヱの | v e v D | ∝ ∑ | | | 35/2 TRAS TAM 038 | 0 | | ···· | | m | ∑ 00 | | | | SUSP SEO CONCEN | A 4 M 0 I | X U U U A | Σmαxx
Σ αα∢ | N N O O | m Z m A m | A m 4 Q B | MEEE | | | | ω | 0000 | | N N 4 2 2 | ш≥о≥о | 90000
00000 | ω α
3 Σ Σ Σ | | | OW END
YEAR | 197 | 197
196
197
197 | 197
197
197 | 197
197
197 | 1965
1968
1970
1979 | 197 | 197 | | | OW BEGIN | 1973
1973
1971
1950 | 1965
1955
1952
1945 | 1978
1966
1962
1978 | 1976
1976
1956
1955
1955 | 1949
1949
1964
1976
1964 | 1978
1964
1962
1969 | 1968
1948
1969
1965 | | | BASIN
0ESCRIPTOR | 004
004
004
014 | 000
000
000
000
000
000 | 000
4
4
4
4 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00 00
4 00 4 | 00
4
4 | 900 | | | DRAINAGE
AREA | 241.00 | 1326.00
10.60
26.00
894.00
2806.00 | 49.30
11.90
29.00
3.74 | 160.00
220.00
218.00
.19 | 276.00 | 57.00
111.00
762.00 | 217.00 | | | TYPE OF 3T12 | A & & & & & & & & & & & & & & & & & & & | A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S | A S A S A S A S A S A S A S A S A S A S | 3 A A A A A A A A A A A A A A A A A A A | 3 X X X X X X X X X X X X X X X X X X X | A A A A A A A A A A A A A A A A A A A | AS AS | | | YTNUOD | 025
025
025
131 | 071
129
009
137
071 | 137
013
013
013 | 043
043
131
131 | 131
147
013
013
013 | 013
013
013
145 | 159
021
021
165 | | | 3TAT2 | 031
031
031 | 019
019
019
019 | 019
020
020
020 | 020
020
031
031 | 020
020
020
020 | 020
020
020
019
029 | 019
029
029
029 | | | LONGITUDE | 0955643
0955440
0955417
0955048 | 0953448
0953542
0944820
0951407 | 0953732
0950632
0953350
0953136
0952702 | 0951916
0951130
0961046
0960731 | 0960630
0953530
0954035
0953820
0953920 | 0953535
0953731
0953310
0950047
0950520 | 0942446
0945128
0945128
0943330 | | | LATITUDE | 404845
404735
404746
404055 | 405223
405636
414025
410041
403757 | 403757
405852
394857
394734
394516 | 394653
394920
403758
404016
404021 | 395652
400200
395036
395017
395200 | 395358
395252
395820
404419
402640 | 404602
394510
394512
392400 | | | STATION NAME AND LOCATION | S BR WEEPING WATER CREEK NEAR UNION NEBR
WEEPING WATER CREEK AT UNION, NEBR.
WEEPING WATER C NR UNION, NEBR.
MISSOURI RIVER AT NEBRASKA CITY, NEBR. | WEST NISHNABOTNA RIVER AT RANDOLPH, IOWA
MULE C NR MALVERN IA
DAVIDS CREEK NEAR HAMLIN, IOWA
EAST NISHNABOTNA RIVER NEAR RED OAK, IOWA
NISHNABOTNA RIVER ABOVE HAMBURG, IOWA | 5 TARKIO RIVER AT STANTON, IOWA
5 WOLF R 3 MILES SW OF HIAWATHA, KS
5 WOLF R AT HIAWATHA, KS
5 BUTTERMILK C NR WILLIS, KS | WOLF R P
WOLF R P
LITTLE P
BROWNELL
BROWNELL | TURKEY C NR SENECA, KS
NEMAHA R FALLS CITY NEB
SPRING C NR FAIRVIEW, KS
WALNUT C NR FAIRVIEW, KS
MULBERRY C NR FAIRVIEW, KS | WALNUT C NR HAMLIN, KS
B TERRAPIN C AT HAMLIN, KS
WALNUT C AT RESERVE, KS
NODAWAY RIVER AT CLARINDA, IDWA
D BURLINGTON JUNCTION NODAWAY R | PLATTE RIVER NEAR DIAGONAL, IOWA
MISSOURI R ST JUSEPH MO
MISSOURI RIVER AT ST. JUSEPH, MO.
2 L PLATTE R SMITHVILLE MAIN STREET M | | | HYDROLOGIC
Unit
Code | 10240001
10240001
10240001
10240001 | 10240001
10240002
10240003
10240003 | 10240004
10240005
10240005
10240005 | 10240005
10240005
10240006
10240006 | 10240007
10240008
10240008
10240008 | 10240008
10240008
10240009
10240010 | 10240010
10240011
10240011
10240012 | | | MEDIA | | | | | | | | | | |----------------------------
--|---|--|--|--|--|--|--|--| | MOT2 032 | | 0 A D A | 04040 | 00000 | 00000 | 00000 | 00000 | 0000 | | | NOITAZINADRO
BODO | | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USCE
USCE
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | 2 2 | 7 7 | NNINN | 0000 | N 04 | 44000 | 4 0 0 | | | 3512 TRAY TAM 038 | | | mΣ | Ш | <u> </u> | | | | | | SUSP PART SIZE | | . <u>≥</u> | M M Z | ш Zшш | ш шо. | ZZMA | 4 %O | Z III Z | | | VISE SED CONCEN | | 5057
5057
5007
5000
5000
5000
5000
5000 | 0 m 0 m ₹ | 00I00 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | N 400 | 00 - 00
00 - 00 | 4 N N D
▼ 0 0 ▼ | | | OW END
PA3Y | ١ . | | 1953
1971
1964
1967 | 197
197
197 | 197
197
197
197 | 197
197
196
197 | 196
197
197
197 | 1974
1976
1976 | | | OW BEGIN | 9 | 1961
1961
1946
1949 | 1946
1947
1945
1946
1963 | 1962
1947
1963
1949
1950 | 1950
1958
1951
1951
1970 | 1944
1948
1961
1946
1968 | 1968
1962
1951
1946
1946 | 1965
1958
1949
1963 | | | NIZAB
Rotqirdzego | 6 | 024
014
124 | 421
421
421
420
421 | 124
124
004 | 0000
4 4 4 4 | 004
124
004 | 0000
4444 | 0000
4444 | | | | 8 | 888 | 8888 | 88888 | 85888 | 8 88 | 88888 | 8888 | | | DRAINAGE | 9 | 1019.
1860.
8450. | 8620.
14520.
950.
950. | 1110.
2770.
1500.
830.
259. | 130.
21.
770.
52.
880. | 1070.
15640.
74. | 446.
1063.
1510.
3740. | 1460.
1618.
1950.
590. | | | TYPE OF | 3 | N N N N | AS S AS | A W W W W | N N N N N N N N N N N N N N N N N N N | NS A A A | A A A A A A A A A A A A A A A A A A A | AS AS | | | COUNTY | 7.90 | 057
125
023
087 | 087
065
029
029
029 | 085
087
085
145
063 | 063
063
063 | 065
083
065
083
181 | 181
039
039
065
083 | 153
039
065
137 | | | 3TAT2 | | 031
008
020
031 | 031
031
031
031 | 031
031
031
031 | 031
031
031
031 | 031
031
031
031 | 020
020
020
031
031 | 020
020
031
020 | | | LONGITUBE | 0 | 1013230
1021706
1020040
1011342 | 1010240
1000835
1013055
1013035 | 1010740
1005240
1010650
1003000 | 1003747
1002640
1001920
1001525
1001320 | 1001035
0992950
1000835
0993008 | 1013757
1004318
1003428
0995324
0993315 | 1005740
1003335
0995335
1000600 | | | LATITUDE | 100 | 400425
400425
393410
400828 | 401000
401705
402505
402505 | 402050
401405
402210
401410
403920 | 403751
403833
403010
402820
402220 | 401755
400750
401705
400753
391707 | 391914
394037
394707
400245 | 395055
395906
400712
394613 | | | STATION NAME AND LOCATION | CONTRACT TA CONTRACT TO CONTRA | S.F. REPUBLICAN R NR BENKELMAN NEB
NORTH FORK REPUBLICAN RIVER NEAR WRAY, CO.
SF REPUBLICAN R NR CO-KS ST LINE, KS
REPUBLICAN RIVER AT STRATTON, NEBR. | REPUBLICAN RIVER AT TRENTON, NEBR. REPUBLICAN RIVER AT CAMBRIDGE, NEBR. ENDERS RESERVOIR NEAR ENDERS, NEBR. FRENCHMAN CREEK NEAR ENDERS, NEBR. | FRENCHMAN CREEK AT PALISADE, NEBR.
FRENCHMAN CREEK AT CULBERTSON, NEBR.
STINKING WATER CREEK NEAR PALISADE, NEBR.
RED WILLOW CREEK NEAR RED WILLOW, NEBR.
MEDICINE CREEK AT MAYWOOD, NEBR. | BRUSHY CREEK NEAR MAYWOOD, NEBR.
DRY CREEK NEAR CURTIS, NEBR.
MEDICINE CREEK ABOVE HARRY STRUNK LAKE, NEBR
MITCHELL CREEK ABOVE HARRY STRUNK LAKE, NEBR
MEDICINE CREEK BELOW HARRY STRUNK LAKE, NEBR | MEDICINE CREEK AT CAMBRIDGE, NEBR.
REPUBLICAN R NR ORLEANS NEB
REPUBLICAN R NR CAMBRIDGE NEB
REPUBLICAN RIVER NEAR ORLEANS, NEBR.
SF SAPPA C NR BREWSTER, KS | SF SAPPA C TR NR GOODLAND, KS
SF SAPPA C NR ACHILLES, KS
SAPPA C NR OBERLIN, KS
SAPPA CREEK NEAR BEAVER CITY, NEBR.
SAPPA CREEK NEAR STAMFORD, NEBR. | BEAVER C AT LUDELL, KS
BEAVER C AT CEDAR BLUFFS, KS
BEAVER CREEK NEAR BEAVER CITY, NEBR.
PRAIRIE DOG C AB NORTON RE, KS | | | HYDROLOGIC
Unit
Code | ************************************** | 10250002
10250003
10250003 | 10250004
10250004
10250005
10250005 | 10250005
10250005
10250006
10250007
10250008 | 10250008
10250008
10250008
10250008 | 10250008
10250009
10250009
10250009 | 10250010
10250010
10250011
10250011 | 10250014
10250014
10250014
10250015 | | | MEDIA | | | 7 | | | | | | |---
---|---|---|---|---|---|---|---| | #012 G32 | 0000 | 44 0 | 00004 | 044 0 | 40400 | 01 10 | 0000 | | | MOTATION
3000 | USGS
USCE
USGS
USGS | USCE
USCE
USCE
USCE
USCE | USGS
USGS
USGS
USGS
USGS | USGS
USCE
USCE
USFWS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USCE
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSPENSION | ~ | N | 4 N 4 | 4 ∩ | ▼ 7 | | m 4 4 4. | | | 3512 TRAS 92U2
3512 TRAS TAM 038 | mΣΣ∢m | B E E B ⋖ | A A | m Z Z Z m | m 4 m m 4 | 4 ≥ 8 m m | ы по
А | *************************************** | | NED CONCEN | NZEEN | 33330 | ANEAE | NEEED | E 4 E B A | S 3 S W CI | m 4 4 €. | | | OW END
YEAR | 1975
1968
1968
1979 | 1976
1968
1971 | 1979 | 1968
1967
1970 | 1974
1975
1968 | 1969
1976
1958 | 1978
1973
1978 | | | OW BEGIN | 1947
1961
1961
1961 | 1970
1948
1961
1970
1956 | 1961
1956
1966
1966
1958 | 1964
1942
1964
1977
1944 | 1941
1974
1949
1954
1961 | 1975
1963
1970
1951
1961 | 1964
1973
1957
1909 | | | BASIN
DESCRIPTUR | 014
004
014 | 014 | 00
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 00 00 | 00
00
00
00
00
00
00
00
00
00
00
00
00 | 000
410
410 | 0000
4 4 4 4 | | | DRAINAGE
AREA | 684.00
227.00
345.00 | 22903.00 | 330.00
24542.00
670.00
5220.00
1460.00 | 49.60 | 6965.00
7075.00
7580.00
297.00
594.00 | 54.00
8110.00
11730.00 | 120.00
87.00
143.00
19260.00 | | | PD BYYT
BTIS | * * * * * * * * * * * * * * * * * * * | AS S AS | X X X X X X X X X X X X X X X X X X X | SW | NA NA NA | N N N N N N N N N N N N N N N N N N N | E E E | | | YTWUDD | 137
181
061
089 | 143
027
029
029
157 | 029
027
109
195
109 | 063
053
167
195
051 | 167
167
053
195
051 | 051
061
113
169 | 169
041
041 | | | 3TAT2 | 020
031
031
020 | | 020
020
020
020 | 020
020
020
020 | 020
020
020
020 | 020
020
020
020 | 020
020
020
030 | | | LONGITUDE | 0995518
0981850
0980130
0980130 | 0975010
0970800
0973300
0975120 | 0975120
0970734
1012051
1000113 | 1004210
0981400
0985100
0994245
0993400 | 0985116
0984650
0981400
0994440 | 0991221
0965500
0970224
0974020 | 0972510
0971339
0971053
09770712 | | | LATITUDE | 394836
400310
395355
395315 | 2100
2100
3500
3655
4751 | 393655
392120
390101
384831 | 385630
384400
384700
384704
384600 | 384636
384738
384336
385440
384845 | 385312
385300
390152
383357
385149 | 383911
385547
384822
385424 | | | STATION NAME AND LOCATION | 5 PRAIRIE DOG C AT NORTON, KS
6 REPUBLICAN R GUIDE ROCK NEB
6 REPUBLICAN RIVER NR BLOOMINGTON NEB
6 WHITE ROCK C AT LOVEWELL, KS
6 WHITE ROCK C AT LOVEWELL, KS | SALT C NR
REPUBLICA
REPUBLICA
BUFFALO C
REPUBLICA | BUFFALO C NR JAMESTOWN, KS 7 REPUBLICAN R AT CLAY CENTER, KS 2 NF SMOKY HILL R NR MCALLASTER, KS 3 SMOKY HILL R NR ARNOLD, KS 4 LADDER C BL CHALK C NR SCOTT CITY, KS | SB HACKBERRY C NR ORION, KS SMOKY HILL R ELLSWORTH KAN SALINE R NR RUSSELL KAN G CEDAR BLUFF HATCHERY DISCHARGE SMOKY HILL R NR ELLIS, KS | 6 SMOKY HILL R NR RUSSELL, KS
6 SMOKY HILL R AT ELLSWORTH, KS
7 BIG C NR OGALLAH, KS
7 BIG C NR HAYS, KS | NF BIG C NR VICTORIA, KS LYON C NR WOODBINE KAN CHAPMAN C NR CHAPMAN KANS SMOKY HILL R AT LINDSBORG, KS SMOKY HILL R AT NEW CAMBRIA, KS | GYPSUM C NR GYPSUM, KS
B MUD C AT ABILENE, KS
B TURKEY C NR ABILENE, KS
S SMOKY HILL P AT EMTEPPPISE, KS | | | HYDROLOGIC
Unit
Code | 10250015
10250016
10250016
10250016 | 10250017
10250017
10250017
10250017 | 10250017
10250017
10260002
10260003 | 10260005
10260006
10260006
10260006 | 10260006
10260006
10260006
10260007 | 10260007
10260008
10260008
10260008 | 10260008
10260008
10260008
10250008 | | | AIGSM | | 4 000 | 00400 | 00400 | 0000 | 4 000 | 0000 | | |----------------------------|---|---|---|---|--|---|--|---------------------------------------| | #OT2 032 | 00000 | | | | | | | · · · · · · · · · · · · · · · · · · · | | ONGANIZATION
CODE | S G S S G S S G S G S G S G S G S G S G | USGS
USGE
USGS
USGS
USGS | USGS
USGS
USCE
USGS
USGS | USGS
USGS
USCE
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USCE
USCE
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARG | 2 2 2 4 5
2 2 2 2 5
2 2 3 5 5
2 3 5 5 5 | 0 4 0 | m 6 | X 4 6 | 3 4 R 6 E | N 4 8 8 | 2222 | | | Z TRAG TAM GBB | ш | | <u> </u> | | | ω ∢ | | · · · · · · · · · · · · · · · · · · · | | SIZ TRAS SZUZ | А ШМАШ | ш ш∢∑ | ∀∑m ∢ | α∢≨ш∢ | ш 44 | ∑m∀∀m | 4444 | · · · · · · · · · · · · · · · · · · · | | SORE SED CONC | 104000 | NYVKM | Z N Z Z W | X4302 | 0 4 B 0 B | > N N E E | 4440 | | | OM3 WO
AA3Y | 1979
1971
1966
1975 | 1975
1975
1975
1971 | 1970
1968
1975 | 1968
1975
1968
1975 | 1965
1973
1978 | 1970
1976
1979
1971
1974 | | | | OW BEGIN | 1957
1957
1954
1945 | 1964
1964
1947
1971 | 1961
1971
1961
1945 | 1963
1958
1962
1946 | 1968
1963
1909
1957 | 1963
1970
1955
1957 | 1968
1968
1968 | | | NISA8
HOT91HD230 | 0004
0004
0014
004 | 004
004
014 | 000
4
004
004 | 004
004
004
004 | 004
004
004
004 | 014
004
004 | 000
4 4 4 4 | | | | 88888 | 8 8 9 8 | 88 88 | 88 88 | 88888 | 888 | 90
90
30 | | | DRAINAGE
AREA | 300.00
230.00
696.00
1502.00
212.00 | 261.
261.
2820. | 250.
849.
1367. | 71.00
1040.00
1720.00
52.00 | 5530.00
10.20
384.00
6770.00
200.00 | 55280.00
243.00
297.00 | 10.
16.
49. | | | TYPF OF | X X X X X X X X X X X X X X X X X X X | AS SA S | MS AN | MS AS | MS AN S | MS AS | A S A S S S S S S S S S S S S S S S S S | | | COUNTY | 041
061
195
167 | 167
105
105
105
143 | 169
141
141
741 | 183
163
141
141 | 123
029
143
143
061 | 177
197
149
149 | 131
131
085
085 | · · · · · · · · · · · · · · · · · · · | | STATE | 020000000000000000000000000000000000000 | 020 | 020 | 020
020
020
020 | 020000000000000000000000000000000000000 | 020
020
020
020 | 020 | | | Ę | 4 2 0 0 c | | | | | | 817
745
700 | · | | LONGITUDE | 0970224
0965435
0995210
0985120 | 0983200
0982800
0982825
0982345 | 0974005
0991830
0984131
0990655
0992520 | 0985110
0993454
0984200
0985636
0985133 | 0980333
0973408
0975010
0972834
0964420 | 0955225
0961052
0961816
0961310 | 09557!
09558
09557.
09557(| | | 307 | 30152
35305
30622
35800
30425 | 500
100
154
308
315 | 340
340
315
336
350 | 4800
2226
2500
2733
2245 | 330
330
328
328 | 208
344
152
100
642 | 7 4 5 4
7 5 7 7 4 | | | LATITUDE | 3900
3900
3900
3900
3900 | 385600
390100
390054
390908
390015 | 385040
394040
393315
393936
394650 | 3922
3922
3922
3922 | 392509
392100
390830
385808
390028 | 391208
390344
391152
392100
391642 | 3937
3935
3933
3927 | | | STATION NAME AND LOCATION | CHAPMAN C NR CHAPMAN, KS
LYON C NR WOODBINE, KS
SALINE R NR WAKEENEY, KS
SALINE R NR RUSSELL, KS
PARADISE C NR PARADISE, KS | SALINE R NR WILSON, KS O SALINE RIVER NR SYLVAN GROVE KAN O WOLF C NR SYLVAN GROVE, KS O NB SPILLMAN C NR ASH GROVE, KS O SALINE R AT TESCOTT, KS | MULBERRY C NR SALINA, KS
NF SOLOMON R AT GLADE, KS
PORTIS KAN NF SOLOMON R PORTIS KAN
NF SOLOMON R AT KIRWIN, KS
DEER C NR PHILLIPSBURG, KS | M BEAVER C NR SMITH
CENTER, KS
SF SOLOMON R AB WEBSTER RE, KS
S F SOLOMON R OSBORNE KAN
SF SOLOMON R AT ALTON, KS
KILL C NR BLODMINGTON, KS | SOLOMON R AT BELOIT, KS M PIPE C NR MILTONVALE, KS SALT C NR ADA, KS SOLOMON R AT NILES, KS CLARK C NR JUNCTION CITY, KS | SOLDIER C NR DELIA KAN
MILL C NR PAXICO KA
KANSAS R AT WAMEGO, KS
VERMILLION C NR WAMEGO, KS | SOLDIER C NR GOFF, KS
SOLDIER C NR BANCROFT, KS
SOLDIER C NR SOLDIER, KS
SOLDIER C NR CIRCLEVILLE, KS | | | HYOROLDGIC
UNIT
CODE | 10260008
10260008
10260009
10260009 | 10260009
10260010
10260010
10260010 | 10260010
10260011
10260012
10260012 | 10260012
10260013
10260014
10260014 | 10260015
10260015
10260015
10260015 | 10270102
10270102
10270102
10270102 | 10270102
10270102
10270102
10270102 | | | MEDIY | | | | | | | | | | |----------------------------|----------------------------|--|--|--|---|---|--|--|--------------| | 90TZ G3 Z | 0 | 0000 | 0000 | 0000 | 0000 | 00004 | 00000 | 004 | | | MOITASINADRO
3003 | USGS | USGS
USGS
USCE
USCE | USGS
USGS
USGS
USGS
USGS | USGS
USGE
USCE
USCE
USCE | USCE
USCE
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGE
USGS
USGS
USGE | | | SUSP DISCHARGE | 4 | ∢ | \triangleleft \vee \vee \vee \vee | Z ທ | A R | ∢ υш O | বৰৰৰ | шш | | | 3512 TRAY TAM 038 | | 60 60 | | ΣΣ | 6 | | | | | | SUSP SED CONCEN | | 4 4 W W | 48 84 | CM∑∑∑ | m ≥ Z m | шш ш | | шшп∑ | | | CUSP SED CONCEN | | O 4 3 3 | 00 0
∢∨××× | Z ω 3 3 3 3 | *0 D+ | 00 8R
4R60π | 44444 | <u>ი ი</u> | | | OW END
YEAR | | 197 | 197
197
197 | 1979
1967
1973 | 1971
1970
1975
1975 | 197
196
196 | 1980
1980
1979
1979 | 1973 | | | OM BEGIN | 1967 | 1965
1978
1970
1969 | 1976
1976
1978
1969
1978 | 1978
1956
1949
1973 | 1964
1957
1957
1968
1957 | 1978
1956
1973
1965 | 1974
1978
1978
1978 | 1967
1965
1963
1964 | | | NIZAB
Rot9irj230 | | | % %
84 % | 004 | 0
4
4
000
4
4 | 00
0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 00 | 004 | | | | 8 | 88 | 88888 | 88 | 888 | 8888 | 30 | 88 | | | DRAINAGE
AREA | 8 | 290. | 19.
22.
52.
431. | 922. | 58460.
3.
425. | 406.
59756.
38.
59928. | 22. | 345.
446. | | | TYPE OF
SITE | | NS N | AS AS | NS N | NS N | NS N | AS AS AS | N S M S | | | YTNUOD | 085 | 177
177
005
005 | 005
005
005
005 | 087
087
209
103
087 | 103
045
087
045
045 | 103
103
103
091
209 | 209
177
177
177
177 | 159
023
159
151 | | | 1TAT2 | 020 | 020
020
020
020 | 020
020
020
020
020 | 020
020
020
020 | 020
020
020
020 | 020
020
020
020 | 020
020
020
020 | 031
031
031 | | | UDE | 05 | 5225
4327
3157
3125 | 3349
2556
3050
3157
2713 | 845
716
221
752
315 | 39
00
15
15
37 | 31
39
52
30 | 33
53
40
40 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | LONGITUDE | 9
9
9
9 | 09552
09543
09531
09531 | 09533
09525
09530
09531
09527 | 09528
09527
09452
09457
09523 | 950039
951500
952315
951858 | 0950631
0950039
0945752
0945430 | 0943733
0955253
0955429
0954640
0954640 | 0970843
0971835
0970843
0965735 | | | | | | | | 60000 | 00000 | 00000 | 0000 | | | LATITUDE | 392233 | 391208
390600
393117
392636 | 394147
393500
393250
393117
392752 | 392327
392403
390337
385900
390307 | 390659
385400
390307
385607
385440 | 392047
390659
385900
385611 | 390331
385350
385351
385632 | 405457
410605
405457
403540 | | | STATIOM NAME AND LOCATION | SOLDIER C NR ST. CLERE. KS | SOLDIER C NR DELIA, KS
SOLDIER C NR TOPEKA, KS
DELAWARE R NR MUSCOTAH KS
ARRINGTON DELAWARE R | L DELAWARE R NR HORTON, KS
L GRASSHOPPER C NR EFFINGHAM, KS
L GRASSHOPPER C AT MUSCOTAH, KS
DELAWARE R NR MUSCOTAH, KS
COAL C NR ARRINGTON, KS | CDAL C NR HALF MOUND, KS
DELAWARE R AT VALLEY FALLS, KS
KANSAS R BONNER SPRINGS KAN
KANSAS R AT DESOTA KANSAS
KANSAS R AT LECOMPTON KANSAS | STRANGER C NR TONGANOXIE KS WAKARUSA R NR LAWRENCE KAN KANSAS R AT LECOMPTON, KS YANKEE TANK C NR LAWRENCE, KS WAKARUSA R NR LAWRENCE, KS | STRANGER CR AT EASTON, KS STRANGER C NR TONAANOXIE, KS KANSAS R AT DESOTO, KS CEDAR CHOTION, KS SKANSAS R AT BONNER SPRINGS, KS | TURKEY C AT KANSAS CITY KS WAKARUSA RIVER 4 MILES W OF AUBURN KS MAKARUSA RIVER 5 MILES W OF AUBURN KS SIXMILE CREEK TRIB 4 MILES NE OF AUBURN KS SIXMILE CREEK TRIB 5 MILES NE OF AUBURN KS | SEWARD LINCOLN CR
BIG BLUE RIVER AT SURPRISE, NEBR.
LINCOLN CREEK NEAR SEWARD, NEBR. | | | HYDROLOGIC
Unit
Code | 10270102 | 10270102
10270102
10270103
10270103 | 10270103
10270103
10270103
10270103 | 10270103
10270103
10270104
10270104 | 10270104
10270104
10270104
10270104 | 10270104
10270104
10270104
10270104 | 10270104
10270104
10270104
10270104 | 10270201
10270201
10270201
10270202 | | | MEDIA | | | | | | | | | |-------------------------------------|--|--|--|--|---|---|---|--| | 9012 G32 | م م م | 00404 | 0004 | 00000 | 40004 | 4 D D | 000 | | | ONGANIZATION
BGOD | USCE
USGS
USGS
USGS | USGS
USGS
USGE
USGE
USGS | USGS
USGS
USGS
USCE
USCE | USGS
USGS
USGS
USCE
USCE | USGE
USGS
USGS
USGE
USGE | USCE
USCE
USGS
USCE
USGS | USGS
USGS
USGS
USCE | | | SUSP DISCHARGE | H Z A | <u>шш</u> Ю | 4 Z N | 4 m ß | ФИШ | N 3 | иши | | | SSIZ TRAY YEUR
SSIZ TRAY TAM 038 | B B B | mm Z ∢m
w | ₹ 20 00 | Z m < Z Z | 2 4 0 m | m 8 | <u>о</u> па | | | SUSP SED CONCEN | ≱ ∃ 7 4 | | 4 Z 0 3 3 | 4 m G 3 3 | ≥ ₹ O ⊞ ⊞ | M3EO0 | о и и о
о и и о | | | OW END
RABY | 1976 | 1973
1972
1978
1957 | 1971
1971
1976 | 1968
1969
1969 | 1971
1973
1969 | 1969
1976
1973 | 1975
1973
1973 | | | OW BEGIN | 1970
1960
1960
7561 | 1967
1963
1965
1958
1958 | 1971
1954
1954
1959
1970 | 1951
1972
1962
1963 | 1963
1967
1945
1968 | 1963
1970
1962
1969
1968 | 1952
1965
1961
1969 | | | NIZA8
ROT91RJ230 | 024
004
124 | 000
024
004
004 | 014 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 8 8
4 4 4 | 00
4 | 004
004
014 | | | DRAINAGE
AREA | 2716.00
3901.00
4444.00 | 1206.00
460.00
410.00
9100.00 | 9640.00 | 2350.00
2752.00
3324.00 | 52.50
701.00
104.00 | 6880.00 | 13.20
168.00
549.00 | | | TYPE OF | A S S S S S S S S S S S S S S S S S S S | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | NS N | N N N N N N N N N N N N N N N N N N N | N S A S A S A S A S A S A S A S A S A S | N N N N N N N N N N N N N N N N N N N | | | YTNUOD | 151
151
151
067 | 159
151
151
167
117 | 161
161
129
177
201 | 095
201
201
025
129 | 129
053
053
053 | 115
211
117
185
117 | 117
185
007
041 | | | 3TAT2 | 031
031
031
031 | | 020
020
031
020
020 | 031
020
020
029
029 | 029
019
019
019 | 029
029
029
019 | 019
019
029 | | | LONGITUDE | 0970029
0965736
0963516 | 097 1038
097 1038
0970043
0963500
0962615 | 0964955
0963416
0980420
0965140 | 0971013
0970016
0965129
0934605 | 0933600
0935619
0934829
0933807
0930136 | 0931410
0932145
0931625
0931132
0931537 | 0930755
0931132
0925322
0925659 | | | LATITUDE | 402837
403847
401500 | 352
352
300
103
| 392820
391414
401958
394640
394850 | 400654
395848
394633
394005
402110 | 401800
404318
403825
404145
395040 | 395345
400745
393825
404802
405712 | 405525
404802
404922
393126 | | | STATION NAME AND LOCATION | TURKEY C NR WILBER NEBR
BIG BLUE RIVER NEAR CRETE, NEBR.
BIG BLUE R AT BEATRICE NEBR
BIG BLUE R AT BARNESTON NEBR | R WF BIG BLUE R
BIG BLUE RIVER NR DORCHESTER, NEBR
EEK NEAR WILBER, NEBR.
R BARNESTON NE
MILLION R NR FRANKFORT, KS
R AT RANDOLPH, KS | FANCY C AT WINKLER, KS
BIG BLUE R NR MANHATTAN, KS
LITTLE BLUE RIVER NEAR DEWEESE, NEBR.
L BLUE R NR BARNES KS
MILL C AT WASHINGTON KANS | LITTLE BLUE RIVER NEAR FAIRBURY, NEBR. LITTLE BLUE R AT HOLLENBERG, KS L BLUE R NR BARNES, KS SHOAL C NR BRAYMER MO THOMPSON R NR MT MORAIH MO | WELDON R MILL GROVE MO
ELK CREEK NEAR DECATUR CITY, IOWA
THOMPSON RIVER AT DAVIS CITY, IOWA
WELDON RIVER NEAR LEON, IOWA
W YELLOW C BROOKFIELD MO | LOCUST C NR LINNEUS MO
MEDICINE C NR GALT MO
GRAND RIVER NEAR SUMNER MO
PROMISE CITY SF CHARITON R
CHARITON RIVER NEAR CHARITON, IOWA | HONEY CR. NR RUSSELL, IOWA
SOUTH FORK CHARITON RIVER NEAR PROMISE CITY,
CHARITON RIVER NEAR RATHBUN, IOWA
MUSSEL FORK MUSSEL FORK CHARITON R | | | HYDROLOGIC
UNIT
CODE | 10270202
10270202
10270202
10270202 | 10270203
10270204
10270205
10270205
10270205 | 10270205
10270205
10270206
10270207 | 10270207
10270207
10270207
10280101 | 10280102
10280102
10280102
10280102 | 10280103
10280103
10280103
10280201 | 10280201
10280201
10280201
10280202 | | | A103M | T | | | | | | | |----------------------------|---|--|--|--|--|-------------------------------|--| | RO12 G32 | 0000 | 000 0 | 4004 | 44 04 |
 | ٥ | | | NOITASINADRO
3003 | USCE
USCE
USCE | USGS
USGS
USGS
USCE
USGS | USGS
USGS
USGS
USCE
USCE | USCE
USCE
USGE
USGS | USCE
USCE
USCE
MOOO3 | USGS | | | SUSP DISCHARGE | | с п 4 | ৰ ৰ | Σ | | Σ | | | 3512 TAA9 TAM 038 | m m | ω | u mo | a a | 20 20 | | | | SSIS TRAN NEUZ | Z Z M Z M | ▼ ∞ | ш 🛭 | Z Z M Z M | 6 60 60 | Σ | | | SUSP SED CONCEN | 33333 | Ω Σ m ≥ ∢ | m 4 4 3 0 | 33323 | 00322 | Σ | | | OW END
FABY | 1970
1970
1973
1973 | 1979
1979
1973
1979 | 1975 | 1968
1973
1975 | 1972 | | | | OW BEGIN | 1963
1962
1968
1964 | 1978
1963
1961
1970
1968 | 1949
1976
1969
1969 | 1961
1965
1972
1975
1967 | 1966
1968
1965
1978 | 1969 | | | NISA8
HOT9IA3230 | | 0000
4444 | 004 | 014 | | 124 | | | DRAINAGE
Area | | 114.00
334.00
3230.00
295.00 | 408.00 | 14500.00 | | 524200.00 | | | TYPE OF
SITE | MS MS MS | NS NA
NS NA
NS
NS NA
NS
NS NA
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS | NS N | MS N | N N N N N | NS. | | | COUNTY | 175
139
003
139 | 139
003
107
011 | 011
037
011
039
057 | 167
083
037
051
095 | 095
047
051
189 | 679 | | | 3TAT2 | 020
020
020 | 020
020
020
020 | 020
020
020
029
029 | 029
029
029
029 | 029
029
029
029 | 029 | | | LONGITUDE | 0923409
0955020
0951455
0954640 | 0955020
0951455
0944004
0944248 | 0944036
0943802
0943704
0934520
0934105 | 0931900
0935754
0942003
0921231 | 0942800
0941245
0921520
0903543 | 0912621 | | | LATITUDE | 392719
384230
382001
383150 | 384230
382001
381321
380109 | 375147
373747
374109
374203
372635 | 373600
383317
382844
382518
385449 | 385420
392020
383025
383917
383954 | 384236 | | | STATION NAME AND LOCATION | BEFKLCHARITON RHUNTSVILLE MODRAGON CNR BURLINGAME KANGARNETT POTTAWATOMIE CMARAIS DES CYGNES RMELVERN KANMARAIS DES CYGNES RNR READING KS | DRAGDON C NR BURLINGAME, KS
POTTAWATOMIE C NR GARNETT, KS
MARAIS DES CYGNES R NR KS-MO ST LINE, KS
L OSAGE R AT FULTON KANS
L OSAGE R AT FULTON, KS | MARMATON R NR FORT SCOTT, KS
COX C 1 MILE S OF ARCADIA, KS
COX C 2 MILES N OF ARCADIA, KS
STOCKTON DAM
DADEVILLE SAC R | 7 POMME DE TERRE R NR BOLIVAR MO
B BIG C BLAIRSTOWN MO
B S GRAND R AT ARCHIE
1 OSAGE RIVER BELOW ST. THOMAS, MISSOURI | KANSAS CITY MO LITTLE BLUE R
EXCELIOR SPRINGS EF FISHING R
MOREAU R NR JEFFERSON CITY MO
CAULKS CREEK
BONHOMME CREEK | MISSOURI RIVER AT HERMANN, MO | | | HYBROLOGIC
Unit
Code | 10280203
10290101
10290101
10290101 | 10290101
10290101
10290103
10290103 | 10290104
10290104
10290106
10290106 | 10290107
10290108
10290108
10290111
10300101 | 10300101
10300101
10300200
10300200 | 10300200 | | | AIG3M | | 00000 | <u> </u> | 4444 | 4444 | 44040 | 0000 | ۵ | | |----------------------------|-------------|--|--|---|--|---|--|--|--| | | | | | | | | | | | | ORGANIZATION
CODE | | AR001
AR001
AR001
AR001 | AR001
AR001
AR001
AR001 | AR001
AR001
AR001
AR001 | AROO1
AROO1
USGS
USGS | USGS
AROO
TXOO
USGS
USGS | USGS
USFS
USFS
USFS
USFS | USCE
USCE
USCE
USGS | | | SUSP DISCHARGE | | | | | | ш | Σ | Z | | | SSIS TRAN NEUZ | | | | | <u> </u> | ∑ ∑ | | | | | SUSP SED CONCEN | | 80 80 80 80 | 00 00 00 00 | 000000 | 222 | ΣωοΣω
Σ Σω | ▼ ∾ ∾ ∾ ∾ | <u>ш Z</u> | | | | | | | | | | | 0 | | | OW END
RABY | | | | | | | | 196 | | | OW BEGIN | | 1963
1936
1961
1936
1953 | 1936
1936
1953
1957
1936 | 1935
1937
1960
1935
1957 | 1935
1935
1977
1977 | 1977
1935
1969
1977
1962 | 1965
1975
1975
1975 | 1945
1939
1939
1977 | | | BASIN
Descriptor | _ | | | | | 0 14 | 904 | - | | | DRAINAGE
AREA | NO | | | | | 9978.00 | 58.10 | | | | TYPE OF STIE | _ G | N N N N N N N N N N N N N N N N N N N | M M M M M M M M M M M M M M M M M M M | M M M M M M M M M M M M M M M M M M M | NS N
S N
S N
S N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | A A A A A A A A A A A A A A A A A A A | | | COUNTY | -Ш | 009
087
143
135
075 | 121
063
141
145
145 | 033
149
105
045 | 115
007
063
151
007 | 139
133
037
065 | 137
041
041
041 | 153
179
023
069 | | | 3TAT2 | | 005
005
005
005 | 005
005
005
005 | 005
005
005
005 | 005
005
040
040 | 040
005
040
005 | 005
026
026
026
026 | 029
029
029
029 | | | LOWGITUDE | -REI | | | | | 0944139 | 0921245
0864250
0864250
0865510
0865510 | 0921453
0904715
0902315
0901106 | | | LATITUBE | ITE | | | | | 334115 | 355943
455710
455640
460530
455330 | 363722
372010
364535
363422 | | | STATION NAME AND LOCATION | ARKANSAS-WH | ALPENA ARK
HUNTSVILLE ARK
WEST FORK ARK
HARDY ARK | POCAHONTAS ARK BATESVILLE ARK CLINTON ARK PANGBURN ARK | MULBERRY ARK DANVILLE ARK PERRYVILLE ARK CONWAY ARK | RUSSELLVILLE ARK GENTRY ARK CANADIAN R AT CALVIN OK CIMARRON R NR BUFFALO OK BEAVER R AT BEAVER OK | BEAYER R NR GOYMON OK
DEQUEEN ARK
RED R NR DE KALB TX
N F RED R NR HEADRICK OK
WHITE RIVER AT CALICO ROCK, ARK. | NORTH SYLAMORE CREEK NEAR FIFTY SIX, ARK. FISHDAM 6 MI NORTH NAOMA FISHDAM 5 MI NORTH NAOMA WHITEFISH RIVER 6 MI NW RAPID R WHITEFISH 12M N GLADSTONE MICH | NORTH FORK R NR TECUMSEH MO BLACK R NR ANNAPOLIS MO BLACK R AT POPLAR BLUFF MO , ST FRANCIES RIVER NR GLENNONVILLE, MO | | | HYBROLOGIC
Unit
Code | | 110044 B
110044 B
110044 B
110044 G | 110044 I
110044 V
110044 K
110044 K | 110044 N
110044 O
110044 Q
110044 R | 110044 R
110045 U
11004500
11004600 | 11004700
110049 G
11005000
11010004 | 11010004
11010005
11010005
11010005 | 11010006
11010007
11010007 | | | MEDIA | | | | | | | | | | |----------------------------
--|--|---|---|---|--|---|--|-------------| | NOT2 G32 | | 00004 | _ 0 0 | 000 | <u> </u> | | 0000 | 0000 | | | MOITAZINADAD
3000 | | USGS
USGS
USGS
USGS
USGS | AROO1
USGS
USGS
USBR
USBR | USBR
USBR
USGS
USGS
USGS | USGS
USGS
CDOO3
CDOO3
CDOO3 | COOO3
USCE
USCE
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | шшш | шΣ | шAш | шш | 0 44 | ¥Z < < O | 4 N4 | | | SSIZ TRAN 92UZ | | ∑ | | · · · · · · · · · · · · · · · · · · | | | | | | | SUSP SED CONCEN | | mmm & ≥
m | ZZZE | 2 2 W Z W | mm≥44
mm≥44 | EEEOM | ZZ440 | A Z U A | | | назу | ************************************** | | 78 | 60 | | 78 | 0 00 00 00 | 60000 | | | OM END | | | 6 | 197 | | 6 | | 19
19
10
10
10
10 | | | OW BEGIN | | 1973
1973
1944
1944
1977 | 1972
1966
1967
1969
1969 | 1969
1970
1963
1977
1964 | 1965
1966
1966
1959 | 1956
1959
1959
1977 | 1939
1939
1971
1964
1961 | 1963
1975
1958
1971 | | | NISAB
ROTGIROS30 | | 88 | 124 | 124 | 124 | | 124
014
004
004
014 | 000 0
4 4 0
4 4 0 | | | | | 88 | <u>8</u> 8, | 888 | 88 | 8. | 888 8 | 88.00.00 | | | A GE | | .00 | 8. | 117.
024.
280. | | <u>o</u> | 50.00 | ∞ ∞ ∞ •4 | | | DRAINAGE
AREA | | 7369
9860 | 23
2548 | 3117
4024
4280 | 4670 | 5410 | 25763.
27071.
750.
30600. | 106 | | | 0 | | . = | -• | -, , , | • • | 2 | й и й | 'n | | | TYPE OF
SITE | | N S S S S | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | NS N | N N N N N N N N N N N N N N N N N N N | NS N | MS NA | | | COUNTY | | 203
203
075
067 | 145
065
043
101 | 101
101
043
043
101 | 101
101
104
104
104 | 119
011
071
075 | 075
055
203
171
057 | 057
057
047
083 | | | STATE | | 029
029
005
005
005 | 000
8
8
8
8
8
8
8 | 000000000000000000000000000000000000000 | 8 8 8 8 | 008
008
020 | 020
020
020
020 | 020
020
020
020 | | | .noe | | 36
36
19
19 | 00
19
23
45 | 00
15
24
26
18 | | | 23
37
16
10
08 | | | | LONGITUDE | | 2 t 0 t | 91450
06231
05222
04340
04404 | 147
15
15
56 | 14306
13926
15209
15237
15332 | 92220 | 1014523
1005237
1012916
1010410 | 38 200 | | | 9 | | 091
091
091 | 0914500
1062319
1052223
1043400 | 1044700
1044715
1051524
1050056
1045618 | 00000 | 1050420
1031200
1031250
1043249
1020041 | | 1000053
1000052
0992231
0993831 | | | 30 | | 32
53
15
15 | 00400 | 000011 | 1617
11602
14709
14729 | | 52
52
54
51 | 233
233
26 | | | LATITUDE | | 37 103;
37 105;
3606 1;
35362; | 3515
3815
3814
3815 | 381600
381600
382602
382318
382014 | 3816
3816
3847
3847
3849 | 385537
380202
380508
370837
380134 | 375758
375721
382852
382020
374451 | 3742
3735
3755
3755 | | | STATION NAME AND LOCATION | | CURRENT RIVER ABOVE POWDER MILL JACKS FORK ABOVE TWO RIVERS BLACK RIVER AT BLACK ROCK, ARK. WHITE RIVER AT NEWPORT, ARK. | SOUTHEAST WHITE COUNTY - SEARCY HALFMOON CREEK NEAR MALTA, CO. ARKANSAS RIVER AT PARKDALE, CO. BESSEMER DITCH | BESSEMER DITCH BESSEMER D ARKANSAS RIVER AT CANON CITY, CO. ARKANSAS RIVER AT PORTLAND, CO. ARKANSAS RIVER NEAR PORTLAND, CO. | ARKANSAS RIVER ABOVE PUEBLO, CO. ARKANSAS RIVER NEAR PUEBLO, CO. SOUTH CHEYENNE C AT BROADMOOR COLO NORTH CHEYENNE C AT BROADMOOR COL | BLUE R DIV NR GREEN MTN FALLS COLO PURGATOIRE R NR LAS ANIMAS COLO ARKANSAS R AT LAS ANIMAS COLO PURGATOIRE RIVER BELOW TRINIDAD LAKE, CO. ARKANSAS RIVER NEAR COOLIDGE, KANS. | ARKANSAS R AT SYRACUSE, KS
ARKANSAS R AT GARDEN CITY, KS
WHITEWOMAN C NR LEOTI, KS
WHITEWOMAN C NR MODOC, KS
ARKANSAS R AT DODGE CITY, KS | ARKANSAS R TR NR DODGE CITY, KS MULBERRY C NR DODGE CITY, KS ARKANSAS R NR KINSLEY, KS WHITEWOMAN C NR BELLEFONT, KS | | | HYDROLOGIC
Unit
CODE | | 11010007
11010008
11010013
11010013 | 11020001
11020001
11020001
11020002 | 11020002
11020002
11020002
11020002
11020002 | 11020002
11020002
11020003
11020003
11020003 | 11020003
11020009
11020010
11030001 | 11030001
11030001
11030002
11030003 | 11030004
11030004
11030004
11030004 | - | | AIG3M | | | | | | | | | | |----------------------------|----------|---|--|--|--|--|--|--|---| | MOTZ GBZ | | 0000 | 00000 | 00000 | 0000 | 04004 | 40000 | 0040 | | | ORGANIZATION
\$GD5 | | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | ZNZ6 DIZCHY6GE | | বব ব | 44404 | 4 C | AIRUA | m 0.₹ | 444 | ш4 С | | | ISIS TAAR TAM GBE | <u> </u> | | | | ш | <u> </u> | ⋖ | ш | | | SUSP PART SIZE | | 40 | A 0m | 4 4 4 | AMAMA | MAOMA | 44 | A A E | | | | | 1 4 4 ∑ 4 | 00000
00000 | 0 00
Z 4 0 Z Z | 4 1 2 4 A | M Z U Z Z | 000
₹ ₹ 4 4 4 | 5 99
5 3 A E E | | | OW END
AA3Y | | 197
197
197
197 | 197
197
197
197 | 197 | 197 | | 197
197
197 | 196
197
197 | | | OW BEGIN | | 1973
1963
1958
1958 | 1963
1976
1967
1958
1968 | 1962
1960
1959
1975
1967 | 1971
1939
1978
1944
1958 | 1961
1975
1912
1967
1967 | 1951
1962
1978
1967
1978 | 1966
1967
1961
1960 | | | BASIN
Descriptor | | 8888 | 00000
444444 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00
4
4
4
4
4 | 000
4 4 4 4 4 4 4 | 000
4
4
4 | 0000
4444 | | | | | 8888
4888 | 88888 | 88888 | 88888 | 88888 | 88 8 | 8888 | | | ORAINAGE
AREA | | . 58.
2148. | 28.
1256.
17.
1410.
1500. | 784.
1167.
38910.
43. | 19.
728.
736.
1327. | 40830.
154.
43713.
787.
650. | 2129.
30.
162. | 88.
177.
426.
1872. | | | TYPE OF
SITE | | S E A A A | N N N N N N N N N N N N N N N N N N N | NS N | MS MS | MS MS MS | NS AS AS | NS N | | | COUNTY | | 055
135
145
101 | 135
165
165
009
009 | 185
159
155
009
009 | 053
159
079
173 | 173
191
035
155
095 | 191
015
015
015 | 015
015
035 | | | 3TAT2 | | 020 | 020
020
020
020 | 020
020
020
020 | 020
020
020
020 | 020
020
020
020 | 020
020
020
020 | 020
020
020
020 | | | LONGITUDE | | 1002100
0995710
0992050
1002454 | 0995250
0992207
0991826
0990050
0985839 | 0985230
0982500
0974629
0983500
0985135 | 0982527
0981130
0973530
0972316
0972006 | 0971631
0972412
0970332
0975609 | 0972520
0964650
0970137
0970243 | 0970731
0970450
0970045
0965940 | | | LATITUBE | | 380342
381740
381200
382858 | 382701
382807
382416
382740
382712 | 375220
381350
375647
383120
383210 | 383553
381830
380644
374956
373841 | 373234
371500
370323
375041
373351 | 372734
375650
375810
375352
375018 | 375208
374901
374745
371327 | ٠ | | STATION NAME AND LOCATION | | ARANNEE T N RALVESTA, KS GAZZLERS GULCH NR NESS CITY, KS F PAWNEE R NR LARNED, KS S WALNUT CR TR NR DIGHTON, KS | TONG BRANCH C NR NESS CITY, KS WALNUT C NR RUSH CENTER, KS OTTER C NR RUSH CENTER, KS WALNUT C AT ALBERT, KS | RATTLESNAKE C NR MACKSVILLE, KS RATTLESNAKE C NR RAYMOND, KS ARKANSAS R NR HUTCHINSON, KS COW C NR CLAFLIN, KS BLOOD C NR BOYD, KS | PLUM C NR HOLYROOD, KS
1 COW C NR LYONS, KS
2 L ARKANSAS R AT ALTA MILLS, KS
2 L ARKANSAS R AT VALLEY CENTER, KS
3 ARKANSAS R AT WICHITA, KS | ARKANSAS R AT DERBY, KS
SLATE C AT WELLINGTON, KS
ARKANSAS R AT ARKANSAS CITY, KS
INF NINNESCAH R AB CHENEY
RE, KS
SF NINNESCAH R NR MURDOCK, KS | NINNESCAH R NR PECK, KS
COLE C NR DEGRAFF, KS
WHITEWATER R 2 MILES N OF POTWIN, KS
WHITEWATER R 3 MILES S OF POTWIN, KS
WHITEWATER R 6 MILES NW OF TOWANDA, KS | WB WHITEWATER R NR FURLEY, KS WB WHITEWATER R NR BENTON, KS WHITEWATER R AT TOWANDA, KS WALNUT R AT WINFIELD, KS | | | HYDROLOGIC
Unit
Code | | 11030005
11030005
11030005 | 11030007
11030008
11030008
11030008 | 11030009
11030009
11030010
11030011 | 11030011
11030011
11030012
11030012 | 11030013
11030013
11030014
11030014 | 11030016
11030017
11030017
11030017 | 11030017
11030017
11030017
11030018 | | | AIGSM | | | | | | | | | |----------------------------|---|--|---|---|--|---|--|--| | AUTZ G3Z | 0000 | 00000 | 00000 | 00 00 | T P P D | 0 0 | 0 00 | | | ORGANIZATION
BOOD | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USCE
USCE
USCE
USGS | USGS
USGE
USGE
USGS | | | SUSP DISCHARGE | mzd | ARAAN | SAAMO | ш сх | 7 | α | ич ш | | | BSIZ TRAR GZUZ | | | | | w | | | | | SUSPECT STORE | Z m Z d Z | ARAAR | N A H H H | mmOXR
mm XR | N X O O O | <u>o</u> ≅ ∞ o ∞ | S A M H | | | OW END
RABY | 974
974
971
971 | 972
978
975
975 | 979 | 976 | 937
937
944 | 978 | 978
976
975 | | | OW BEGIN | 1963 1
1952 1
1971 1 | 1962
1971
1938
1967
1944 | 1944
1973
1972
1962
1963 | 1972
1959
1946
1970 | 1934
1934
1934
1953 | 1948
1956
1940
1947 | 1958
1958
1958 | | | MIZA8
Rotqirdead | 0 1 4
0 0 0 4
0 0 0 4 | 0004
0004
0024
0224 | 0000
44444 | 0004
0004
0004 | 000
4 4 4 000
4 4 4 4 4 4 4 4 4 4 4 4 4 | 410 | 0
4
4
4 | | | | 8 888 | 88888 | 88888 | 88888 | 89898 | 88888 | 8888 | | | DRAINAGE
AREA | 545.
1106.
75. | 1640.
835.
7452.
8536.
8670. | 34
11120.
303. | 657.
11930.
248.
316. | 168.
13.
31.
903.
794. | 54465.
181.
1138.
585. | 585.
827.
37.
2892. | | | TYPE OF | SSSSS | MS M | MS MS MS SM S | NS NA | MS SW
SW
SW
SW | MS SW
SW
SW
SW | MS SW
SW
SW | | | COUNTY | 059
059
129 | 067
187
175
119
007 | 119
025
033
033 | 033
151
047
083
119 | 119
119
007
191 | 113
073
205
073
073 | 073
205
099
125 | | | STATE | 035
035
040
020
020 | 020
020
020
020 | 020
020
020
020 | 020
040
040
040 | 040
040
020
020 | 040
020
020
020
020 | 020
020
020
020 | | | LONGITUBE | 1032525
1032525
1025731
1015354 | 1012357
1014540
1005510
1002939 | 1001155
0995448
0992845
0993000
0992040 | 0992845
0992356
0980003
0972932
0970149 | 0970248
0970018
0965200
0982804
0973604 | 0964322
0960605
0954049
0960333
0961330 | 0960333
0955000
0952805
0954043 | | | LATITUDE | 365915
365915
365536
371127 | 373337
373735
371427
370045
365900 | 370202
371136
370136
371110
371600 | 370155 (365528 (361905 (354753 (355732 (355732 (| 360553 (360707 (370217 (370744 (| 363009 (380815 (372926 (373834 (374230 (| 373834 (
373030 (
371600 (
371326 (| | | STATION NAME AND LOCATION | DRY CIMARRON R NR GUY, NM
DRY CIMARRON R NR GUY, NM
CIMARRON RIVER NR KENTON, OK
NF CIMARRON R TR NR ELKHART, KS
NF CIMARRON R AT RICHFIELD, KS | NF CIMARRON R NR ULYSSES, KS
BEAR C NR JOHNSON, KS
CIMARRON R AT LIBERAL, KS
CIMARRON RIVER NR FORGAN, OK
CIMARRON RIVER NR MOCANE, OK | CROOKED C NR NYE, KS
KIGER C NR ASHLAND, KS
CIMARRON RIVER NR BUTTERMILK, KS
BLUFF C NR PROTECTION, KS
CAVALRY C AT COLDWATER, KS | BLUFF CREEK NR BUTTERMILK, KS
CIMARRON RIVER NR BUFFALO, OK
TURKEY CREEK NR DRUMMOND, OK
COTTONWOOD CREEK AT SEWARD, OK
CIMARRON RIVER AT PERKINS, OK | STILLWATER CREEK AT STILLWATER, OK
WEST FORK BRUSH CREEK NR STILLWATER, OK
COUNCIL CREEK NR STILLWATER, OK
MEDICINE LODGE R NR KIOWA, KS
CHIKASKIA R NR CORBIN, KS | ARKANSAS RIVER AT RALSTON, OK
VERDIGRIS R NR MADISON KS
VERDIGRIS R NR ALTOONA KANS
FALL R NR FALL RIVER KANS
OTTER C AT CLIMAX, KS | FALL R NR FALL RIVER, KS
FALL R AT FREDONIA, KS
BIG HILL C NR CHERRYVALE KANS
VERDIGRIS R AT INDEPENDENCE, KS | | | HYDROLOGIC
Unit
Code | 11040001
11040001
11040001
11040003 | 11040003
11040005
11040006
11040006 | 11040007
11040008
11040008
11040008 | 11050001
11050001
11050002
11050003 | 11050003
11050003
11050003
11060003 | 11060006
11070101
11070101
11070102 | 11070102
11070102
11070103
11070103 | | | MEDIA | | | | | | | | | |----------------------------|----------------------------------|--|---|--|--|--|--|--| | SOT2 GB2 | ٥٥٥ | 00 00 | 40000 | 0000 | 0000 | 0000 | 0000 | | | NDITAZINADBO
BOOD | uses
uses
uses | USGS
USGS
USGS
USGS
USGS
USGS | usas
usas
usas
usas
usas | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | H | | 4 X 4 Z | AXAXX | XX444 | বৰবৰৰ | বৰবৰ | | | 3512 TRAY TAM 038 | | | | | | | | | | BEIS THAN 42UZ | | α | Σ | | | | | | | 2026 SED CONCEN | Tmr | | E A X A S | AXARX | XX444 | 44444 | 4444 | | | OW END
PABY | 1978 | 1978
1979
1959 | 1969 | | 1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | | | MA3Y
MA3Y | 1959
1952
1979 | , , , , , , , , , , , , , , , , , , , | 1964
1963
1958
1976
1940 | 1976
1976
1976
1976
1976 | 1976
1905
1972
1976
1978 | 1976
1978
1978
1976
1976 | 1978
1976
1978
1978 | | | MIZAB
Rotqirdzejo | 004 | | 014
014
000
044 | | 014 | | | | | DRAINAGE
AREA | 37.00 | 04 40+ 0 | 2.39
622.00
4905.00
12.00
197.00 | 1.50
7.00
12.00
250.00
27.00 | 34.00 | | | | | TYPE OF | A A A | | N N N N N | N N N N N | M M M M M M M M M M M M M M M M M M M | N N N N N N N N N N N N N N N N N N N | N N N N | | | COUNTY | 099
105
035 | 049
125
131
131
131
131
019 | 147
111
099
037
021 | 021
021
021
021 | 021
021
099
021
021 | 021
021
021
021 | 021
021
021
021 | | | STATE | 020
040
040 | | 040
020
020
020 | 020
020
020
020 | 020
020
020
020 | 020
020
020
020 | 020
020
020
020 | | | LONGITUDE | 0952805
0953545
0953134 | 0954653
0954152
0954015
0953707
0953206
0961854 | 0955625
0961501
0950637
0945316 | 0945731
0945941
0950259
0950411 | 0945013
0945943
0950450
0950259 | 0950249
0945652
0950136
0950344
0945727 | 0945818
0945731
0945308
0945212 | | | LATITUDE | 600
918
406 | 1646
1646
1826
2330
2943
0329
0013 | 363050
382801
371839
372412
371654 | 371537
371350
371203
371049 | 37 1331
370946
370210
370530
370618 | 370621
370802
370803
370957
371020 | 371132
371222
371310
371323 | | | STATION NAME AND LOCATION | BIG
VERC
E F | ELK R AT ELK FALLS, KS ELK R BL ELK CITY LK, KS VERDIGRIS R NR CLAREMORE OK VERDIGRIS RIVER NR SAGEEYAH, OK VERDIGRIS RIVER NR INOLA, OK NEWT GRAHAM LOCK AND DAM NR INOLA, OK CANEY R NR ELGIN KANS | DOUBLE CREEK SWS 5 NR RAMDNA, OK
NEOSHO R NR AMERICUS, KS
NEOSHO R NR PARSONS, KS
LIMESTONE C NR BEULAH, KS
LIGHTNING C NR MCCUNE, KS | DEER C NR WEST MINERAL, KS DEER C NR HALLOWELL, KS DEER C NR OSWEGO, KS LIGHTNING C NR OSWEGO, KS CHERRY C NR WEST
MINERAL, KS | L CHERRY C NR WEST MINERAL, KS
CHERRY C NR HALLOWELL, KS
NEOSHO R AT CHETOPA, KS
CHERRY C 3 MILES W OF FAULKNER, KS
CENTER C 6.5 MILES SW OF HALLOWELL, KS | CHERRY C 2 MILES W OF FAULKNER, KS TR TO CHERRY C 5.5 MILES NE OF HALLOWELL, KS CHERRY C 4.5 MILES SW OF HALLOWELL, KS NEOSHO R 2 MILES E OF OSWEGO, KS DENNY B C 2 MILES E OF HALLOWELL, KS | CHERRY C 2 MILES NE OF HALLOWELL, KS
CHERRY C 3 MILES NE OF HALLOWELL, KS
TR TO L CHERRY C 6.5 MILES S OF WEST MINERAL
TR TO L CHERRY C 7.5 MI SE OF WEST MINERAL | | | HYDROLOGIC
Unit
Cooe | 11070103
11070103
11070103 | 11070104
11070104
11070105
11070105
11070105
11070105 | 11070106
11070201
11070205
11070205 | 11070205
11070205
11070205
11070205 | 11070205
11070205
11070205
11070205 | 11070205
11070205
11070205
11070205 | 11070205
11070205
11070205
11070205 | | | | | | | | | | | | |----------------------------|--|---|--|--|--|--|---|--| | A072 032
A103M | 0000 | 00000 | 00000 | 00000 | ۵۵۵۵ | ۵۵۵۵ | 0000 | | | ORGANIZATION
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USCE
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | वयवयव | বৰৰৰ | 4 0 0 4 4 | বৰবৰৰ | বৰৰ | FFF | ir m | | | 3512 TRAN 42U2 | | | | | | | Σ | | | SUS SED CONCEN | 4444 | 44440 | AANXX
AA A | 44444 | 04440 | O | ΣLUW
Σ | | | OW FND
RA3Y | 1979
1979
1979
1979 | 1979 | | 1976 | | 1975 | 24.04 | | | OW BEGIN | 1978
1976
1978
1976 | 1976
1976
1978
1978 | 1977
1976
1976
1976 | 1976
1976
1964
1976 | 1944
1976
1976
1976 | 1947
1979
1979
1979 | 1977
1966
1949
1964 | | | NISA8
Hotqirəsəd | | 014 | | 004
004
023 | 014 | 000
4 4 4 4 | 0 1 4
0 0 0 4
0 0 0 4 | | | DRAINAGE
AREA | | 5876.00 | 60.00
30.00
7.50
43.00 | 30.00 | 2510.00 | 12307.00
28.10
13.10
13.40
12495.00 | 229.00
381.00
301.00 | | | TYPE OF | A A A A A A A A A A A A A A A A A A A | NS A S A S A S A S A S A S A S A S A S A | AS S AS | AS AS AS | AS SA | ASS ASS | N N N N N N N N N N N N N N N N N N N | | | COUNTY | 021
021
021
021 | 021
021
021
021 | 037
037
037
037 | 021
097
097
097
097 | 115
021
021
021
119 | 021
035
035
035
021 | 021
007
007
007 | | | 3TAT2 | 020
020
020
020 | 020
020
020
020 | 020
020
020
020 | 020
029
029
029
029 | 040
020
020
020
020 | 040
040
040
040 | 040
035
035
035 | | | LONGITUDE | 0945341
0945241
094551
0945517
0945417 | 0945020
0945318
0944828
0945206
0945726 | 0944430
0944254
0943848
0944030
0944048 | 0944219
0941840
0943610
0942449
0943455 | 0944445
0944426
0943822
0943911
0943512 | 0951600
0951033
0951611
0951425
0951345 | 0951345
1042742
1042345
1044708 | | | LATITUDE | 371323
371414
371502
371514
371554 | 371650
371652
371738
371805
365543 | 372349
372625
372718
372204
371835 | 371832
370618
370920
370425 | 365604
370225
370503
371320
363750 | 355600
365409
364711
364618
355115 | 355115
364714
364613
354050 | | | STATION NAME AND LOCATION | TR TO TR TO L CHERRY C 5.5 MI S OF W MINERAL L CHERRY C 4 MILES SE OF WEST MINERAL. KS TR TO CHERRY C 1.5 MILES S OF WEST MINERAL. KS CHERRY C 2 MILES SE OF WEST MINERAL, KS TR TO CHERRY C 2 MILES S OF WEST MINERAL, KS | L CHERRY C 2 MILES SW OF SCAMMON, KS
CHERRY C 2 MILES E OF WEST MINERAL, KS
L CHERRY C 1.5 MILES NE OF SCAMMON, KS
CHERRY C 4 MILES NE OF WEST MINERAL, KS
NEOSHO RIVER NR COMMERCE, OK | SECOND COW C AT PITTSBURG, KS FIRST COW C AT FRONTENAC, KS EAST COW C AT FRONTENAC, KS EAST COW C NR PITTSBURG, KS COW C NR WEIR, KS | BRUSH C NR WEIR, KS
CENTER CREEK NEAR FIDELITY, MO
CENTER CREEK NEAR SMITHFIELD, MO.
TURKEY CREEK AT DUNWEG, MO
TURKEY CREEK NEAR JOPLIN, MO | SPRING RIVER NR QUAPAW, DK
WILLOW C AT BAXTER SPRINGS, KS
SHORT C AT GALENA, KS
COW C NR LAWTON, KS
ELK RIVER NR TIFF CITY, MO | NEOSHO R NR WAGDNER DK
BIG CABIN C NR WELCH, OK
W F BIG CABIN C NR CENTRALIA, OK
M F BIG CABIN C NR PYRAMID CORNERS, OK
NEOSHO RIVER BLW FT GIBSON LAKE NR FT GIBSON | HEOSHO R BL FT GIBSON LK NR FT GIBSON
CANADIAN RIVER NEAR HEBRON, NM
CHICORICA CREEK NEAR HEBRON, NM
VERMEJO RIVER NEAR DAWSON, NM | | | HYDROLOGIC
Unit
Code | 11070205
11070205
11070205
11070205 | 11070205
11070205
11070205
11070206 | 11070207
11070207
11070207
11070207 | 11070207
11070207
11070207
11070207 | 11070207
11070207
11070207
11070207 | 11070209
11070209
11070209
11070209 | 11080001
11080001
110377731 | | | MEDIA | | | | | | | | | | |----------------------------|---------------------------------------|---|---|---|---|--|---|---|-------------| | SED STOR | 0 | 0000 | 000 0 | 00 00 | 00000 | 00000 | 4000 | 00 0 | | | ONGENIZATION
3000 | SSSA | USGS
USGS
USGS
USGS | TXOO1
USGS
USGS
USGS
USGS | USGS
USGS
USCE
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USCE | | | SUSP DISCHARGE | | m Z m N | 4 2 4 | N XZ | 44 0 | ανшш | шα | m 4 Z | | | 3512 TRAS TAM 038 | | | | | | | Σ | | | | SIS THAN NEUZ | | M Z M | ∢∑ ⊻ | ∢ 22 | YAZOZ | & & Z w Z | ∑ ₩ ¥ ∢ | m X K | | | 2024 SED CONCEN | I. | mZmu | ν
∢ΣΟΣΧ | NAOZZ | YAEOZ | a a z m z | ∑ mX40 | 4 70 V | | | OW END
RABY | 1978 | | 197 | | | | | 1972
1975 | | | OW BEGIN | LO LO | 1938
1969
1958
1948 | 1968
1947
1975
1975 | 1953
1951
1944
1978 | 1978
1976
1976
1978 | 1977
1978
1978
1951
1961 | 1955
1951
1968
1968 | 1960
1951
1947
1960 | | | BASIN
Descriptor | | 014
004
014
124 | 4
4
4
4
4
4
4
4 | 000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 00000
4 4 4 4 4 | 000
000
004 | 000
000
000
000 | 000
400
444 | | | | 00 | 8 88 | 8888 | 88888 | 36
22
10
30
41 | 88588 | 8888 | 8888 | | | A GE | Q | വവവ | in an ear | 7. 20 6. 4 | 5 8 2 5 | က် မဝ မ က | | 69.
18.
07. | | | DRAINAGE
AREA | C 000 | 6015
786
19445 | 22866
25229
25763
27952 | 257
865
47576
139 | + 0 | 4757,
213,
795 | 11589.
14290.
105. | 69
2018
2307
74615 | | | TYPE OF
SITE | 35 | N N N N | N K K K K K K K K K K K K K K K K K K K | NS AS | NS AS | S A S A S A S A S A S A S A S A S A S A | SW
SW
SW
SW | AS
AS
SA
SA | | | COUNTY | 007 | 047
037
037
375 | 211
211
011
087
063 | 027
133
061
121
121 | 22222 | 061
061
061
139
007 | 153
063
109
081 | 081
111
091
143 | | | 3TAT2 | 035 | 035
035
035
048 | 048
040
040
040 | 040
040
040
040 | 040
040
040
040 | 040
040
040
040 | 040
040
040
040 | 040
040
040 | | | UDE | 36 | 1042239
1030236
1032340
1015245 | 1002212
1002213
0982245
0973554 | 0971300
0963301
0951419
0953916 | 0953415
0953419
0953421
0955100 | 0951419
0950549
0950756
1012930
1003105 | 0991640
0961225
0972100
0965320 | 0965120
0960408
0955257
0960013 | | | LONGITUDE | 29. | 233 | 2222
4 3324 | + 8 + 8 8
9 9 4 9 9 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 15
12
13
13
13 | 5200 | | | 5 | 40 | 9000 | 100
100
198
198
198 |)95
)95
)95
)95 | 995
995
995 | 955
955
101
101 |) 99
) 96
) 97 | 0965120
0960408
0955257
0960013 | | | | | | 0 9 0 8 0 | | 0.4087 | | | 4300
4300 | | | LATITUDE | 74 | 3908
2324
2028
2813 | 5606
3400
1803 | 314
902
545
805 | 150225
150224
150226
145658 | 1545
1609
1746
1324
1920 | 2618
1553
3858
4208 | 154655
154015
152843
160837 | | | LATI | · · · · · · · · · · · · · · · · · · · | 352 | 355
355
353
351
351 | 351
345
351
344
345 | 350
350
350
345 | 351
351
351
364 | 35.3 | 357
357
357
360 | | | STATIDN NAME AND LOCATION | CANADIAN R NR TAYLOR SPRINGS, NM | RIVER NEAR SANCHEZ, NM
RIVER ABOVE NM-TX STATE LINE, NM
CREEK NEAR LOGAN, NM
RIVER NR AMARILLO, TEX. | BRIDGE ON US 60-83 AT CANADIAN
CANADIAN R NR CANADIAN, TX
CANADIAN RIVER AT BRIDGEPORT, OK
CANADIAN RIVER NR NEWCASTLE, OK | LITTLE RIVER BLW LK THUNDERBIRD NR NORMAN, O
LITTLE RIVER NR SASAKWA, OK
CANADIAN R NR WHITEFIELD OK
BRUSHY CREEK NR HAILEVILLE OK
PEACEABLE CREEK NR HAILEVILLE OK | BLUE CREEK TRIB NEAR BLOCKER OK
BLUE CREEK TRIB NR BLOCKER, OK
BLUE CREEK NR BLOCKER, OK
DEER CREEK NR MCALESTER OK
MATHULDY CREEK NR CROWDER, OK | CANADIAN RIVER NR WHITEFIELD, OK
TALOKA CREEK AT STIGLER OK
TALOKA CREEK NEAR STIGLER OK
BEAVER RIVER NR GUYMON, OK
BEAVER RIVER AT BEAVER, OK | WOLF C LIPSCOMB NORTH CANADIAN RIVER AT WOODWARD, OK NORTH CANADIAN RIVER NR WETUMKA, OK DEEP FORK NR ARCADIA, OK BELLCOW CREEK AT CHANDLER, OK | DRY CREEK NR KENDRICK, OK
DEEP FORK NR BEGGS, OK
DEEP FORK NEAR DEWAR, OK
ARKANSAS R AT TULSA OK | | | HYDRDLOGIC
Unit
Code | 1080003 | | 11090106
11090106
11090201
11090202 | 11090203
11090204
11090204
11090204 | 11090204
11090204
11090204
11090204 | 11090204
11090204
11090204
11100101 | 11100203
11100303
11100303
11100303 | 11100303
11100303
11110101 | | | MEDIA | | 0000 | 00000 | 00000 | 0000 | 00000 | | |----------------------------|---|---|---|---|--|--|---| | AOT2 G32 | 00 | 0000 | 04000 | 00000 | 00000 | 00000 | <u> </u> | | NOITAZINADNO
3003 | USCE
USGS
USGS
USCE | USCE
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
AROO1
USCE
USCE | | 2026 DIZCHYBOE | ШA | 000 | х с | XZZZV | KKOKO | ० बबब | Z | | 3512 TRAS TAM 038 | | | | | | | | | SUSP PART SIZE | Σ Q X m
Q X | 3 0000m | Z A Z A | ZYZZY | XXOZO | 00222 | ZMMX | | OW END
YEAR | 1972 N
1977 G | o - | 28424 | 23223 | 11020 | DOXXX | 2002 | | OW BEGIN | 1969
1945
1977 | V 40000 | 1978
1944
1945
1978 | 1978
1978
1978
1978 | 1978
1978
1978
1978 | 1979
1960
1976
1976 | 1978
1968
1940
1930 | | BASIN
ROTAIRDS30 | 014 | 004 | 004
014
004
004 | 000000
0000000000000000000000000000000 | 00000
44444 | 00000000000000000000000000000000000000 | 000 | | DRA!NAGE
AREA | 75815.00
74615.00
74615.00
96674.00 | 147757.00 | 150482.00
203.00
56.20
122.00 | 12.80
72.90
19.40
53.60
2.74 | 12.00
69.10
27.90 | 147.00
198.00
1.26
6.67 | 4.39 | | TYPE OF
SITE | X X X X | A A A A A A A A A A A A A A A A A A A | N A A A A A A A A A A A A A A A A A A A | N A A A A | N N N N N N N N N N N N N N N N N N N | AS S AS | E E E E | | COUNTY | 101
1443
101 | 079
033
061
121
061 | 079
133
127
077 | 077
079
079
079 | 077
079
079
079 | 079
131
079
079
079 | 079
071
047 | | 3TAT2 | 040
040 | | 040
005
040
040 | 040
040
040
040
040 | 00000 | 040
040
040
040 | 040 | | LONGITUDE | 0952410
0960649
0960013
0951755 | | 0944518
0942126
0941755
0951510
0950920 | 0950158
0944418
0943745
0943121
0950706 | 0950452
0945639
0945536
0945303
0945206 | 0944612
0942425
0943401
0944319
0944023 | 0944021
0933600
0940100
0934956 | | LATITUOE | 54815
60648
60837
54610 | 352058
352542
352016
350608
351013
352058 | 351511
352546
345508
345525
345444 | 345623
345727
345734
350020
345933 | 345930
350121
350834
340740
350750 | 351035
350945
350930
351130 | 351246
352600
353400
352902 | | STATION NAME AND LOCATION | ARKANSAS R NR TULLAHASSEE OK
ARKANSAS RIVER AT SAND SPRINGS NR TULSA, OK
ARKANSAS RIVER AT TULSA, OK
ARKANSAS RIVER AT TULSA, OK | ARKANSAS R NR SALISAW OK
ARKANSAS R AT VAN BUREN ARK
LITTLE SANS BOIS CREEK NR STIGLER, OK
SANS BOIS CREEK NR QUINTON, OK
MULE CREEK NR MCCURTAIN, OK
ARKANSAS RIVER NR SALLISAW, OK | COAL CREEK NR SPIRO OK
ARKANSAS RIVER AT VAN BUREN, ARK.
POTEAU RIVER AT CAUTHRON, ARK.
FOURCHE MALINE NR WILBURTON OK | RED DAK CREEK NR RED DAK OK
CASTON CREEK AT WISTER OK
MORRIS CREEK AT HOWE OK
SUGARLOAF CREEK NR MONROE OK
BRAZIL CREEK NEAR RED OAK OK | ROCK CREEK NEAR RED OAK OK
BRAZIL CREEK NEAR WALLS OK
WILDHORSE CREEK NR MCCURTAIN, OK
OWL CREEK NR MCCURTAIN OK
WOLF CREEK NR MCCURTAIN, OK | DOE CREEK NR BOKOSHE, OK
JAMES FORK NEAR HACKETT, ARK.
JAMES FORK NR WILLIAMS, OK
COAL CREEK NR BOKOSHE, OK
COAL CREEK NR PANAMA. OK | HOLI-TUSKA CREEK NR PANAMA OK
HARTMAN - CLARKSVILLE
MULBERRY R NR MULBERRY ARK
ARKANSAS R AT OZARK ARK | | HYDROLDGIC
Unit
Code | 11110101 | 111000
1111000
11111000
111111000
111111 | 11110104
11110105
11110105
11110105 | 11110105
11110105
11110105
11110105 | 11110105
11110105
11110105
11110105 | 11110105
11110105
11110105
11110105 | 11110105
11110201
11110201
11110201 | | MEDIY | | | | | | | 0.000 | | | |-------------------------------------|---------------------------------------|--|--|---|---|---|--|---|--------------| | NOTZ G3Z | | | <u> </u> | 0 00 | 00000 | 00000 | 0 000 | 0000 | | | ONGANIZATION
SOCO | | USGS
USGS
AROO
USCE
USCE | USGS
USGE
USGS
USGE
USCE | USCE
USFS
USCE
USGS
USGS | USGS
USGS
USGS
TXOO
USGS | USGS
USGS
USGS
USGS
TXOO | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | 7 0 | 0 7 | 0 11 | 200 D | O m 4 | M ≥ 4 | ωΣ | | | 3512 TRAS 92U2
3512 TRAS TAM 038 | | I | <u>ки п</u> | шш | Σ Σ | Z Z W Z A | ш | MZZZ | | | SUSPER BART SIZE | | 0 2 8 8 8 | 0 0 0 3 0
0 0 0 3 0 | B 4 ≦ D m | Z Z | OZMZA | MOZO4 | MEE | | | ON3 WO
RA3Y | | | 1967 | | 1975 | | | | | | KEAR
Ow Begin | | 1973
1968
1961
1961 | 1958
1948
1947
1939 | 1939
1977
1939
1973 | 1967
1948
1964
1964 | 1974
1974
1974
1967
1968 | 1952
1945
1978
1948
1948 | 1926
1967
1972
1972 | | | BASIN
Descriptor | | 014 | 0 14 | 0 1 4
0 1 4 | 00 00 4
4 4 0 0 0 | 000
4 4 4 | 8888
4444 | 000
4 4 4 | | | DRAINAGE
AREA | | 150547.00 | 3.91 | 158030.00
158288.00 | 4211.00
5972.00
534.00
6792.00 | 139.00
65.50
142.00
7725.00 | 1222.00
1566.00
1878.00
2337.00
549.00 | 4244.00
20570.00
1434.00
1086.00 | | | TYPE OF | · · · · · · · · · · · · · · · · · · · | N A A A A A A A A A A A A A A A A A A A | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | SERE | N N N N N | X X X X X X X X X X X X X X X X X X X | A A A A | | | COUNTY | *
*** | 131
047
071
115 | 083
115
083
149 | 149
119
119
119 | 1 0 0 0 0 | 191
075
075
075 | 087
055
065
009
075 | 485
485
101 | | | 3TAT2 | | 000 S S S S S S S S S S S S S S S S S S | 005
005
005
005 | 005
005
005
005 | 048
048
048
048 | 048
048
048
048 | 048
040
040
040 | 040
048
048
048 | | | LONGITUDE | | 0941754
0934846
0932000
0932800 | 0935255
0930858
0930858
0935525
0933700 | 0933900
0934542
0921610
0922132
0920918 | 1012449
1005625
1005500
1004443 | 1004613
1002000
1001508
1001137 | 1001314
0993028
0992255
0993025 | 0990547
0983200
1001705
1001803 | | | LATITUDE | | 352056
352821
352200
352800
352800 | 351230
351334
351334
350625
345900 | 345200
343503
344458
344727
344007 | 345015
343740
344030
343423
343423 | 343227
343420
343526
343409
345727 | 345727
345132
342844
351005
345451 | 343804
340630
341630
341231 | | | STATION NAME AND LOCATION | | ARKANSAS R. AT DAM NO. 13, NR VAN BUREN, ARK
ARK RIVER AT OZARK DAM AT OZARK, ARK.
KNOXVILLE-CLARKSVILLE
SPADRA C AT CLARKSVILLE ARK
ILLINDIS BAYOU NR SCOTTSVILLE ARK | SIXMILE C SWS 6 NR CHISMVILLE ARK
ARKANSAS R AT DARDANELLE ARK
ARKANSAS RIVER AT DARDANELLE, ARK.
PETIT JEAN C NR BOONEVILLE ARK
DUTCH C AT WALTREAK ARK | FOURCHE LA FAVE R NR GRAVELLY ARK
CEDAR CREEK
ARKANSAS R AT LITTLE ROCK ARK
ARK RIV AT MURRAY DAM, NR LITTLE ROCK, ARK
ARKANSAS R & DAVID D TERRY L&D BL LITTLE ROC | POTF RED RIVER NEAR WAYSIDE, TEX. PRAIRIE DOG TOWN FORK RED R NR BRICE TEX (DI MULBERRY CREEK NEAR BRICE, TEX.(DISC) POT F RED R NEAR LAKEVIEW POTF RED RIVER NR LAKEVIEW, TEX. | LITTLE RED RIVER NEAR TURKEY, TEX. JONAH CREEK AT WEIR NEAR ESTELLINE, TEX SALT CREEK NEAR ESTELLINE, TX (DISC) POTF RED RIVER NR CHILDRESS, TEX. BRIDGE ON US 83 NORTH OF WELLINGTON | SALT FORK RED RIVER NR WELLINGTON, TX
SALT FORK RED RIVER AT MANGUM, OK
SALT FORK RED RIVER NR ELMER OK
NORTH FORK RED RIVER NR CARTER, OK
ELK CREEK NR HOBART, OK | NORTH FORK RED RIVER NR HEADRICK, OK
RED RIVER NR BURKBURNETT, TX
NORTH PEASE RIVER NEAR CHILDRESS, TEXAS
MIDDLE PEASE RIVER NEAR PADUCAH, TEXAS | | | HYDROLOGIC
UNIT
CODE | | 11110201
11110201
11110202
11110202 | 11110202
11110203
11110204
11110204 | 11110206
11110206
11110207
11110207 | 11120103
11120103
11120105
11120105 | 11120105
11120105
11120105
11120105 | 11120202
11120202
11120202
11120303 | 11120303
11130102
11130103
11130104 | | | MEDIA | | | | | | | | |----------------------------|--|---|---|---|---|---|--| | SED STOR | 00000 | 00000 | 00000 | 0 0 | 00 0 | 000 0 | 0000 | | ORGANIZATION
GODE | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USCE
USCE | USGS
USGS
USGS
USCE
USGS | USGS
USGS
USGS
USGS | | SUSP DISCHARGE | 2 Z Z Z | 22422 | Z Z U M | w | ∑ 1L | Σ | Z ∢ν | | BED MAT PART SIZE | | | | | | | | | SUSP PART SIZE | ZZXZZ | EEVEE | ₹ ₹ ₩ | ш | шь | ΣΣΣ | XXVV | | | ₹₹₹ ₹ | N ZZAZZ | 0 2 Z Z O W D | 72 C 4 | 257 Z
000 T ₹ | 5 2 2 3 0 | XXNN | | QN3 WD
RA3Y | 197 | 197 | 197 | 195
197
196
197 | 197
197
197
197 | 197 | | | OW BEGIN | 1967
1952
1973
1979 | 1966
1969
1966
1966 | 1953
1966
1954
1968
1968 | 1947
1959
1909
1946
1962 | 1960
1948
1945
1964
1964 | 1944
1959
1944
1947
1978 | 1978
1976
1977
1977 | | NIZAB
Descriptor | 004
004
004 | 000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 124
014
004
024
014 | 0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 024 | 124
004
124
014 | 400 | | *** | 88888 | 88888 | 88888 | 88888 | 888 8 | 8888 | 8.8. | | DRAINAGE
AREA | 2754.
178.
30782.
1128. | 937.00
499.00
584.00
1874.00 | 481.
652.
563.
1551. | 243.
1977.
3129.
313.
208. | 35.
208.
4706.
7202. | 39720.
8321.
39720.
1087. | 445.
176. | | TYPE OF | AS
AS
AS | N A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | SEEEE | A S S S S S S S S S S S S S S S S S S S | N N N N N N N N N N N N N N N N N N N | 3 3 3 S | | COUNTY | 101
077
085
101 | 275
275
023
485 | 009
485
067
181
039 | 039
039
015
015 | 051
051
051
099
019 | 181
197
181
005
029 | 005
005
029
029 | | 3TAT2 | 048
048
040
040
048 | 048
048
048
048 | 048
040
048
040 | 040
040
040
040 | 040
040
040
040 | 048
048
040 | 040
040
040 | | LONGITUDE | 1000424
0980505
0970935
1001238 | 0994710
1000049
0994802
0992318
0983200 | 0983646
0985417
0980257
0965051
0991010 | 0990235
0985757
0983349
0982545
0981520 | 0974928
0975708
0975221
0976600 | 0963347
0994403
0963347
0955443
0961356 | 0960712
0955230
0961522
0961547 | | LATITUDE | 341339
334846
334340
341128 | 334914
333918
333839
334201
335434 | 333945
335421
341300
334208
353220 | 353450
353152
350702
350815
351030 | 350238
345641
345818
342700
341403 | 334908
342447
334908
341617
342706 | 342323
341854
342655
342743 | | STATION NAME AND LOCATION | PEASE RIVER NEAR CHILDRESS, TEX.
EAST FORK LITTLE WICHITA R NEAR HENRIETTA, T
RED RIVER NR GAINESVILLE, TX
M PEASE R AT PL XING N PADUKAH
NORTH WICHITA RIVER NEAR PADUCAH, TEX. | NORTH WICHITA RIVER NEAR TRUSCOTT, TEX. SOUTH WICHITA RIVER & ROSS RANCH NR BENJAMIN SOUTH WICHITA RIVER NEAR BENJAMIN, TEX. WICHITA RIVER NR SEYMDUR, TEX. | LITTLE WICHITA RIVER NEAR ARCHER CITY, TEX. BEAVER CREEK NR ELECTRA, TEX. BEAVER CREEK NR WAURIKA, OK MINERAL CREEK NEAR SADLER, TEX.(DISC) WASHITA RIVER NR FOSS, OK | BARNITZ CREEK NR ARAPAHO, OK
WASHITA RIVER 'NR CLINTON, OK
WASHITA RIVER AT CARNEGIE, OK
COBB CREEK NR FORT COBB, OK
SUGAR CREEK NR GRACEMONT, OK | EAST BITTER CREEK NR TABLER, OK
LITTLE WASHITA RIVER NR NINNEKAH, OK
WASHITA RIVER NR TABLER, OK
WASHITA R'NR DOUGHERTY OKLA
WASHITA RIVER NR DURWOOD, OK | RED R AT DENISON DAM NR DENISON TX
RED RIVER NR QUANAH, TX
RED RIVER AT DENISON DAM NR DENISON, TX
MUDDY BOGGY C NR FARRIS OK
COAL CREEK NEAR LEHIGH OK | MUDDY BOGGY CREEK AT ATOKA OK
MCGEE CREEK NR FARRIS OK
O1S-10E-21DCD 3 COAL CK TRIB NR TOWN OF LEHI
O1S-10E-16CCD 1 COAL CK TRIBUTARY | | HYDROLOGIC
Unit
Code | 11130105
11130201
11130201
11130204 | 11130204
11130205
11130205
11130206
11130206 | 11130206
11130207
11130208
11130210 | 11130302
11130302
11130302
11130302 | 11130302
11130302
11130303
11130303 | 111349 D
111350 E
11140101
11140103 | 11140103
11140103
11140103
11140103 | | MEDIA | | | | | | | | |----------------------------|---|---|--|--|--|---------------------------------------|--| | NOTE G32 | ٥٥ | 00000 | ممممن | <u> </u> | <u> </u> | ۵۵ | | | MOITAS,MADRO
3000 | USCE
USGS
USGS
USGS
USGS | USGS
USCE
USGE
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
TXOO
USCE | USGS
USGS
TXOO
USGS
USGE | USCE
USGS | | | SUSP DISCHARGE | шž | I XO | <u>α</u> | 3 | Α | Σ | | | BEIZ TRAN NEUZ | | 4 3
≀U | Σ
 | | | | | | SUSP SED CONCEN | 0 4 ¥ 0 0 | 4 3
4 I 3 Y | Z X Z Z Z | 30 X O W | ₩ 4 0 X ₩ | <u> </u> | | | MA3Y | E 46 | 4 - | | 40 4 | 4 4 | 4 | | | OM END | 196:
195: | 197 | | 197 | 197 | 197 | | | OW BEGIN | 1947
1965
1968
1947 | 1967
1965
1957
1945
1907 | 1962
1954
1979
1978
1978 | 1972
1974
1955
1962
1973 |
1973
1972
1963
1944
1973 | 1973 | | | MISAB
BOTGIRDS30 | 004
004
014 | 0
4
4
10 | 900 | 004 | 014 | 0 14 | | | DRAINAGE
AREA | 1423.00
140.10
75.00
1173.00 | 4119.00
52300.00
52336.00
60613.00 | 60613.00
2628.00
707.00 | 66860.00
66860.00
93.90
2774.00 | 3400.00
3540.00
3137.00 | 850.00
47348.00 | | | SITE
SITE | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | AS A | N X X X X X X X X X X X X X X X X X X X | NS AS AS | A S A S A S A S A S A S A S A S A S A S | N N | | | YTMUDD | 127
079
387
089
089 | 081
057
017
081
081 | 017
013
017
031
031 | 069
043
081
449
037 | 067
091
449
017
343 | 315 | | | 3TAT2 | 040
040
048
040
040 | 005
005
005
005
022 | 022
022
022
022
022 | 022
022
022
048
048 | 048
005
048
022
048 | 048
048 | | | LONGITUDE | 0952903
0943645
0944934
0944934 | 0935753
0934856
0934920
0934849 | 0934425
0932535
0933316
0932630
0932705 | 0924313
0924313
0931810
0950750 | 0940907
0935958
0950500
0935240 | 0943008
0944139 | | | LATITUDE | 341202
343818
335026
335608 | 334128
333626
333626
333626 | 323055
321410
321131
315920
315622 | 313058
313058
320255
332320
331500 | 331815
331432
331900
323845
325419 | 324450
334115 | | | STATION NAME AND LOCATION | KIAMICHI R NR BELZONI OK
KIAMICHI RIVER NR BIG CEDAR, OK
LITTLE PINE CREEK NEAR KANAWHA, TEX.
LITTLE RIVER NR IDABEL, OK
MOUNTAIN FK NR EAGLETON OK | LITTLE RIVER AT MILLWOOD DAM NR ASHDOWN, ARK RED RIVER AT FULTON, ARK. RED RIVER NR HOSSTON, LA RED RIVER AT FULTON, ARK. | RED R AT SHREVEPORT LA
LDGGY BAYOU NR NINOCK, LA
BAUOU PIERRE BELOW CASPIANA
BAYOU PIERRE AT EVELYN
CHEMARD LAKE NR EVELYN | 7 RED RIVER AT COLFAX, LA. 7 RED RIVER AT COLFAX, LA (CE 04450) 9 GRAND BAYOU NEAR COUSHATTA, LOUISIANA 2 SULPHUR R NR TALCO 2 SULPHUR R NR NAPLES TEX | SULPHUR RIVER NR TEXARKANA, TEX. SULPHUR RIVER SOUTH OF TEXARKANA, ARK. WHITE OAK C NR TALCO TWELVEMILE BAYOU NEAR DIXIE, LA. CYPRESS CREEK NR DAINGERFIELD, T | CYPRESS CREEK NR
RED RIVER NEAR DE | | | HYDROLOGIC
Unit
CODE | 11140105
11140105
11140105
11140105 | 11140109
11140201
11140201
11140201 | 11140204
11140204
11140206
11140206 | 11140207
11140207
11140209
11140302 | 11140302
11140302
11140303
11140304 | 11140306
111449 H | | | , | | | | | | | | | |----------------------------|-----------|---|---|---|--|--|--|---| | AOT2 032 | | &OOO | ٥٥٥٥٥ | ممدمم | 00000 | 00000 | مممدم | υυΔυ | | ONDEAUZATION
BOOD | | USGS
TX001
TX001
USGS
USGS | USGS
TX001
USGS
TX001
TX001 | TX007
USGS
TX001
USGS
USGS | USGS
TXOO1
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
TXOO1
USGS
USGS | USGS
USGS
USGS
TXOO1 | | SUSP DISCHARGE | | N WE | к м | M Z ∨ | Σ Omα | SUBBU | ፈ ጠጠጀ | ΣΣN | | 3512 TRAS TAM G38 | | 7 | | | | | | | | SUSP SED CONCEN | | Z Z Z Z | ~ | ME EX | ₹ Х Ш Ш | AOAON | <u> </u> | ZZ4 | | | | | 80 00 | B 0 3 m = 0 3 | 3 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | RO M M ₹ | ∑∑ NC | | OW END
RABY | | 1968 | 197 | 197 | 196
197 | 197
197
197 | 197 | 197 | | OW BEGIN | | 1960
1968
1932
1955
1944 | 1951
1962
1958
1966
1966 | 1974
1946
1965
1976
1976 | 1964
1964
1856
1961
1961 | 1966
1965
1966
1965 | 1964
1938
1967
1953
1966 | 1969
1976
1908
1963 | | BASIN
DESCRIPTOR | | 004 | 90 | 124 | 004 | 4 t t 0 4 t 4 t 4 t 4 t 4 t 4 t 4 t 4 t | 123
123
124 | 123 | | w | | 8 88 | 90 | 8 88 | 8 888 | .50 | 8 888 | 000 | | DRAINAGE
AREA | 12 | 8229
80
9329 | 1945 | 7951
683
333 | 46
381
266 | 295
46
75 | ,6278
8146
8538 | 233 | | TYPE OF | | N A S A S A S A S A S A S A S A S A S A | N S A S S S S S S S S S S S S S S S S S | AS AS | AS AS | N A A A A A A A A A A A A A A A A A A A | AS AS AS | N N N N N N N N N N N N N N N N N N N | | YTNUDO | _Õ. | 351
401
031
031
351 | 361
213
073
005
455 | 241
241
347
237 | 113
121
097
121 | 121
085
085
121 | 121
257
113
257
213 | 113
257
293
349 | | 3TAT2 | 7 | 048
048
022
022
048 | 048
048
048
048 | 048
048
048
048 | 048
048
048
048
048 | 048
048
048
048 | 048
048
048
048 | 0 0 4 8
0 0 4 8
0 4 8
8 8 | | UDE | _ <u></u> | | | | | 33355 | | | | LONGITUDE | Z | 0933630
0942728
0940058
0933930 | 354
536
509
448
505 | 0940530
0940536
0943828
0980443
0974140 | 0970123
0965333
0972257
0970505 | 0971051
0964925
0964925
0965333 |
0971725
0962745
0964408
0962744
0960620 | 0963543
0961943
0964302
n962215 | | ų. | <u> </u> | 00000 | 10 09
34 09
15 09
30 09 | 20000 | 00000 | - 10 4 0 0
0 0 0 0 0 | 8 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0000 | | LATITUDE | _= | 304449
322211
315844
315230
301813 | 301110
321834
313445
310755
310830 | 302121
302122
313658
331736 | 323503
331700
333636
332311
332423 | 332155
332155
332154
331700 | 330708
322535
324227
322536
320805 | 324959
323047
314801
320630 | | STATION NAME AND LOCATION | TEXAS-GL | SABINE RIVER NR BON WEIR, TEX.
SABINE R NR TATUM TEX
SABINE R AT LOGANSPORT LA
BAYOU SAN PATRICIO NEAR BENSON, LA.
SABINE RIVER NR RULIFF, TEX. | COW BAYOU NEAR MAURICEVILLE, TEXAS
KICKAPOO C NR BROUNSBORO
NECHES RIVER NEAR ALTO, TEX.
NECHES R NR DIBOLL
PINEY C NR GROVETON | NECHES RIVER AT EVADALE US96
NECHES RIVER AT EVADALE, TEX.
BAYOU LA NANA AT NACOGDOCHES
WEST FORK TRINITY RIVER NEAR JACKSBORO, TEXA
BIG SANDY CR NR BRIDGEPORT TEX | MOUNTAIN CREEK NEAR CEDAR HILL, TEX.
LITTLE ELM C NR AUBREY
ELM FK TRINITY RIVER NEAR, MUENSTER, TEX. (DIS
ELM FORK TRINITY RIVER NEAR SANGER, TEX.
ISLE DU BOIS CREEK NEAR PILOT POINT, TEXAS | CLEAR CREEK NR SANGER, TEX. LITTLE ELM CR NR CELINA, TEX. (DISC) LITTLE ELM CR NR CELINA, TEX. (DISC) LITTLE ELM CREEK NEAR AUBREY, TEX. LITTLE ELM CR NR AUBREY, TEX. | DENTON CREEK NEAR JUSTIN, TEXAS
TRINITY R NR ROSSER
TRINITY RIVER BELOW DALLAS, TEX.
TRINITY RIVER NEAR ROSSER, TEXAS | DUCK CREEK NEAR GARLAND, TEX.
KINGS CREEK NEAR KAUFMAN, TEX.
PIN DAK CR NR HUBBARD, TEX.(DISC)
CHAMBERS C NP COPSICANA | | HYDROLOGIC
Unit
CODE | | 120051 C
12010002
12010004
12010004 | 12010005
12020001
12020001
12020002 | 12020003
12020003
12020005
12030101 | 12030102
12030103
12030103
12030103 | 12030103
12030103
12030103
12030103 | 12030104
12030105
12030105
12030105 | 12030 106
12030 107
12030 108
12030 109 | | WIOTH: | | | | | | | | | |----------------------------|---|--|---|---|---|--|---|--| | SED STOR | 00000 | 0000 | 0000 | 00040 | 00000 | 00000 | 0000 | | | NOITASINADRO
3000 | TXOO1
USGS
USGS
TXOO1
USGS | TX001
TX001
USGS
USGS
USGS | USGS
TXOO1
USGS
USGS
USGS | USGS
USGS
USGS
USCE
USGS | USGS
USGS
USGS
TXOO1
USGS | USGS
TX001
USGS
USGS
USGS | 1X001
1X001
USGS
USGS | | | SUSP OISCHARGE | 00 % | 4 Z O Z | ΣΣw | шпα ∑ | OEEZE | ∑ XI∢₪ | 8 | | | BED MAT PART SIZE | α | | | | | | 0 | | | 3ZIZ TMA9 9ZUZ | IO E | αΣmα | Σ বৰ | ΣΣ | IXXXX | EXI m | 0 | | | SUSP SED CONCEN | 20002 | OSEDZ | XOXA M | mm & 3 \$ | DEEKE | ∑ XI∢m | 0000 | | | OW END
YEAR | | 1975 | 1979
1975
1972 | | | | 1975 | | | DW BEGIN | 1968
1946
1963
1963 | 1968
1968
1960
1972
1962 | 1976
1952
1962
1978
1970 | 1968
1968
1968
1948 | 1974
1974
1947
1968
1947 | 1948
1968
1958
1962
1966 | 1964
1966
1948
1962 | | | MISAB
ROTGIRJEBO | 124
124
124 | 004
004
004 | 004
003
003 | 004
023
023
124 | 124
014
004 | 00
4
4
4
4
4
4
4 | 124 | | | DRAINAGE
AREA | 12833.00
13911.00 | 828.00
34.50
409.00 | 285.00
105.00
307.00
5.77 | 11.50
94.90
69.60
87.70 | 45007.00
1466.00
8796.00
5130.00 | 88.80
15538.00
104.00
1416.00 | 3988.00
454.00 | | | TYPE OF
STIR | N N N N N N N N N N N N N N N N N N N | SSSSS | S S S S S S | S E E E E | N K K K K K K K K K K K K K K K K K K K | N N N N N | SEE | | | CONNIL | 225
001
373
291 | 291
339
339
339
201 | 201
291
339
201
201 | 201
201
201
071 | 157
169
433
433 | 433
023
023
447
253 | 253
503
417 | | | 3TAT2 | 048
048
048
048
048 | 048
048
048
048 | 048
048
048
048 | 048
048
048
048 | 048
048
048
048 | 048
048
048
048 | 048
048
048
048 | | | LONGITUDE | 0953925
0954721
0953927
0945731 | 0945102
0952727
0952726
0952838 | 0952544
0950614
0951808
0953327
0953542 | 0953343
0952443
0951824
0944930
0951914 | 0953158
1011150
1001049
1001415 | 1001247
0991606
0991602
0992753
0994853 | 0993830
0984610
0991327
0990952 | | | LATITUDE | 312020
313854
312008
304258
302530 | 302530
301436
301441
300804
300637 | 300208
302011
301534
294543
293955 | 293923
294149
295505
29420
292209 | 293456
330218
330029
332000 | 331400
333448
333451
331945
323553 | 325550
325730
325604
324121 | | | STATION NAME AND LOCATION | TRINITY R NR CROCKETT TEX
TRINITY RIVER NEAR OAKWOOD, TEX
TRINITY RIVER NR CROCKETT, TEX.
LONG KING C NR LIVINGSTON
TRINITY R AT ROMAYOR, TEXAS | TRINITY R AT ROMAYOR
BRIDGE ON US 75 SOUTH OF CONROE
WEST FORK SAN JACINTO RIVER NR CONROE, TX
PANTHER BRANCH NEAR SPRING, TEX.
SPRING CREEK NEAR SPRING, TEX.(DISC) | CYPRESS CREEK NEAR WESTFIELD, TEXAS EF SAN JACINTO R NR CLEVELAND CANEY CREEK NEAR SPLENDORA, TEXAS BUFFALO BAYOU AT WEST BELT DRIVE AT HOUSTON, KEEGANS BAYOU AT KEEGAN ROAD NEAR HOUSTON, | KEEGANS BAYOU AT ROARK ROAD NEAR HOUSTON, TE
BRAYS BAYOU AT HOUSTON, TEX.
GREENS BAYOU NEAR HOUSTON, TEX.
GALVESTON BAY TRINITY BAY PT B
CHOCOLATE BAYOU NEAR ALVIN, TEX. | BRAZOS RIVER AT RICHMOND, TEX.
DOUBLE MOUNTAIN FK BRAZOS R AT JUSTICEBURG,
DMF BRAZOS RIVER NEAR ASPERMONT, TEX.
BRIDGE ON US 83 NORTH OF ASPERMONT
SALT FK BRAZOS R NR ASPERMONT, TX | STINKING CREEK NEAR ASPERMONT, TEX.
AT US 183-283 AT SEYMOUR
BRAZOS RIVER AT SEYMOUR, TEX.
MILLERS CREEK NEAR MUNDAY, TEX.
CLEAR FORK BRAZOS RIVER AT HAWLEY, TEX. | CALIFORNIA C NR STAMFORD
CLEAR F OF BRAZOS R AT ELIASVILLE
CLEAR FORK BRAZOS RIVER AT FORT GRIFFIN, TEX
HUBBARD CREEK NEAR ALBANY, TEX. (DISC) | | | HYDROLOGIC
UNIT
CODE | 12030201
12030201
12030201
12030201
12030202 | 12030203
12040101
12040101
12040102 | 12040102
12040103
12040103
12040104
12040104 | 12040104
12040104
12040104
12040203
12040204 | 12040204
12050004
12050007
12050007 | 12050007
12060101
12060101
12060101 | 12060103
12060104
12060104
12060105 | | | AIG3M | 0 | | 00000 | ٥٥٥٥٥ | مممم | 00000 | a ပပa | | |----------------------------|---|--|---|--|--|--|--|--| | NOITASINAPRO
BGOD | usas
usas
usas
usas | 1X001
USGS
1X001
TX001
USGS | USGS
USGS
TX001
USGS
TX001 | USGS
USGS
USGS
TX001 | 1 x 00 1
U S G S
U S G S
U S G S
U S G S | USGS
USGS
USGS
USGS
USGS | USGS
1X001
1X001
USGS | | | SUSP DISCHARGE | шшш | ΣΣ | ΣΣΣ | OZZ | ΣΣΣΣ | 20000 | ш 2 | | | SEIZ TRAN TAM GBB | ш | | | | | Σ | Ш | | | 3512 TRAS 42U2 | шшшш | ΣΣ | ΣΣΟ | IIZ | 2522 | EMILI | m ∑ | | | ZUSP SED CONCEN | <u> </u> | O O E O O E | Z Z O Z O | Z Z Z O O | OZZZZ | 2000 | m 0 0 Z | | | OW END
RA3Y | 1975 | | 1975
1975
1975 | | 1979 | 1967 | 1963 | | | OW BEGIN | 1963
1961
1963 | 1942
1964
1963
1962
1966 | 1966
1966
1962
1966 | 1957
1965
1967
1953
1966 | 1930
1963
1958
1976
1976 | 1966
1946
1979
1960
1958 | 1967
1947
1942
1946 | | | BASIN
DESCRIPTOR | 004 | 124 | 00 00
4 4 4 | 024
024
124 | 004
124
00 4 | 014
124
004
124 | 124 | | |
DRAINAGE
AREA | 61.00
39.30
288.00 | 30436.00 | 23.00
244.00
195.00 | 1454.00
376.00
45339.00 | 33.30
7065.00
83.10
9903.00 | 15407.00
15770.00
10260.00
16840.00
6415.00 | 24040.00 | | | TYPE OF | AS
AS
AS | A A S A A S A S A S A S A S A S A S A S | AS A | S K K K K K K K K K K K K K K K K K K K | AS AS AS | NS A A S | AS AS | | | COUNTY | 417
714
714 | 503
363
503
193
145 | 331
051
051
051
395 | 041
015
157
099
411 | 411
053
331
491
335 | 081
081
399
399
095 | 307
053
053
411 | | | 3TAT2 | 048
048
048
048 | 048
048
048
048 | 048
048
048
048 | 048
048
048
048 | 048
048
048
048
048 | 048
048
048
048
048 | 048
048
048
048 | | | LONGITUDE | 09916
09916
09900 | | 0965917
0964903
0963027
0962725 | 0961132
0961218
0953456
0974535
0984240 | 0983350
0980212
0965701
0973921
1010049 | 1004556
1002849
1000134
0995713
0995509 | 0993425
0982500
0982300
0983351 | | | LATITUDE | 324101
324227
324327
323952 | 330130
325200
330127
315040
315839
310802 | 302422
302422
301918
302511
311010 | 305210
295251
292058
312605 | 311305
305441
304953
304128 | 320337
315307
314255
314358
313057 | 312937
304505
304400
311304 | | | STATION NAME AND LOCATION | SALT PRONG HUBBARD CR AT 380 NR MORAN,TEX.(D
NORTH FORK HUBBARD CREEK NR ALBANY, TEX.
SNAILUM CREEK NR ALBANY, TEX. (DISC)
BIG SANDY CREEK NR BRECKENRIDGE, TEX.(DISC) | BRAZOS R NR SOUTH BEND
BRAZOS R AT POSSUM KINGDOM DAM
BRAZOS RIVER NEAR SOUTH BEND,TEXAS
AQUILLA C NR AQUILLA
N BOSQUE R AT HICO
BRAZOS RIVER NR HIGHBANK, TEX. | LITTLE POND CREEK AT BURLINGTON, TEX.
EAST YEGUA CREEK NEAR DIME BOX, TEX.
YEGUA C NR SOMERVILLE
DAVIDSON CREEK NEAR LYONS, TEX.
NAVASOTA R NR EASTERLY | NAVASOTA RIVER NR BRYAN, TEX.
MILL CREEK NR BELLVILLE, TX
BRAZOS RIVER NR ROSHARON, TEX.
LEON R AT GATESVILLE
SAN SABA R AT SAN SABA | COLORADO R NR SAN SABA
SOUTH FORK ROCKY CREEK NEAR BRIGGS, TEX.
LITTLE RIVER AT CAMERON, TEX.
BERRY CREEK NEAR GEORGETOWN, TEX.
BEALS CRK NR WESTBROOK, TX | COLORADO RIVER ABOVE SILVER, TEX. COLORADO RIVER AT ROBERT LEE, TEX. COLORADO R NR BALLINGER TX COLORADO RIVER AT BALLINGER, TEX. CONCHO RIVER AT PAINT ROCK, TEX. | COLORADO RIVER NEAR STACY, TEX. COLORADO R AT BUCHANAN DAM COLORADO R AT INKS DAM COLORADO RIVER NR SAN SABA, TEX. | | | HYDROLDGIC
Unit
Code | 12060;05
12060;05
12060;05 | 12060201
12060201
12060201
12060204
12070101 | 12070101
12070101
12070102
12070102
12070103 | 12070103
12070104
12070104
12070201 | 12070201
12070203
12070204
12070205 | 12080008
12080008
12090101
12090101 | 12090106
12090201
12090201
12090201 | | | WEDIY | | | | | | 0000 | | | |----------------------------|--|--|--|---|--|---|---|--| | NOT2 032 | <u> </u> | 000 0000 | | 0000 | <u>~~</u> | | 0000 | | | ONGANIZATION
GODE | USGS
TXOO | 1X001
USGS
1X001
USGS
USGS
USGS
1X001 | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | USGS
USGS
USGS
USGS
USGS | 1x001
1x001
USGS
USGS
USGS | USGS
TX00
TX00
USGS
USGS | USGS
USGS
USGS
USGS | | | ZOZЬ DIZCHYNOE | Σ | 222 C | | ΣαΣΣα | XIZI | N ZEM | шшшш | | | SEIS TAAN TAM 038 | | | | | ΙI | | | | | BZIS THAN 92U2 | 0 | ₹ 200 I | | EAEEA | YIEI | υ Σ | ш | | | SUSP SED CONCEN | ى
2.0 | O S S S S O S | SZERU | 24224 | OXIZI | NOOEM | 7 | | | OW END
YEAR | 1976 | 1967 | | | 1980 | | 1977 | | | OW BEGIN | 1968
1924 | 1942
1964
1937
1976
1976
1976 | 1979
1979
1980
1968 | 1943
1979
1967
1960
1978 | 1962
1968
1978
1958 | 1978
1942
1945
1944
1970 | 1968
1965
1968
1969 | | | NIZA8
Rotqirəzəd | 004 | 024
124
003
003 | | 124
014
024
004 | 012
024
012 | 124
004 | 003
003
004 | | | DRAINAGE
AREA | 327.00 | 38400.00
51.30
321.00 | . 5. 2 | 41380.00
727.00
817.00 | 289.00
1062.00
178.00 | 51 98 .00 | 21.20
41.80
3.26
9.54 | | | TYPE OF
STIE | NS NS | | N N N N N N N N N N N N N N N N N N N | N K K S K | N N N N N N N N N N N N N N N N N N N | SEES | AS AS | | | COUNTY | 299 | 299
299
4 4 53
203
4 4 53
203
4 53
6 53
7 54
7 55
7 55
7 55
7 55
8 55
8 55
8 55
8 55 | 021
021
021
481
089 | 481
321
157
239
239 | 239
239
239
239 | 239
091
469
469
029 | 029
029
029 | | | 3TAT2 | | 048
048
048
048 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 048
048
048
048 | 048
048
048
048
048 | 048
048
048
048 | 048
048
048
048 | | | LONGITUDE | 0982819 | 0984010
0984010
0974139
097317
097317
097310 | 600 | 0960613
0955831
0955336
0964110 | 0964845
0963318
0963247
0963308
0962801 | 0963444
0982300
0970045
0983245 | 0983036
0982941
0983259
0983106 | | | LATITUDE | | 304504
304504
304440
301440
301659
301727 | 301559
301429
301349
291830
294222 | 291832
284113
291847
285735
284921 | 292800
290130
290934
290132
290117 | 285248
295140
284735
284734
284734 | 292956
292434
292729
293731 | | | STATION NAME AND LOCATION | SANDY CREEK NEAR KINGSLAND, TEX.
BRAZOS R AT RICHMOND | LLAND R AT LLAND LLAND RIVER AT LLAND, TEX. CLORADD R AT AUSTIN COLORADD RIVER AT AUSTIN, TEX. WALNUT CREEK AT WEBBERVILLE RD. AUSTIN, TEX. ONION CREEK AT U.S. HWY. 183, NR AUSTIN, TEX PEDENALES R AT JOHNSON CITY RIG SANDY C ND MC DADE TX | BIG SANDY C NR ELGIN TX DOGWOOD CREEK NR MC DADE TX DOGWOOD CR AT HW95 N MC DADE T BRIDGE ON US 59 AT WHARTON COLORADO RIVER AT COLUMBUS, TEX. | COLORADO RIVER AT WHARTON, TEX.
COLORADO RIVER AT MATAGORDA, TEX.
SAN BERNARD RIVER NEAR BOLING, TEXAS
LAVACA RIVER NEAR EDNA, TEXAS
4204101LAVACA-TRES PALACIOS ES LINE 041 SITE | NAVIDAD R NR HALLETSVILLE
AT UPSTREAM BRIDGE ON US 59 SOUTHWEST OF GAN
SANDY CREEK NEAR LOUISE, TEX.
NAVIDAD RIVER NR GANADD, TEX.
WEST MUSTANG CR NR GANADD, TEX. | 4202002LAVACA-TRES PALACIOS ES LINE 20 SITE GUADALUPE R NR SPRING BRANCH GUADLUPE R AT VICTORIA GUADALUPE RIVER AT VICTORIA, TEX. OLMOS C TRIB AT FR 1535, SHAVANO PARK, TEX. | OLMOS CR AT DRESDEN DRIVE, SAN ANTONIO, TEX.
SAN ANTONIO RIVER AT SAN ANTONIO, TEX.
ALAZAN C AT ST. CLOUD ST, SAN ANTONIO, TEX.
PANTHER SPG CR @ FR2696 NR SAN ANTONIO, TX(D | | | HYDROLOGIC
Unit
Code | 12090201
12090204 | 12090204
12090204
12090205
12090205
12090205
12090205
12090205 | 12090301
12090301
12090301
12090302
12090302 | 12090302
12090302
12090401
12100101 | 12100102
12100102
12100102
12100102 | 12100102
12100201
12100204
12100301 | 12100301
12100301
12100301
12100301 | | | , | | | | | | | | | |----------------------------|--|--|---|---|---|--|---|---------------------------------------| | NOTE 032
AIG3M | ٥٥٥٥ | 00000 | 00 00 | ں موں م | 00000 | 0000 | ۵۵۵ | | | ORGANIZATION
3000 | USGS
USGS
USGS
USGS | USGS
USGS
USGS
TX001 | USGS
USGS
USGS
USGS
TX001 | USGS
TX001
USGS
USGS
TX001 | USGS
USGS
TX001
USGS
USGS | USGS
TX001
TX001
USGS
USGS | USGS
USGS
USGS | | | SUSP DISCHARGE | யய்ய | | ш∢∑ | m ZC | NZ ZZ | Σ ΥΣΣ | 433 | | | ISIS TRAS TAM
038 | | | | | | | | | | BZIZ TRAN 92UZ | | I | шшш∑ | ш Σп | ΣΣ | Z XZZ | 433 | | | SUSP SED CONCEN | шшшш | | m 4 m ¥ O | mo≅¤o | NZO ₹ | EOXEE | 433 | · · · · · · · · · · · · · · · · · · · | | OW END
RABY | | 1972 | 1975 | 1975 | 1968 | | 1967 | | | OM BEGIN | 1968
1968
1970
1970 | 1972
1969
1969
1942
1968 | 1966
1961
1965
1945 | 1961
1945
1960
1961
1961 | 1948
1965
1953
1962
1965 | 1964
1942
1968
1940
1973 | 1967
1973
1966 | | | BASIN
Descriptor | | 004
024
003 | 124
004
014
124 | 024
004
024 | 000
004
024 | %
%
8 | 124
124 | | | DRAINAGE
AREA | . 26
137.00
. 45
189.00 | 5.57
1.08
15.00
1.19 | 2113.00
239.00
3.29
3921.00 | 827.00
690.00
247.00 | 8192.00
8561.00
5491.00
793.00 | 1171.00
15600.00
480.00 | | | | TYPE OF | 8 8 8 8
0 0 0 0 | A A A A A A A A A A A A A A A A A A A | A S A S A S A S A S A S A S A S A S A S | S S A S S S S S S S S S S S S S S S S S | N N N N N N N N N N N N N N N N N N N | NS AS S A | A A A S | | | CONNIA | 023
029
029 | 029
029
029
175 | 255
255
255
175
255 | 255
239
391
025
283 | 311
311
311 | 297
409
297
297
047 | 001
061
215 | | | 3TAT2 | 048
048
048 | | 048
048
048
048 | 048
048
048
048 | 048
048
048
048 | 048
048
048
048 | 048
048
048 | | | LONGITUDE | 0982625
0982551
0982712
0982445 | 0983740
0983926
0984129
0983600
0972304 | 0980350
0974619
0975341
0972304 | 0975548
0964845
0971644
0973714
0991426 | 0983325
0981703
0982045
0982047 | 098 1702
0975 136
098 1045
098 1106
0980808 | 0974637
0974637
0975445 | | | LATITUDE | 293136
293057
292638
292125 | 293514
293342
292312
283858
283854 | 285705
285512
284641
283858
290050 | 290050
285735
281730
281656
282532 | 281831
282516
282930
282931
283514 | 283718
280217
282545
282610
271551 | 261854
261854
260745 | | | STATION NAME AND LOCATION | SALADO CR TRIB AT BITTERS RD, SAN ANTONIO, T
SALADO CREEK (UPPER STATION) AT SAN ANTONIO,
SALADO C TRIB AT BEE ST, SAN ANTONIO, TEX.(D
SALADO CREEK (LOWER STATION) AT SAN ANTONIO, | LEON CR TRIB AT FR 1604, SAN ANTONIO, TEX. FRENCH CR TRIB NR HELOTES, TEX. HELOTES CREEK AT HELOTES, TEXAS LEON CREEK TRIB AT KELLY AIR FORCE BASE, TEX SAN ANTONIO R AT GOLIAD BRIDGE ON US 77-A AND 183 SOUTHEAST OF GOLIA | SAN ANTONIO RIVER NEAR FALLS CITY, TEX.
ECLETO CREEK NEAR RUNGE, TEX.
ESCONDIDO CR SWS NO. 1 NR KENEDY, TEX.
SAN ANTONIO RIVER AT GOLIAD, TEX.
CIBDLO C NR FALLS CITY | CIBOLO CREEK NR FALLS CITY, TEX.
LAVACA R NR EDNA
MISSION RIVER AT REFUGIO, TEXAS
ARANSAS RIVER NEAR SKIDMORE, TEX.
NUECES R AT COTULLA | NUECES RIVER NEAR TILDEN, TEX. NUECES RIVER AT SIMMONS, TEX.(DISC) FRIO R AT CALLIHAM FRIO RIVER AT CALLIHAM, TEX. SAN MIGUEL CREEK NEAR TILDEN, TEX. | ATASCOSA RIVER AT WHITSETT, TEX. NUECES R NR MATHIS BRIDGE ON US 281 SOUTH OF THREE RIVERS NUECES RIVER NR. THREE RIVERS, TEX. LOS OLMOS CREEK NEAR FALFURRIAS, TEX. | NORTH FLOODWAY NR SEBASTIAN, TEX
NORTH FLOODWAY NEAR SEBASTION, TEX.
ARROYO COLORADO @ EL FUSTE SIPHON NR MERCEDE | | | HYDROLOGIC
Unit
Code | | 12100302
12100302
12100302
12100303 | 12100303
12100303
12100303
12100303 | 12100304
12100402
12100406
12100407
12110105 | 12110105
12110105
12110108
12110108 | 12110110
12110111
12110111
12110111 | 12110208
12110208
12110208 | | | MEDIA | | | | | | | | | | |----------------------------|-----------|--|--|---|--|---|---|--|--| | SED STOR | | 2222 | ≥ 0000 | 00000 | 00000 | 0000 | <u> </u> | 0000 | | | MOITASINADRO
3000 | | USIBW
USIBW
USIBW
USIBW
USIBW | USIBW
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGE | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | | አ ጠ ጠ | 0 4 N | Q4 X4 | M M A A A A | 4 0 | 4474 | | | SSIS TAAR RSUZ | | | | 4 4 | | | A m 8 | 4424 | | | SOURCE SED CONCEN | | O W M W W | m X m m 3 | A A A | XAAXX | M K A X X | Z 4 Z O O | 4444 | | | OW END
RA3Y | | 1977 | 1968
1975
1974 | 1975 | | | 1965
1969 | 1974
1973
1975
1974 | | | DW BEGIN | | 1932
1956
1956
1934
1950 | 1945
1972
1973
1969 | 1966
1978
1976
1978 | 1978
1978
1978
1978 | 1966
1978
1966
1978 | 1961
1975
1963
1963 | 1974
1973
1974
1973 | | | BASIN
DESCRIPTOR | | | 024
124
004 | 014 | 0
4
4
4
4
4
4 | 014 | 004
014
124 | 014
004
024 | | | DRAINAGE
. AREA | က | 132578.00
159270.00
176333.00
63339.00 | 81429.00
7700.00
25.10 | 195.00
8440.00
25.70 | 113.00
36.70
180.00 | 185.00
190.00
65.60 | 83.00
9730.00
10400.00
14300.00 | 480.00 | | | TYPE OF
STIE | | AS AS | N N N N N N N N N N N N N N N N N N N | MS MS | AS A | N A A A A | AS S AS S | AS S AS | | | COUNTY | _7 | 479
427
061
377 | 465
007
007
021
049 | 055
055
055
055
055 | 055
055
055
055
055 | 055
055
055
055
055 | 055
039
039
039 | 039
039
039 | | | 3TAT2 | | 048
048
048
048 | 048
008
008
008
035 | 035
035
035
035 | 035
035
035
035 | 035
035
035
035
035 | 035
035
035
035
035 | 035
035
035
035 | | | LONGITUDE | EGI | 0993125
0992940
0991005
0972715
1041740 | 1013330
1064416
1064904
1054522
1055429 | 1053023
1054020
1054105
1054128
1052250 | 1052844
1053404
1053312
1053842
1053840 | 1053924
1053905
1054134
1054230
1054106 | 1053455
1054514
1055749
1060830
1062459 | 1063757
1063930
1064018
1063734 | | | LATITUDE | _Щ | 273125
272950
263325
293105 | 294800
373148
374126
370442 | 365801
364513
364405
363914
364025 | 364157
364212
364350
364134 | 364053
364107
363853
363206
363156 | 36 1752
36 19 12
36 1220
355229
36 14 12 | 363945
364815
365112
364431 | | | STATION NAME AND LOCATION | RIO GRAND | RIO GRANDE AT LAREDO WATER PLT TX
RIO GRANDE AT LAREDO TX
RIO GRANDE BL FALCON DAM TX
RIO GRANDE NR BROWNSVILLE TX
RIO GRANDE BL RIO CONCHOS NR PRES | RIO GRANDE AT LANGTRY TX
NAVAJO RIVER BL OSO DIV DAM, NEAR CHROMO, CO
LITTLE NAVAJO BL LITTLE OSO DIV DAM,CO
RIO GRANDE NEAR LOBATOS, CO.
RIO NAMBE AT NAMBE FALLS NR NAMBE NM | COSTILLA C NR COSTILLA, NM RIO GRANDE AT SHEEPS XING CAMPGROUND NR CERR RIO GRANDE NEAR CERRO, NM RIO GRANDE AB RED RIVER CONFLUENCE NR CERRO, RED RIVER BELOW ZWERGLE DAM SITE NR RED RIVE | RED RIVER AT MOLYCORPS MINE NR RED RIVER,NM RED RIVER NEAR QUESTA N. MEX. CABRESTO CREEK NEAR QUESTA, N. MEX. RED RIVER BL QUESTA,NM | RED R AT FISH HATCH NR QUESTA,NM
RED RIVER BL FISH HATCHERY, NR QUESTA,NM
RED RIVER AT MOUTH, NEAR QUESTA, N. MEX.
RIO GRANDE ABOVE RIO HONDO AT DUNN BRIDGE,NM
ARROYO HONDO AT ARROYO HONDO, N. MEX. | RIO GRANDE DEL RANCHO NEAR TALPA, N. MEX.
RIO GRANDE BELOW TAOS JUNCTION BRIDGE NR TAO
RIO GRANDE AT EMBUDO, N. MEX.
RIO GRANDE AT OTOWI BRIDGE, NM
RIO CHAMA BL ABIQUIU LK | RID CHAMA NEAR LA PUENTE, N. MEX.
WILLOW CR ABV AZOTEA CR NR PARK VIEW N. MEX.
AZOTEA TUNNEL AT OUTLET NEAR CHAMA, N. MEX.
WILLOW CREEK ABOVE HERON RES NR PARK VIEW N. | | | HYDROLOGIC
Unit
Code | | 130055 L
130055 L
130055 M
130055 M | 130056 J
13010001
13010002
13020101 | 13020101
13020101
13020101
13020101 | 13020101
13020101
13020101
13020101 | 13020101
13020101
13020101
13020101 | 13020101
13020101
13020101
13020101 | 13020102
13020102
13020102
13020102 | | | | | | | | | | | | | |----------------------------|--------|---
--|---|---|---|---|--|---------------------------------------| | ROT2 G32
AIG3M | | 0000 | 00000 | 40000 | 00000 | 00000 | 00000 | 0000 | | | ONDITATION
CODE | C U | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
IISGS | | | BONAHORIG NEUE | | (4 4 N | 0 00 | 20H | | | | | | | 3512 TAAR TAM 038 | | | | | | | | | | | SUSP FART SIZE | | 4040 | NUXAO
Am AA | SERVE | SAAAA | ANNAR | A N N A A | SSSS | | | | C | 4 6 4 | <u>е</u> | 7 0 7 | លល4លល | n 2 4 G D | 4 ಬ ಬ | ചവവവ | · · · · · · · · · · · · · · · · · · · | | ON3 WO
RA3Y | | 197
197
197 | 197 | 195
197
197 | 197
197
197
197 | 197
197
197
197 | 197
197
197 | 197
197
197
197 | | | OW BEGIN | 1 | 1973
1973
1974
1961 | 1961
1956
1979
1973
1970 | 1926
1971
1958
1953
1970 | 1970
1970
1970
1970 | 1970
1970
1970
1972 | 1970
1971
1972
1970
1970 | 1971
1970
1970
1970 | | | MISAB
ROTPIROS30 | | 124 | 124
004
124
124 | 004
004
124 | | | | | | | | 8 | 88 | 88888 | 8888 | | | | | | | DRAINAGE
AREA | , , | 0 / | 2147.
3144.
17.
14600.
14900. | 596.
597.
640. | | | | | | | TYPE OF
STI2 | 3 | N N N N | MS M | MS M | MS WS | MS MS NA | MS MS MS | SER | | | COUNTY | | 680
680
680 | 039
043
043
043 | 049
043
043 | 043
043
043
043 | 043
043
043
043 | 043
043
043
043 | 043
043
043 | | | 3TAT2 | 900 | 035
035
035
035 | 035
035
035
035
035 | 035
035
035
035
035 | 035
035
035
035
035 | 035
035
035
035
035 | 035
035
035
035
035 | 035
035
035
035 | | | LONGITUDE | | 1064308
1064400
1064324
1063550 | 1062459
1060640
106 1650
106 1908
106 1926 | 106 1230
106 1257
106 1901
106 26 23
106 1945 | 1062010
1062113
1062116
1062116 | 1062127
1062139
1062142
1062139 | 1062204
1062229
1062226
1062252
1062255 | 1062352
1062348
1062404
1052433 | | | LATITUDE | | 363940
363539
363448
361906 | 361412
360426
354708
353756 | 352744
352756
353043
352639
353709 | 353616
353539
353454
353453
353453 | 353412
353331
353300
353300 | 353140
353140
353138
353103 | 353029
352951
352905
352315 | | | | 3 | Σ
Z | MON. NM | MEX. | 2, NM
3, NM
4W, NM
4M, NM
4E, NM | 5, NM
6, NM
7W, NM
7M, NM
7E, NM | 8.NM
9W.NM
9E.NM
10W.N | 13.NM
13.NM | | | NO1 | , | AMARI | LIER NAT
XICO | DAM, NM
DAM, NM
-SECTION | X-SECTION
X-SECTION
X-SECTION
X-SECTION
X-SECTION | X-SECTION
X-SECTION
X-SECTION
X-SECTION
X-SECTION | X-SECTION
X-SECTION
X-SECTION
X-SECTION
X-SECTION | X-SECTION
X-SECTION
X-SECTION
X-SECTION | | | STATION NAME AND LOCATION | c
i | IO CHAMA BL HERON DAM, NM L VADO RESERVOIR NEAR TIERRA IO CHAMA BELOW EL VADO DAM, IO CHAMA AB ABIQUIU RE, NM | DAM, NM
A,NM
IN BANDE
IN BANDE
OAM, NM | R E 3 | ISLETA
ISLETA
ISLETA
ISLETA | ISLETA
ISLETA
ISLETA
ISLETA
ISLETA | ISLETA
ISLETA
ISLETA
ISLETA
ISLETA | ISLETA
ISLETA
ISLETA
ISLETA | | | N NAM | | N DA | COCHITICO | NEVELOW (INGO FELL) | 5555 | 00000 | 00000 | 5555 | | | STATIO | | SE HEROIR
SELOW EN | BL ABIQUIU DAM,
NEAR CHAMITA,NM
SS FRIJOLES IN B:
AT COCHITI, NE:
BL COCHITI DAM | SERVOIN
EEK BEN
AT DOM
AT SAN | COCHITI
COCHITI
COCHITI
COCHITI
COCHITI | COCHITI
COCHITI
COCHITI
COCHITI
COCHITI | COCHITI
COCHITI
COCHITI
COCHITI
COCHITI | COCHITI
COCHITI
COCHITI
COCHITI | | | | -
- | RIO CHAMA B
EL VADO RES
RIO CHAMA B
RIO CHAMA A | CHAMA
CHAMA
DE LC
GRANDE | GALISTEO RESERVOIR NEAR CER
GALISTEO CREEK BELOW GALIST
GALISTEO C AT DOMINGO, NM
RIO GRANDE AT SAN FELIPE,NM
RIO GRANDE COCHITI TO ISLET | GRANDE
GRANDE
GRANDE
GRANDE
GRANDE | GRANDE
GRANDE
GRANDE
GRANDE
GRANDE | GRANDE
GRANDE
GRANDE
GRANDE
GRANDE | GRANDE
GRANDE
GRANDE
GRANDE | | | | | CK IN CK CK | RIO
RIO
RIO
RIO | GAL
GAL
GAL
RIO
RIO | R10
R10
R10
R10 | R10
R10
R10
R10 | R10
R10
R10
R10 | R10
R10
R10 | | | HYDROLOGIC
Unit
Code | | 13020102
13020102
13020102 | 13020102
13020102
13020201
13020201 | 13020201
13020201
13020201
13020201 | 13020201
13020201
13020201
13020201 | 13020201
13020201
13020201
13020201 | 13020201
13020201
13020201
13020201 | 13020201
13020201
13020201
13020201 | | | MEDIA | | | | | | | ······································ | | |----------------------------|--
--|---|---|--|---|---|--| | SED STOR | 00000 | 00000 | 0004 | ٥٥٥٥ | 00000 | 00400 | 0000 | | | ORGANIZATION
CODE | USGS
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | USGE
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | Ш | w w | шш | m m A C | 2 2 щ Q | 00 70 | 40 4 | | | SSIS TAA9 92U2 | | N 4 N N 4 | <u> </u> | | - T | | m m z v | | | ZNZL ZEO CONCEN | 0,0,0,0,0 | NNNNX | NNNEZ | 2 A S E E E | A D H C | 04000
mXXmm | 204 N | | | OW END
RA3Y | 1975
1975
1975
1975 | 1975
1975
1975
1975 | 1975 | 1975
1967
1974 | 1975 | 1968 | 1972 | tota Vormina tarapana amanggan panggan s | | NO BEGIN
RA3Y | 1970
1970
1971
1970 | 1970
1970
1970
1970 | 1971
1972
1977
1977 | 1980
1953
1972
1956
1958 | 1976
1968
1970
1963 | 1964
1963
1974
1958
1960 | 1958
1897
1967 | | | BASIN
ROT9IRD230 | | | | 014
014
124 | 124
124
124
124 | 124
124
124 | 124
124
014 | | | DRAINAGE
AREA | | | | 1038.00
4.10
17300.00 | 17440.00
17900.00
19230.00 | 19230.00 | 27700.00 | | | TYPE OF | MS
MS
MS
MS | MS MS MS | SEEE | 38 X X X X X X X X X X X X X X X X X X X | AS AS AS | AS AS AS | MS
MS
MS
MS | | | COUNTY | 043
043
043
043 | 043
043
043
043 | 043
043
043 | 043
043
043
043
043 | 001
001
061
053
053 | 053
053
053
053 | 053
053
013
043 | | | STATE | 035
035
035
035 | 035
035
035
035 | 035
035
035
035
035 | 035
035
035
035
035 | 035
035
035
035 | 035
035
035
035 | 035
035
035
035 | | | LONGITUDE | 1062506
1062550
1062550
1062716 | 1062833
1062829
1062858
1062951
1062954 | 1063106
1063100
1063215
1063145 | 1063237
1063203
1063108
1063144
1063545 | 1063416
1064048
1064104
1064811
1064800 | 1064800
1064915
1065343
1065404
1065318 | 1065940
1065930
1064343
1063058 | | | LATITUDE | 352738
352714
352563
352509 | 352305
352349
352316
352249
352249 | 352227
352151
352105
352310 | 352340
352324
352227
351850
351705 | 350804
350521
345421
342452
342500 | 342501
342456
341517
341454
341523 | 334107
334050
341715
352151 | | | STATION NAME AND LOCATION | RIO GRANDE COCHITI TO ISLETA X-SECTION 15,NM SRIO GRANDE COCHITI TO ISLETA X-SECTION 16,NM RIO GRANDE COCHITI TO ISLETA X-SECTION 18,NM RIO GRANDE COCHITI TO ISLETA X-SECTION 19,NM RIO GRANDE COCHITI TO ISLETA X-SECTION 20,NM RIO GRANDE COCHITI TO ISLETA X-SECTION 20,NM | RIO GRANDE COCHITI TO ISLETA X-SECTION 21W.N STO GRANDE COCHITI TO ISLETA X-SECTION 21E.N SRIO GRANDE COCHITI TO ISLETA X-SECTION 22.NM RIO GRANDE COCHITI TO ISLETA X-SECTION 23W.N SRIO GRANDE COCHITI TO ISLETA X-SECTION 23W.N SRIO GRANDE COCHITI TO ISLETA X-SECTION 23E.N | RIO GRANDE COCHITI TO ISLETA X-SECTION 24W,N SRIO GRANDE COCHITI TO ISLETA X-SECTION 25E,N SRIO GRANDE COCHITI TO ISLETA X-SECTION 27,NM DIVERSION SAN JUAN TO RIO GRANDE CHEZ CANY DAM N MEX | JEMEZ R BL JEMEZ CANYON DAM JEMEZ RIVER BELOW JEMEZ CANYON DAM,NM RIO GRANDE COCHITI TO ISLETA X-SECTION 24E,N PIEDRA LISA ARROYO NR BERNALILLO N M RIO GRAND NR BERNALILLO N M | VILLA DEL OSO DRAIN AT ALBUQUERQUE, NM RIO GRANDE AT ALBUQUERQUE, N. MEX. RIO GRANDE NEAR ISLETA,NM RIO GRANDE CONVEYANCE CHANNEL NEAR BERNARDO, S | RIO GRANDE FLOODWAY NEAR BERNARDO, NM BERNARDO INTERIOR DRAIN NR BERNARDO,N. M. SOCORRO MAIN CANAL NORTH AT SAN ACACIA, NM RIO GRANDE CONVEYANCE CHANNEL AT SAN ACACIA, RIO GRANDE FLOODWAY AT SAN ACACIA, NM | RIO GRANDE CONVEYANCE CHANNEL AT SAN MARCIAL RIO GRANDE FLODDWAY AT SAN MARCIAL, NM TORTUGAS ARROYO NR LAS CRUCES, N MEX RIO GRANDE COCHITI TO ISLETA X-SECTION 25W,N | | | HYDROLOGIC
UNIT
CODE | 13020201
13020201
13020201
13020201
13020201 | 13020201
13020201
13020201
13020201 | 13020201
13020201
13020201
13020201 | 13020202
13020202
13020202
13020203 | 13020203
13020203
13020203
13020203 | 13020203
13020203
13020203
13020203 | 13020203
13020203
13020203 | | | NOT2 G32
AIG3M | 0000 | 00000 | 00040 | 00400 | 00400 | 00004 | ٥٥٥٤ | |----------------------------|--|--|--|---|---|--|--| | MO!TAZINADAO
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USIBW
USFS
USFS | USFS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
IJSGS | | SUSP DISCHARGE | | шшшшш | m e e | Am mA | ωZ | ΧZШ | Z Z Z W | | SEE THAN 92UZ | ▼ い い い い | SSSSS | 10 | m×m 4 | w Z | ΜΖW | ΣΣΣΨ | | 2026 CONCEN | 8 8 8 8 8 | 000000 | 2 A A D S | R III Q III A | MZMAA | M X Z M M | ZZZW. | | OW END
PABY | 1975.
1975 | 1975
1975
1975
1975 | 1975 | 1956 | 1948
1976
1975 | 1972 | | | OM BEGIN | 1971
1970
1971
1971 | 1971
1970
1970
1970 | 1975
1975
1975
1975 | 1978
1966
1949
1966 | 1975
1964
1930
1967 | 1975
1967
1973
1973 | 1973
1974
1967
1963 | | MISAB
Rotqirds30 | | | 004
004
014
014 | 014
014
004
124 | 124 | 014 | 4 4
4 4 | | DRAINAGE
AREA | | | 12.80
1390.00
6590.00
7350.00 | 201.00
3660.00
1380.00
29450.00 | 28680.00
29267.00
29267.00 | 97.30
184.00
31944.00
67760.00 | 80742.00
35200.00
3961.00
120.00 | | 40 99YT
3TI2 | 35
35
35
35
35
35
35
35
35
35
35
35
35
3 | AS S AS | AS AS AS | MS
MS
MS | MS MS | MS
MS
MS
MS | 3 3 3 5
0 0 0 0 | | YTNUOD | 04 3
0 4 3
0 4 3
0 4 3 | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 043
043
061
053 | 031
061
053
053 | 141
141
141
017 | 017
017
017
229
043 | 8 9 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 3TAT2 | 035
035
035
035 | 035
035
035
035 | 035
035
035
035 | 035
035
035
035 | 048
048
035
035 | 035
035
048
048 | 0 4 8 8 9 0 0 0 8 8 9 0 0 0 0 0 0 0 0 0 0 0 | | LONGITUDE | 1063110
1063243
1063323
1063412 | 1063540
1063548
1063736
1064010
1064021 | 1064110
1065644
1071119
1065920
1065109 | 1072458
1080640
1071111
1065359
1071222 | 1063617
1063225
1063225
1083158
1074903 | 1075507
1080055
1075823
1053625
1032330 | 1014520
1012645
1010000
1055350 | | LATITUDE | 352125
352024
351938
351823 | 351712
351551
351223
350928
350143 | 345732
355655
353533
344738 | 355336
351731
345805
341750
330854 | 315732
314810
314810
330216
325424 | 324805
325614
325117
310505
290205 | 294650
294810
294100
333341 | | STATION NAME AND LOCATION | RIO GRANDE COCHITI TO ISLETA X-SECTION 26,NM
RIO GRANDE COCHITI TO ISLETA X-SECTION 28,NM
RIO GRANDE COCHITI TO ISLETA X-SECTION 29,NM
RIO GRANDE COCHITI TO ISLETA X-SECTION 30,NM
RIO GRANDE COCHITI TO ISLETA X-SECTION 31,NM | RIO GRANDE COCHITI TO ISLETA X-SECTION 32,NM RIO GRANDE COCHITI TO ISLETA X-SECTION 33,NM RIO GRANDE COCHITI TO ISLETA X-SECTION 34,NM RIO
GRANDE COCHITI TO ISLETA X-SECTION 35,NM RID GRANDE COCHITI TO ISLETA X-SECTION 37,NM | RIO GRANDE COCHITI TO ISLETA X-SECTION 38,NM
SAN PABLO CR NR CUBA, NM
ARROYO CHICO NR GUADALUPE N M
RIO PUERCO AT RIO PUERCO, NEW MEXICO
RIO PUERCO NEAR BERNARDO,NM | PAPERS WASH NR STARLAKE TRADING POST, NM
BLUEWATER LK NR BLUEWATER N M
RIO SAN JOSE AT CORREO N M
RIO SALADO NEAR SAN ACACIA,NM
RIO GRANDE BELOW ELEPHANT BUTTE DAM, NM | RIO GRANDE AT VINTON BR NR ANTHONY,TX
RIO GRANDE AT EL PASO, TEX.
RIO GRANDE AT EL PASO TX
GILA RIVER ABOVE CLIFF NM
GALLINAS CR BELOW IRON CREEK | MIMBRES RIVER BELOW SAN LORENZO
MIMBRES R AT MCKNIGHT DS NR MIMBRES N M
MIMBRES RIVER AT MIMBRES NM
RIO GRANDE AT FORT QUITMAN, TEXAS
RIO GRANDE AT JOHNSON RANCH TX | RIO GRANDE AT FOSTER RANCH NR LANGTRY, TEXAS
PECOS RIVER NEAR LANGTRY, TX
DEVILS RIVER AT PAFFORD CROSSING NR COMSTOCK
RIO TULAROSA NEAR 35NT, NM | | HYDROLOGIC
Unit
Code | 13020203
13020203
13020203
13020203
13020203 | 13020203
13020203
13020203
13020203 | 13020203
13020204
13020204
13020204 | 13020205
13020207
13020207
13020209
13030101 | 13030102
13030102
13030201
13030201 | 13030202
13030202
13030202
13040201 | 13040212
13040212
13040302
13050003 | | 8072 032
AIG3M | 00000 | 00040 | 0000 | 4440 | | |----------------------------|---|--|--|--|---| | ONGENIZATION
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USIBW
USIBW
USGS
USIBW | USIBW
USIBW
USIBW
USGS | | | SUSP DISCHARGE | шшОш∑ | D 7 7 H | ш Σ | 0 | | | BEIZ TRAY TAM CBB | | | | | | | SSIS TRAN 42UZ | m m S m m | w×∢ | ш ∑ | Σ | | | 2025 SED CONCEN | m m O m Z | O M A X H | ろころ 23 | 3 3 M O | | | OW END
RABY | 1978 | 1975 | 1966 | | | | OW BEGIN | 1962
1967
1958
1939 | 1936
1951
1960
1950
1936 | 1936
1955
1955
1913 | 1956
1955
1956
1965 | | | BASIN
DESCRIPTOR | 4 + 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4100
4100
4100 | 014 | 124 | | | DRAINAGE
AREA | 53.20
1050.00
2650.00
3970.00
4390.00 | 15300.00
947.00
1060.00
18100.00 | 19540.00
35162.00
123303.00
132578.00 | 176304.00 | | | TYPE OF | N N N N N N N N N N N N N N N N N N N | N N N N N | M M M M M M M M M M M M M M M M M M M | 3 3 3 3
0 0 0 0 | | | COUNTY | 047
019
019
019 | 015
005
015
015 | 015
465
465
479
427 | 215
061
215
061 | | | 3TAT2 | 035
035
035
035 | 035
035
035
035
035 | 035
048
048
048
048 | 048
048
048
048 | | | LONGITUDE | 1053927
1050630
1044155
1043128 | 1041923
1045105
1042449
1041301
1040134 | 1040221
1012435
1005540
0992940
0984820 | 0983400
0974340
0982005
0972715 | | | LATITUDE | 354638
351044
345636
343631 | 325025
332057
324436
322440
321324 | 320430
294920
291935
272950 | 261425
260200
260800 | | | STATION NAME AND LOCATION | RIO MORA NEAR TERRERO, NM
PECOS RIVER NEAR ANTON CHICO, NM
PECOS RIVER AT SANTA ROSA, NM
PECOS RIVER NEAR PUERTO DE LUNA, NM
PECOS RIVER BELOW SUMNER DAM, NM | PECOS RIVER NEAR ARTESIA, NM RIO HONDO AT DIAMOND A RANCH NR ROSWELL N M RIO PENASCO AT DAYTON N M PECOS RIVER AT CARLSBAD, NM PECOS RIVER NEAR MALAGA, NM | PECOS RIVER AT RED BLUFF, NM
PECOS RIVER NR SHUMLA TX
RIO GRANDE NR DEL RIO TX
RIO GRANDE AT LAREDO, TEX.
RIO GRANDE AT FORT RINGGOLD TX | RIO GRANDE NR LOS EBANOS TX
RIO GRANDE NR SAN BENITO TX
RIO GRANDE BL ANZALDUAS DAM TX
RIO GRANDE NEAR BROWNSVILLE, TEXAS | · | | HYDROLOGIC
UNIT
CODE | 13060001
13060001
13060001
13060001 | 13060007
13060008
13060010
13060011 | 13060011
13070008
13080001
13080002 | 13090001
13090002
130955 M | | | MEDIA | | | | | | | | | | |----------------------------|------------|---|---|--|--|---|---|--|--| | SED 5708 | | 0 000 | 00000 | 00000 | 00000 | 0000 | 0000 | 0000 | | | ONGANIZATION
SGOO | | USGS
USBLM
USFS
USFS
USFS | USES
USES
USES
USES
USES | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | ш | αααα | 4 4 K K 4 | ανααα | αααα | 445044 | X444 | | | 3ZIZ TRAN NZUZ | | ш | | шш | | | | ш | | | SOZE ZED CONCEN | | m 3 Z X 4 | 48844 | 4 4 C C 4 | 2 M 4 Z 4 | ~ ~ ~ ~ × | 00 E0 E E | X 4 4 4 | | | ON3 WO
RA3Y | - | 1975 | 1975
1978
1978
1976 | 1966
1976
1976
1976 | 1976
1978
1976
1976 | 1976
1976
1976
1976 | 1976
1976 | 1976
1976
1976
1978 | | | OW BEGIN | | 1977
1982
1977
1977 | 1975
1976
1976
1976 | 1959
1953
1976
1976 | 1976
1972
1976
1976 | 1976
1976
1976
1976 | 1972
1973
1947
1976 | 1976
1976
1976
1959 | | | MIZAB
Rotqirəz30 | | | 124
004
124 | | 014 | | 004 | 024 | | | DRAINAGE
AREA | Z
 | | 323.00
76.00
19.00
2382.00 | 4394.00 | 21.00 | | 19.60
55.00
844.00 | 167.00
26.80
1451.00 | | | TYPE OF
SITE | _2_ | X X X X X X X X X X X X X X X X X X X | M M M M M M M M M M M M M M M M M M M | M N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | ASS ASS | M M M M M M M M M M M M M M M M M M M | AS S AS | | | COUNTY | | 037
037
049
049 | 049
049
049
049 | 037
045
007
007 | 049
117
117
075 | 075
117
075
075
037 | 037
037
037
037 | 037
097
097
045 | | | STATE | | 056
008
008
008 | 88888 | 00000000000000000000000000000000000000 | 8 8 8 8 | 8 8 8 8 | 88888 | 8
8
8
8
8
8
8
8 | | | LONGITUDE | 00 | 1070625
1060149
1060118
1061700 | 1060300
1055400
1061658
1063332
1062622 | 1070440
1071913
1054947
1054939 | 1055819
1060956
1062000
1060225
1060216 | 1060402
1060446
1060936
1061315
1064235 | 1061647
1062044
1065706
1064640
1065707 | 1064232
107 1336
107 1958
107 1944 | | | LATITUDE | | 393730
394744
394722
401000 | 395000
400715
400927
400941
400212 | 393840
393300
395659
395957
400454 | 400559
393001
395249
392546 | 393736
393944
394647
394957
394305 | 393724
393835
393900
393045
393857 | 394240
391356
391947
393237 | | | STATION NAME AND LOCATION | UPPER COLO | VERMILLION CREEK NEAR HIAWATHA COLO
COTTONWOOD NR DOTSERO
SOUTH FORK WILLIAMS FORK
WILLIAMS FORK ABV DARLING CK. | WILLIAMS FK BI. KINNEY CR ATLEAL
COLORADO RIVER NEAR GRANBY, CO.
EAST FORK TROUBLESOME C NEAR TROUBLESOME, CO
RED DIRT CREEK NEAR KREMMLING, CO.
COLORADO RIVER NEAR KREMMLING, CO. | COLORADO RIVER NEAR DOTSERO, CO. COLORADO RIVER AT GLENWOOD SPRINGS, CO. ST LOUIS CR ABV FRASER RANCH CR NR TABERNASH
FRASER R ABV GRANBY STP NR GRANBY | FRASER R AT CONFLUENCE WITH COLORADO R
WEST TENMILE CREEK AT COPPER MOUNTAIN, CO.
BLUE RIVER BELOW GREEN MOUNTAIN RESERVOIR, C
BLUE R AT BLUE R ABV GOOSE PASTURE TARN
SWAN R AT MOUTH NR FRISCO | STRAIGHT CR AT MOUTH NR FRISCO
BLUE R NR SILVERTHORNE
BLUE R ABV PASS CR BLW SIERRA BOSQUE
BLUE R BLW SIERRA BOSQUE
MILK CREEK NR CASTLE PEAK | BLACK GORE CREEK NEAR VAIL, CO.
GORE CREEK AT VAIL, CO.
EAGLE RIVER AT GYPSUM, CO.
EAST BRUSH CR AT YEOMAN PARK NR
GYPSUM CR AT MOUTH NR GYPSUM | MILK CR. AT MOUTH, NR. WOLCOTT
CRYSTAL RIVER AB AVALANCHE C, NEAR REDSTONE,
NORTH THOMPSON CREEK NEAR CARBONDALE, CO.
ROARING FORK RIVER AT GLENWOOD SPRINGS, CO. | | | HYDROLOGIC
UNIT
CODE | | 140064 J
14010001
14010001
14010001 | 14010001
14010001
14010001
14010001 | 14010001
14010001
14010001
14010001 | 14010001
14010002
14010002
14010002 | 14010002
14010002
14010002
14010003 | 14010003
14010003
14010003
14010003 | 14010003
14010004
14010004 | | | | | . | | | | | | | |----------------------------
--|---|--|--|--|---|--|--| | ADT2 G32
AIG3M | 0000 | 0 04040 | 00000 | 04400 | 40000 | 04000 | ٥٥٥٥ | | | NGITASINADRO
BGO3 | USGS
USGS
USGS | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | AARR | 4 0 | 00×00 | 0 & | 4474 | 4 888 | 0000 | | | SEN MAT TAM 038 | **** | | | | | | | | | MISONOD GIR 42U2 | | ш ч | <u> </u> | 3 M M X X | <u> </u> | 0 m X X X X m X X X | X m | | | | 4 X X X | | AZRUU | | ω
m4474 | (AMTTT | 0007 | | | OW END
RABY | 1976
1976
1976
1976 | | | 1958 | 195 | | 197 | | | OW BEGIN | 1976
1976
1976
1976 | | 1976
1976
1976
1973 | 1974
1956
1952
1977
1978 | 1952
1856
1977
1977
1958 | 1948
1940
1978
1978
1970 | 1928
1979
1979
1971 | | | BASIN
DESCRIPTOR | | 000
424
424 | 024 | 024
124
024
124 | 124 | 014
124
124 | 0000
4 4 4 4 | | | DRAINAGE
AREA | | 64.60
7370.00
80.40
17764.00 | 12.60
22.10
20.40
141.00
198.00 | 321.00
66.60
43.70
531.00 | 39.50
7928.00
1129.00 | 4580.00
504.00
40.60
53.00
1069.00 | 24100.00
2.90
16.80
74.90 | | | TYPE OF | 3 3 3 S | M M M M M M M M M M M M M M M M M M M | N N N N N | N N N N N N N N N N N N N N N N N N N | M M M M M M M M M M M M M M M M M M M | ***** | N N N N | | | COUNTY | 097
097
095
095 | 097
055
077
077
077 | 045
045
045
045 | 045
051
029
051 | 029
077
085
085
029 | 019
083
113
113 | 019
019
019 | | | 3TAT2 | 008
008
008 | 800
800
800
800
800
800
800 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 800
800
800
800
800
800 | 8000 | 049
008
008
008 | 049
049
049 | | | LONGITUDE | 1064628
1071426
1071426 | | 1080044
1080146
1080114
1080637
1080333 | 1081859
1073239
1073022
1071611
1072653 | 1075514
1082700
1075814
1075640
1080449 | 1091140
1083015
1081142
1081938
1083357 | 1091734
1091516
1091852
1093048 | | | LATITUDE | 390820
391051
391053 | 92032
92103
91952
92145
91502 | 393713
393715
393403
393401 | 392712
381545
384340
385718 | 385406
385900
383126
382332
384431 | 384750
372816
375812
375833
381304 | 384838
384144
384223
383344 | | | STATION NAME AND LOCATION | DIFFICULT CREEK NR. MOUTH AT DIF
CRYSTAL R ABV COAL CR NR REDSTONE
COAL CR BL MIDCONTINENT AT REDSTONE | ROARING FORK R. BLW SNOWMASS SOPRUS CR ABV CONFLUENCE NR BASALT WEST DIVIDE CREEK NEAR RAVEN, CO. COLORADO RIVER NEAR DE BEOUE, CO. PLATEAU CREEK NEAR COLLBRAN, CO. COLORADO RIVER NEAR COLCRADO-UTAH STATE LINE | NORTHWATER CREEK NEAR ANVIL POINTS, CO.
EAST MIDDLE FORK PARACHUTE CR NR RIO BLANCO,
EAST FORK PARACHUTE CREEK NEAR RULISON, CO.
PARACHUTE CREEK NEAR GRAND VALLEY, CO.
PARACHUTE CREEK AT GRAND VALLEY, CO. | ROAN CREEK NEAR DE BEQUE, CO.
CIMARRON RIVER NEAR CIMARRON, CO.
SMITH FORK NEAR CRAWFORD, CO.
ANTHRACITE CREEK NEAR SOMERSET, CO.
NORTH FORK GUNNISON RIVER NEAR SOMERSET, CO. | SURFACE CREEK AT CEDAREDGE, CO.
GUNNISON RIVER NEAR GRAND JUNCTION, CO.
SPRING CREEK NEAR BEAVER HILL, CO.
SPRING CREEK NEAR MONTROSE, CO.
UNCOMPAHGRE RIVER AT DELTA, CO. | DOLORES RIVER NEAR CISCO,UT. DOLORES RIVER AT DOLORES, CO. BEAVER CREEK NEAR NORWOOD, CO. WEST NATURITA CREEK NEAR NORWOOD, CO. SAN MIGUEL RIVER AT NATURITA, CO. | COLORADO RIVER NEAR CISCO UTAH
ONION CR AB ON CR BR NR MOAB
ONION CR B ON CR BR NR MOAB UT
MILL CR NR MOAB UTAH | | | HYDROLOGIC
Unit
Code | 14010004
14010004
14010004 | 14010004
14010005
14010005
14010005
14010005 | 14010006
14010006
14010006
14010006 | 14010006
14020002
14020002
14020004 | 14020005
14020005
14020006
14020006 | 14030001
14030003
14030003
14030003 | 14030005
14030005
14030005 | | | AIG3M | ٥٥٥ | | 00000 | 00000 | 00000 | 00000 | 0000 | | |-------------------------------------|--------------------|--|---|---|---|--|---|---| | ONGANIZATION
CODE | uses
uses | , | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | I V | AIPAN GR | 4 4 L R | ∢ I | I oz | ∢ Zo | 4 4 2 ト | | | 3512 TRAY 92UZ
3512 TRAY TAM 038 | | | | 6 | <u> </u> | ⋖ | | | | SUSP SED CONCEN | I 4 < | ME AM AM | 44 A M M | ZAA | Z Z | AA ZZZ | 44 Z Z | | | OW END
AA3Y | | 1973 | 1976 | | 1976 | | | | | OM BECIN | 1962
1978 | 1965
1965
1975
1978
1962 | 1976
1978
1978
1975 | 1965
1975
1964
1978 | 1966
1975
1975
1966
1975 | 1978
1976
1961
1962
1963 | 1978
1969
1961
1975 | | | MIZAB
ROTAIR3230 | | | %
4
80
4 | 014
000
014 | 0000
44000
4444 | 000
44
44 | 410
410 | | | DRAINAGE
AREA | 468.00
43.00 | | 75.80
79.20 | 45.40
2.77
1230.00 | 4280.00
14.20
16.60
7300.00
15.70 | 94.00
322.00
134.00 | 500.00
1610.00
1720.00 | | | TYPE OF
SITE | AS AS | | 3 3 3 3 S | 3 X X X X X X X X X X X X X X X X X X X | 33 3 3 3 S | N N N N N N N N N N N N N N N N N N N | N N N
N N N
N N N | | | YTNUOD | 035
035 | 000 0000 | 037
035
035
035 | 035
035
035
035 | 037
037
037
037 | 037
037
035
035
037 | 037
037
037
037 | | | 3TAT2 | 056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056 | | | LONGITUDE | 1100703 | 1095658
1100635
1101509
1101910
1100945
1102457 | 1094850
1095820
1103640
1094610
1092500 | 1093100
1093723
1095546
1095300
1094600 | 1100257
1095940
1094403
1094405 | 1094644
1094645
1091700
1092906
1091844 | 1091900
1093457
1094104 | - | | LATITUDE | 430108
425640 | 423325
422328
422335
423330
421320
421134
420546 | 423220
423220
425859
430150
424000 | 424500
423507
423402
423600
424002 | 420116
420309
414704
414355 | 415052
415125
423500
421901
421412 | 420800
420037
415643 | | | STATION NAME AND LOCATION | GE, NEAR DANIEL, W | CACEC NEAR DIG PINEY, WYO. (SIN C NR BIG PINEY, WYO. (SIN C NR BIG PINEY, WYO. REC CR NR LA BARGE MEADOWS RANGER STA. RECREEK NEAR VIOLA, WYO. WOELLE CR NR HERSCHLER RANCH, NR FONTENE | BUCKHORN C AT LOWER FARSON CUTOFF WY ALKALI C NR BIG PINEY WY N HORSE CR AB MULE CR NR SHERMAN RANGER STAT PINE CREEK ABOVE FREMONT LAKE, WYO. EAST FORK RIVER NEAR BIG SANDY, WYO. | SILVER CREEK NEAR BIG SANDY, WYO.
SAND SPRINGS DRAW TR NR BOULDER WY
NEW FORK RIVER NEAR BIG PINEY, WYOMING
TR TO NEW FORK R NR BIG PINEY WY | GREEN R BEL FONTENELLE RES WYO
FOURMILE GULCH TR NR FONTENELLE WY
E OTTERSON WASH NR GREEN R WY
GREEN RIVER AT BIG ISLAND, NEAR GREEN RIVER.
SKUNK CANYON C NR GREEN R WY | EIGHT MI C AT FREEZEOUT ISLAND WY BIG SANDY R AT MOUTH NR LITTLE COLO DESERT W BIG SANDY RIVER AT LECHIE RANCH NR. BIG SAND BIG SANDY CREEK NEAR FARSON, WYOMING LITTLE SANDY CREEK ABOVE EDEN, WYO. | PACIFIC C NR FARSON WY
PACIFIC C NR FARSON WY
BIG SANDY RIVER BELOW EDEN WYO
BIG SANDY R AT GASSON BRIDGE, NR EDEN, WYO. | | | HYDROLOGIC
Unit
Code | 14040101 | 14040101
14040101
14040101
14040101
14040101 |
14040101
14040101
14040101
14040102 | 14040102
14040102
14040102
14040102 | 14040103
14040103
14040103
14040103
14040103 | 14040103
14040103
14040104
14040104 | 14040104
14040104
14040104
14040104 | | | MEDIA | 00000 | 0000 | 00000 | 00000 | 00000 | 00000 | 0000 | ······································ | |----------------------------|--|---|---|---|--|---|---|--| | 9012 G32 | | SSSSS | | | | | | ······································ | | ORGANIZATION
GODE | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | 1565
1565
1565
1565 | | | SUSP DISCHARGE | AAAAA | AAAM | A M O A A | 20 8
CCCC | m Z m A | AAAKA | 2448 | | | SIZ TRAY TAM 038 | | ∢ | 00 | თ თ | 00 | | | | | SEIS TRAS SEUS |
44444 | 444m | ∢ ⊖ ⊖ ⊕ ⊕ | യ വവ | 0 X O O | বৰৰ্পৰ | ZAAW | - | | SUSP SED CONCEN |
44444 | 4 4 4 m Z | X Z D 4 4 | WOZZZ | ZZZ Z | AAAXA | Z 4 4 22 | | | OW END
AA3Y | 1976
1976
1976
1980
1979 | | | 1976 | | 1976
1976
1976
1976
1976 | 1976
1976
1976
1976 | | | OW BEGIN | 1976
1976
1976
1978
1978 | 1976
1976
1976
1975
1975 | 1975
1975
1975
1975 | 1975
1974
1976
1975
1975 | 1975
1968
1976
1975
1975 | 1976
1976
1976
1976 | 1976
1976
1976
1976 | | | BASIN
DESCRIPTOR | | 004
004 | 0000
4 4 4 4 4 | 88888
44444 | 88888
44444 | | | | | DRAINAGE
Area | | 308.00
152.00 | 759.00
836.00
34.70
22.00
4.92 | 13.10
35.90
3.69
19.50
7.88 | 18.20
515.00
526.00 | | | | | 17PF 0F
3T12 | A A A A A A A A A A A A A A A A A A A | M M M M M M M M M M M M M M M M M M M | \$ N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | M S A S A S A S A S A S A S A S A S A S | MS N
S N
S N | | | COUNTY | 037
037
037
037
037 | 037
037
037
037 | 037
037
037
037 | 037
037
037
037 | 037
037
037
037 | 037
037
037
037 | 037
037
037
007 | | | 3TAT2 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056 | | | LONGITUDE | 1085510
1085840
1085840
1085910
1085940 | 109 1400
109 1240
109 1240
108 304 7
108 44 10 | 1084710
1085950
1085952
1090259
1090429 | 1090302
1090306
1085456
1085350
1085630 | 1085817
1085800
1085918
1091815
1092249 | 1085815
1085800
1085920
1085700
1090156 | 1090421
1090602
1085330
1085740 | | | LATITUDE | 420205
420630
420630
420640
420650 | 421040
421140
421200
412935
414030 | 414040
413852
411156
411156 | 4111232
411302
411302
411857
412720 | 412854
412900
413750
413300
413158 | 410515
410630
410722
410730
411003 | 411038
411055
411352
411618 | | | STATION NAME AND LOCATION | JACK MORROW C SITE A JACK MORROW C SITE B PARNELL C SITE C JACK MORROW C AB ROCK CABIN C NR FARSON WY ROCK CABIN C AT MOUTH NR FARSON WY | JACK MORROW C AT MOUTH NR FARSON WY
PACIFIC C AB JACK MORROW C NR FARSON WY
N PACIFIC C NR FARSON WY
BITTER CREEK NEAR BITTER CREEK, WYO
DEADMAN WASH NR POINT OF ROCKS WYO | BITTER CR NR POINT OF ROCKS WYO BITTER C AB SALT WELLS C NR SALT WELLS WY SALT WELLS C NR S BAXTER WY GAP C AB BEANS SP C NR S BAXTER WY BEAN SPRING CR NR SOUTH BAXTER, WY | BEAN SPRING CR NR SOUTH BAXTER, WY GAP CREEK NEAR SOUTH BAXTER WYOMING DRY CANYON C NR SOUTH BAXTER WY BIG FLAT DRAW NR ROCK SPRINGS WY CUTTHROAT DRAW NR ROCK SPRINGS WY | NO NAME C NR ROCK SPRINGS WY
SALT WELLS CR NR ROCK SPRINGS WYO
SALT WELLS CREEK NEAR SALT WELLS WY
BITTER CR BEL LITTLE BITTER CR NR KANDA WYO
BITTER C TR NR GREEN R WY | SALT WELLS C AT SITE X SALT WELLS C AT SITE A ALKALI C AT MOUTH NR S BAXTER WY SALT WELLS C AT SITE B GAP C NR RED SPRINGS RANCH WY | LITTLE BASIN C AT MOUTH NR SOUTH BAXTER WY
LITTLE BASIN C TRIB
DRY CANYON CR AB PIO RESERVOIR NR S BAXTER W
SALT WELLS C AB GAP C NR S BAXTER WY | | | HYDROLOGIC
Unit
Code | 14040104
14040104
14040104
14040104
14040104 | 14040104
14040104
14040105
14040105 | 14040105
14040105
14040105
14040105 | 14040105
14040105
14040105
14040105 | 14040105
14040105
14040105
14040105 | 14040105
14040105
14040105
14040105 | 14040105
14040105
14040105
14040105 | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | |----------------------------|--|--|--|---|---|---|---|---------------------------------------| | AOT2 G32
AIG3M | 00000 | 00000 | 00000 | 000 | 00000 | 00000 | 0000 | | | MOITASINADRO
3000 | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | ααααα | 44444 | 4404 | ଉଉ∢ ଅ | IND | বৰৰৰ | ৰৰৰ | | | SUS THAN 92US | | | | 0 | | | | · | | NEONO CONCEN | 2444
24444 | 44444 | 44444 | E E U E Z | Z Z H Z Z | 4 444 | 444 | | | OW END
PA3Y | 976
1 976
1 976
1 976 | 1976
1976
1976 | 1976 | 1976 | 1000 | 1975 | 1976 | · · · · · · · · · · · · · · · · · · · | | OW BEGIN | 1976
1976
1976
1976 | 1976
1976
1976
1976 | 1976
1976
1976
1950 | 1975
1975
1969
1979 | 1951
1955
1971
1978 | 1978
1975
1976
1976 | 1978
1976
1976 | | | BASIN
DESCRIPTOR | | | 124 | 0004
0004
0114
124 | 124 | | | | | DRAINAGE
AREA | | - | 14000.00 | 6.57
13.00
56.00
52.80 | 520.00
15100.00
140.00 | | | | | PD 39YT
3TI2 | 3 S S S S S S S S S S S S S S S S S S S | N N N N N N N N N N N N N N N N N N N | A A A A A A A A A A A A A A A A A A A | M A A A A A A A A A A A A A A A A A A A | 3333
3000
3000 | ****** | N N N N | | | YTMUOD | 037
037
037
037 | 00000 | 041
041
037
037 | 037
037
041
041 | 037
009
009
037
037 | 037
037
037
037
037 | 037
037
037
037 | | | 3TAT2 | 056
056
056
056 | | 056
056
056
056
056 | 056
056
056
056
049 | 056
049
049
056 | 056
056
056
056
056 | 056
056
056
056 | | | LONGITUDE | 1085835
1085644
1085647
108545 | 1082317
1082704
1082707
1083442
1084037 | 1083919
1083715
1092654
1092617 | 1093634
1093705
1101613
1100356 | 1094020
1092520
1091412
1091305
1090453 | 1093100
1093009
109340
1092133
1093053 | 1093730
1091659
1092657
1092828 | | | LATITUDE | 411622
411639
411639
411858
412186 | 412437
412637
412640
413200
413206 | 413355
413402
413530
413059
412946 | 411014
410340
410023
405647 | 410045
405430
405811
410114
410330 | 410915
410927
411040
411255
411505 | 411510
411648
411657
411740 | | | STATION NAME AND LOCATION | DANS CREEK NR SOUTH BAXTER WY DRY CANYON AT MOUTH NR SOUTH BAXTER WY SALT WELLS C BELOW DRY CANYON C NR S. BAXTER SALT WELLS C AT SITE F PRETTY WATER CR AT MOUTH NR S BAXTER WY | IRON PIPE DRAW AT FORT LA
CLED
BITTER C AB ANTELOPE C NR FORT
ANTELOPE C AT MOUTH NR FORT LA
BITTER C BL PATRICK DRAW NR BI
BITTER C AT BLACK BUTTES STAGE | RYCKMAN C AT MOUTH NR ELKOL,WY
L MUDDY C AB RYCKMAN C NR ELKOL,WY
SALT WELLS CR AT IRON CULVERT NR ROCK SPRING
GREEN R. NR GREEN RIVER, WYO.
GREEN RIVER BELOW GREEN RIVER WYO | SQUAW HOLLOW NEAR BURNTFORK, WY
GREEN R TR NO 2 NR BURNTFORK WY
HENRYS FORK NEAR LONETREE, WYO.
MF BEAVER C AT UTAH WHO ST LINE
BURNT FORK NEAR BURNTFORK, WYO. | HENRYS FORK NEAR LINWOOD UT
GREEN RIVER NEAR GREENDALE, UTAH
RED CREEK NEAR DUTCH JOHN,UTAH
RED C NR RICHARDS GAP,WY
RED C NR RED C RANCH, WY | WASHAM WASH AT MOUTH AT FLAMING GORGE RE WY UPPER MARSH C NR ROCK SPRINGS WYO SQUAW HOLLOW NR MOUTH AT FLAMING GORGE RE WY CURRANT C AB CURRANT C RANCH WYO CURRANT CR NR MOUTH NR MCKINNON JUNCTION WY | BUCKBOARD WASH AT MOUTH AT FLAMING GORGE RESAGE C AB SAGE C RANCH NR SHEEP MOUNTAIN, WYO SAGE C BL SAGE C RANCH NR GREASEWOOD DRAW, WY SAGE C MR ROCK SPRINGS WYO | | | HYDROLOGIC
Unit
Code | 14040105
14040105
14040105
14040105 | 14040105
14040105
14040105
14040105 | 14040105
14040105
14040105
14040106 | 14040106
14040106
14040106
14040106 | 14040106
14040106
14040106
14040106 | 14040106
14040106
14040106
14040106 | 14040106
14040106
14040106 | | | AIGBM |
 | | | ····· | | | | | |----------------------------|--|---|---|--|---|---|--|--| | ROT2 G32 | 0000 | 00000 | 00000 | 0000 | 00000 | 00000 | 0000 | | | ONGANIZATION
CODE | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 4 Z Z Z 4 | I KYX | 0 | ∞ বৰ | বৰ ৰ | 4444 | 4 44 | | | BED MAT PART SIZE | | ⋖ | ი ი ი | 6 | 44 | | | | | 3ZIZ TAA9 9ZUZ |
A M Z Z A | п АпА | < | 0444 | 44 4 | 44444 | 4444 | | | SUSP SED CONCEN | 4 Z Z Z 4 | A Z M Z X | Z 4 Z Z Z | Z Z A A A | AAZZA | 44444 | 4444 | | | OW END
AASY | | | | 1976 | 1979
1976
1979 | 1979
1979
1979
1979 | 1976 | | | OW BEGIN | 1971
1969
1975
1975 | 1974
1975
1962
1975 | 1975
1951
1975
1975 | 1975
1975
1978
1976
1976 | 1978
1976
1975
1975 | 1978
1976
1976
1976 | 1976
1976
1976
1976 | | | NISAB
Rotairorad | 014
000
014
004 | 000
440
440
440
440 | 000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 000
4 | 004
4 | | | | | DRAINAGE
AREA | 130.00
152.00
53.00
37.20
144.00 | 8.83
821.00
128.00
670.00 | 5.03
3100.00
5.22
12.00
3.59 | 1.26
423.00 | 416.00
963.00 | | | | | TYPE OF | N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N | ***** | N N N N N | SESES | N N N N N N N N N N N N N N N N N N N | | | YTNUDO | 043
041
041
041 | 041
041
041
023
037 | 037
037
037
037
037 | 037
037
041
023
023 | 023
037
023
041
041 | 041
041
041
041 | 041
023
023
023 | | | 3TAT2 | 049
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056 | | | LONGITUDE | 1103438
1103443
1102352
1102843
1102537 | 1101214
1101112
1101020
1104234
1095928 | 1095611
1094134
1094536
1093720
1093655 | 1093605
1093840
1101325
1104239
1103409 | 1103155
1084410
1103342
1101343
1103627 | 1103740
1103738
1102950
1101812
1103533 | 1101624
1104018
1103404
1103400 | | | LATITUDE | 405753
410154
410315
410120
410840 | 412231
412305
412708
420638
413556 | 413204
413246
413237
412735
412530 | 412440
412225
411432
413827
414351 | 415016
414030
413454
413217
411548 | 411747
411748
412522
413228
413258 | 413316
413452
413459
413513 | | | STATION NAME AND LOCATION | BLACKS FORK NEAR ROBERTSON, WYD. BLACKS FORK NEAR MILLBURNE, WYO. EAST FORK OF SMITH FORK NR ROBERTSON, WYO. WEST FORK OF SMITH FORK NR ROBERTSON, WYO. SMITHS FORK NR ROBERTSON, WYO. | SMITHS FORK NEAR LYMAN, WY MUD SPRING HOLLOW NR CHURCH BUTTE NR LYMAN W BLACKS FK NR LYMAN WYO HAMS FORK BL POLE CR, NR FRONTIER, WYO. HAMS FORK NEAR GRANGER, WYO. | BLACKS F TR NR GRANGER WY BLACKS FORK RIVER NEAR LITTLE AMERICA WYO MEADOW SPRINGS WASH TR NR GREEN R BLACKS FORK TRIB NO 2 NR GREEN RIVER WYO BLACKS F TR NO 3 NR GREEN R WY | BLACKS F TR NO 4 NR GREEN R WY SUMMERS DRY C NR GREEN RIVER WY LEAVITT C NR MOUTAIN VIEW WY L MUDDY C AB WARFIELD C NR ELKOL, WY N F L MUDDY C TRIB NO. 2 NR ELKOL, WY | WILLOW C AT MOUTH NR FRONTIER, WY DEADMAN WASH NR POINT OF ROCKS WYO LITTLE MUDDY C NR GLENCOE WY MUDDY CREEK NEAR HAMPTON WYO MUDDY C NR PIEDMONT WY | ANTELOPE C AT MOUTH, NR LEROY, WY MUDDY C AB SODA HOLLOW, NR LEROY, WY MUDDY C AB ROCK C NR CARTER, WY MUDDY C AT HAMPTON, WY ALBERT C BL WHITNEY C NR CUMBERLAND GAP, WY | L MUDDY C NR MOUTH NR HAMPTON, WY L MUDDY C AB BELL C NR ELKOL, WY L MUDDY C AB N F NR GLENCO, WY N F L MUDDY C AT MOUTH NR GLENCO, WY | | | HYDRDLOGIC
Unit
Code | 14040107
14040107
14040107
14040107 | 14040107
14040107
14040107
14040107 | 14040107
14040107
14040107
14040107 | 14040107
14040107
14040107
14040107 | 14040107
14040108
14040108
14040108 | 14040108
14040108
14040108
14040108 | 14040108
14040108
14040108
14040108 | | | AIGSM | | | | | | | | | |----------------------------|----------------------------------|---|---|---|---|---|--|-------------| | 90T2 032 | 000 | | 00000 | 00000 | 0000 | 00000 | 0000 | | | ORGANIZATION
CODE | uses
uses
uses | USGS
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | ZNZŁ DIZCHYWCE | 444 | বৰ বৰ ব | বৰ বৰ | বৰবৰৰ | ∢ ¥Z | DNKAA | < CX CX C1: | | | 3512 TAA9 TAM 038 | | | 0 | | <u></u> | 0 | | | | SUSP SED CONCEN | 444 | | 44084 | 44444 | AAXZ | OAXAX | X & & C. | | | | 9 | ပ္ရွ္က ပုပ္ရွ္ကရာရ | 00 0 | Q Q Q Q Q | σ
σ | 0 0 0 0
0 0 X 4 X | 8886 | | | OW END
AA3Y | 197 | 197
197
197
197
197
197 | 197 | 197
197
197
197 | 197 | 1976
1976
1976 | 197
197
197 | | | OM BECIN | 1976
1976
1976 | 1976
1976
1976
1978
1978
1978 | 1978
1976
1975
1977 | 1978
1976
1976
1976
1976 | 1976
1978
1975
1975 | 1974
1976
1976
1976
1976 | 1976
1976
1976
1975 | | | BASIN
DESCRIPTOR | | | 0004 | | 900 | 000
4 | | | | DRAINAGE
AREA | | | 196.00 | | 41.80 | 53.30
32.80 | | | | 30 39YT
3TI2 | A S S S | XX XXXXX | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N | | | СОПИТ У | 023
023
023 | 023
023
023
023
023
023 | 023
023
037
081
081 | 037
037
037
037 | 037
007
007
007 | 007
007
007
007 | 007
007
007
007 | | | 3TAT2 | 056
056
056 | 056
056
056
056
056
056 | 056
056
056
008
008 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
053 | | | LONGITUDE | 1104217 | 1103336
1104810
1104808
1103313
1103323 | 1103345
1103405
1083839
1084333
1083825 | 1083840
1085853
1085730
1084721
1084720 | 1085214
1082533
1073227
1073220 | 1073328
1080726
1072912
1072729 | 1072556
1072851
1072851
1072851 | | | LATITUOE | 413648
413648
413740 | |
414333
414351
410054
404543
410130 | 4 10 130
4 10 4 17
4 10 4 18
4 10 5 19
4 10 5 20 | 410626
410917
413752
414122
413752 | 413938
413818
413239
413349
413404 | 413507
413731
413731
413731 | | | STATION NAME AND LOCATION | L MUDDY C AE
SHEEP C AT N | N F L MUDDY C NR ELKOL WY WARFIELD C AT MOUTH NR ELK CHICKEN C AB ROAD HOLLOW N ROAD HOLLOW AT MOUTH NR EL NF LITTLE MUDDY C TRIB AT N F L MUDDY C AT BLAZON JU NF LITTLE MUDDY C TRIB NR NF LITTLE MUDDY C TRIB NR | NF LITTLE MUDDY C TRIB NR ELKOL, WY N F L MUDDY C TRIB ND. 1 NR ELKOL,WY VERMILLION CREEK NEAR HIAWATHA COLO VERMILLION CREEK AT INK SPRINGS RANCH, CO. | VERMILLION C AB ALKALI C, NR HIAWATHA, COLO
SALT WELLS C BL PINE LK NR S BAXTER WY
NF VERMILLION C NR PINE MTN WY
COYOTE C AT MOUTH NR HIAWATHA CO | MF VERMILLION C NR RIFE RANCH WY SHELL C AB COW C RE SEPARATION C AT UP STA NR RINER WY SEPARATION C NR RINER WY SEPARATION C AT UPPER STA NR RINER | SEPARATION C NR RINER WYO DELANEY DRAW NR RED DESERT WYO SITE S-10 SITE S-8 | SITE S-6
SITE S-20A
SITE S-20B
SITE S-20C | | | HYDROLOGIC
Unit
Code | 14040108
14040108
14040108 | 14040108
14040108
14040108
14040108
14040108
14040108 | 14040108
14040108
14040109
14040109 | 14040109
14040109
14040109
14040109 | 14040109
14040109
14040200
14040200 | 14040200
14040200
14040200
14040200 | 14040200
14040200
14040200
14040200 | | | MEDIA | | | | | | | | | |----------------------------|--|---|---|--|--|--|--|---| | ROT2 GB2 | 00000 | 00000 | 00000 | 00000 | 0000 | 00000 | 0000 | | | ONGANIZATION
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USFS
USFS | USFS
USFS
USFS
USFS | | | SUSP DISCHARGE | α | বৰৰৰ | বৰৰৰ | বৰৰৰ | বৰবৰৰ | বৰৰ | | ` | | 3512 TRAY TAM 038 | | | | | | | | | | SSIZ TRAN NEUZ | MA AM | 44444 | 44444 | 44444 | 44444 | 444 | | | | SUSP SED CONCEN |
2 A A A A | 44444 | 44444 | 44444 | 44444 | 44444 | 4444 | | | OW END
RABY | 1976
1976
1976
1976 | 1976
1976
1976
1979 | 1976
1979
1976
1976 | 1976
1976
1976
1976
1976 | 1976
1976
1976
1976
1976 | 1976
1976
1976 | 1975
1975
1975
1975 | | | OW BEGIN | 1976
1976
1976
1976 | 1976
1976
1976
1976 | 1976
1976
1976
1976 | 1976
1976
1976
1976 | 1976
1976
1976
1976 | 1976
1976
1976
1977 | 1974
1974
1974
1975 | | | BASIN
Bescriptor | | | | | | | | | | DRAINAGE
AREA | | | | | | | | | | TYPE OF
SITE | SESSES | X X X X X X X X X X X X X X X X X X X | X X X X X X X X X X X X X X X X X X X | X X X X X | SSSSSS | N N N N N | N N N N | | | COUNTY | 007
037
037
037 | 037
007
037
037 | 037
037
037
037
037 | 037
037
037
037
007 | 037
037
037
037
007 | 037
037
107
107 | 045
045
045
107 | | | 3TAT2 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
056
056 | 056
056
056
008
008 | 000
800
800
800
800 | | | LONGITUBE | 1073336
1073323
1073340
1073040
1073201 | 1072815
1072652
1081832
1080730
1081830 | 1080707
1082209
1082209
1080700
1082500 | 1082500
1083630
1083300
1083300
1072850 | 1080620
1080628
1083530
1080515
1073318 | 1082730
1080350
1080350
1065500
1065500 | 1070700
1070400
1070200
1070100 | | | LATITUDE | 413753
413937
413940
414106 | 414515
414637
420225
420425
420438 | 420604
420823
420823
420848
420915 | 420915
421015
421020
421020 | 421255
421300
421300
421310 | 421403
421438
421440
405800 | 400200
400300
400400 | | | STATION NAME AND LOCATION | SITE S-27
SEPERATION C RILL A2R BL GAGE NR RINER WY
SEPARATION CR RILL AIL BL GAGE NR RINER WY
LARSON DRAW NR COMMAND CENTER
SITE S-32 | SITE S-39
SITE S-41
RED C AB HAY RES
LOST C BL EAGLES NEST SPRING NR BAIROIL WY
BUSH C AT MOUTH | LOST C AB EAGLES NEST SPRING RED C AT ROCKY CROSSING RED C TRIB AT ROCKY CROSSING LOST C AT GOODFORD CROSSING RED C TRIB NR 5-FINGERS BUTTE | RED C NR FIVE FINGERS BUTTE
BEAR C NR HONEYCOMB BUTTE
BEAR C AB NORTH FORK BEAR C
NORTH FORK BEAR C AT MOUTH
LOST SOLDIER C NR LOST SOLDIER LAKE | LOST C AB BIG BEND LOST C TRIB AB BIG BEND RED C AT FOOTHILLS LOST C BL ARAPAHOE C LOST SOLDIER C NR BAIROIL | RED C AT CYCLONE RIM LOST C AB ARAPAHOE C LOST C TRIB AB ARAPAHOE C WHISKEY CREEK 9MI N COLUMBINE M FK LITTLE SNAKE NR COLUMBINE | BEAR RIVER #1,14 MI SW YAMPA COL
BEAR RIVER #2,13 MI SW YAMPA COL
BEAR RIVER #3,10 MI SW YAMPA COL
FLOYD CREEK ABV. FRST BDRY | | | HYDRDLOGIC
Unit
Code | 14040200
14040200
14040200
14040200 | 14040200
14040200
14040200
14040200 | 14040200
14040200
14040200
14040200 | 14040200
14040200
14040200
14040200 | 14040200
14040200
14040200
14040200 | 14040200
14040200
14040200
14050001
14050001 | 14050001
14050001
14050001
14050001 | | | wipa | | | | | | | | | |----------------------------|--|---|---|---|---|---|---|--| | ROTZ G3Z
AIG3M |
00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | ONGANIZATION
CODE | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARDE | | αшαп | ∢ш ш∢ | 2 4 4 4 4 | 医丸丸医医 | An n | ∢шшш. | | | 3512 TAA9 92U2 | | | | | | | <u>
</u> | | | ZOZE ZED CONCEN | m n n n n ≥ | ZZWZW
W W | 4 m m m X
4 | Z w w w w | шаашш | 4 m 4 m m | ⋖ Ш Ш П, | | | RA3Y | တ တ တ | | നമ ര | | വവ | വവ | D. | ······································ | | OW END | 197 | | 197
197
197 | | 197 | 197 | 197 | | | OW BEGIN | 1947
1957
1957
1947 | 1975
1975
1975
1978
1957 | 1975
1957
1975
1947
1975 | 1975
1975
1975
1975 | 1975
1975
1975
1975 | 1975
1975
1975
1975 | 1975
1975
1975
1977 | | | MISA8
ROTAIR3230 |
024
024
004
004 | 00 00 | 004
024
024
024 | 024 | | | | | | DRAINAGE
AREA | 26.00
604.00
40.00
415.00
23.50 | 8.61
17.50
1430.00
13.60
64.20 | 21.00
249.00
1730.00 | | | | | | | 3TIS | E E E E E | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | A S S S S S S S S S S S S S S S S S S S | A S S A S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S A S S A S A S S A S | N A A A A A A A A A A A A A A A A A A A | NEEK | | | COUNTY | 107
107
107
107 | 107
107
107
107 | 107
081
081
081 | 081
107
107
107 | 107
107
107
107 | 107
107
107
107 | 081
081
107
107 | | | 3TAT2 | 800
800
800
800
800
800 | 800
800
800
800
800
800 | 8000 | 800000 | 88888 | 800000000000000000000000000000000000000 | 800
800
800
800
800 | | | LONGITUBE | 1064915
1064954
1065319
1065712
1065933 | 1070504
1065939
1070933
1071447 | 1071712
1072608
1073034
1073310
1073623 | 1073850
1065248
1065622
1065022
1065756 | 1065746
1064716
1073652
1065000 | 1065827
1064936
1064815
1064710
1065054 | 1073218
1073142
1071913
1064929 | | | LATITUDE | 402755
402901
403356
403053
402308 | 402045
402325
402918
402806
404011 | 404050
403152
402950
402945
402904 | 402614
400612
401418
401634
401725 | 401741
402056
402221
402356
402530 | 402536
402544
402720
402802
402934 | 403038
403251
403530
404506 | | | STATION NAME AND LOCATION | FISH CREEK NEAR STEAMBOAT SPRING
YAMPA RIVER AT STEAMBOAT SPRINGS, CO.
MAD CREEK NEAR STEAMBOAT SPRINGS
ELK RIVER NEAR TRULL, CO.
MIDDLE CREEK NEAR OAK CREEK, CO. | FOIDEL CREEK NEAR DAK CREEK, CO. FOIDEL CREEK AT MOUTH, NEAR DAK CREEK, CO. YAMPA RIVER BELOW DIVERSION, NEAR HAYDEN, CO. STOKES GULCH NEAR HAYDEN, CO. ELKHEAD CREEK NEAR ELKHEAD, CO. | NORTH FORK ELKHEAD CREEK NEAR ELKHEAD, CO.
ELKHEAD CREEK NEAR CRAIG, CO.
YAMPA RIVER BELOW ELKHEAD CREEK NEAR CRAIG.
YAMPA RIVER AT CRAIG, CO.
YAMPA RIVER BELOW CRAIG, CO. | WILLIAMS FORK AT MOUTH, NEAR HAMILTON, CO.
CHIMNEY CREEK AT TRAPPER, CO.
YAMPA RIVER AT PHIPPSBURG, CO.
LITTLE MORRISON CREEK NEAR STAGE
OAK CREEK AB OAK CREEK DRAIN NEA | DAK CREEK ABOVE ROUTT, CO.
HARRISON CREEK AT MOUTH NR BLACK
WILLIAMS FORK BL MORAPOS CREEK A
YAMPA RIVER AB DAK CREEK NR STEA
FISH CREEK AT MOUTH NEAR MILNER, | TROUT CREEK BELOW FOIDEL CREEK NY YAMPA RIVER BELOW OAK CREEK NR S BURGESS CREEK BL SKI AREA NR STE BURGESS CREEK AB SKI AREA NR STE YAMPA RIVER AB SEWAGE PLANT BL S | FORTIFICATION CREEK BELOW CRAIG, FORTIFICATION CREEK ABOVE CRAIG, ELKHEAD CREEK ABOVE ELKHEAD RESE ELK RIVIZ BILDY SOUTH FORK AT HI | | | HYDROLOGIC
Unit
Code | 14050001
14050001
14050001
14050001 | | MEDIA | | | | | | | | | |----------------------------|--|--|---|---|---|---|---|--| | NOTE GRE | ٥٥٥٥ | 00000 | 00000 | 0000 | 00000 | 00000 | 0 00 | · | | MOITASINADRO
3000 | Sesu
Sesu
Sesu
Sesu
Sesu
Sesu
Sesu
Sesu | оооци | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 4 4 0 | 0 ш ш | প্ৰব্ৰ | 44424 | Р Ш 4 | 4 4 | 6 | | | 3212 TAA9 TAM 038 | | | | | | | 0 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | SXIZ TRAS SUZ | 4 | ш | 4 4 | 44 44 | ∢ m m | 44444 | ৰ ও ত ৰ | ···· | | 2024 ZED CONCEN | 44432 | | ARANA | 44424 | A M O M A | | 4 2 2 4 | | | OW END
RA3Y | 1975 | 1975 | | 1978
1979
1978 | 1969 | 1979 | 1979 | | | OW BEGIN | 1975
1973
1973
1974 | 1949
1975
1975
1973 | 1978
1957
1978
1975
1957 | 1957
1975
1957
1957
1957 | 1965
1950
1949
1950
1972 | 1978
1978
1978
1978 | 1978
1978
1975
1976 | | | BASIN
Rotqiads30 | 004 | 124 | 004
004
004
007 | 024
124
124
124
014 | 014 | | 004
004 | | | DRAINAGE
AREA | 40.00
7.22
20.10 | 3410.00 | 29.30
285.00
12.80
85.30
161.00 | 200.00
330.00
354.00
988.00
24.00 | 3020.00 | | 49.70 | | | TYPE OF
STI2 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | MS M | N N N N N N N N N N N N N N N N N N N | NS AS S | AS S AS | N N N N N N N N N N N N N N N N N N N | N S S S S S S S S S S S S S S S S S S S | | | COUNTY | 107
081
081
081 | 08 1
08 1
08 1
107 | 007
107
007
007 | 007
007
007
081 | 037
081
081
081 | 007
007
007
007 | 037
007
007
007 | | | 3TAT2 | 800
800
800
800 | 8000
8000
8000
8000 | 056
008
056
056
056 | 056
056
056
056
008 | 056
008
008
008 | 056
056
056
056
056 | 056
056
056
056 | | | LONGITUDE | 1064622
1074722
1074757
1074757 | 1080145
1073953
1074531
1065500 | 1070120
1070834
1070350
1071416
1072258 | 1072218
1072253
1072650
1073255
1073116 | 1075511
1082011
1082525
1065435 | 1074648
1075216
1075200
1072920
1080730 | 108 1020
107 4014
107 3845 | | | LATITUBE | 404620
401725
401848
401848 | 403010
401601
402154
405600
405800 | 410055
405958
410800
410012
405854 | 411305
410552
410120
410142
405456 | 410011
403627
403627
403250
405855 | 410154
410229
410231
410740
411036 | 411134
412024
410755 | | | STATION NAME AND LOCATION | | YAMPA RIVER NEAR MAYBELL, CO.
STINKING GULCH NEAR THRONBURGH,
MILK CREEK NEAR MOUTH NEAR AXIAL
MIDDLE FK LITTLE SNAKE NR COLUMB
WHISKEY CR,9 MI NO COLUMBINE | NF L SNAKE R NR SLATER COLO
LITTLE SNAKE RIVER NEAR SLATER, CO.
BATTLE C NR ENCAMPMENT WYO
BATTLE CREEK NEAR SLATER, CO.
SLATER FORK NEAR SLATER, CO. | SAVERY CREEK AT UPPER STATION, NEAR SAVERY. SAVERY CREEK NEAR SAVERY, WY. SAVERY CREEK AT SAVERY, WY. LITTLE SNAKE RIVER NEAR DIXON, WY. WILLOW CREEK NEAR DIXON, WY. | LITTLE SNAKE RIVER NEAR BAGGS, WY. LITTLE SNAKE AB LILY COLO LITTLE SNAKE RIVER ABOVE LILY, CO. LITTLE SNAKE RIVER NEAR LILY, CO. WHISKEY CREEK AB WHISKEY PARK NR COLUMBINE, | POISON DRAW,NR BAGGS,WY
SAND CREEK,NR BAGGS,WY
RED C TRIB TO SD C NR BAGGS
WY
COTTONWOOD CR NR BAGGS WY
SAND C NR PREHISTORIC RIM, WY | SKULL CREEK TRIB SD CK
MUDDY C AB DRY COW C NR BAGGS WY
DRY COW C NR BAGGS WY
MUDDY CREEK ABOVE BAGGS, WY. | | | HYDROLOGIC
Unit
CODE | 14050001
14050002
14050002
14050002 | | 14050003
14050003
14050003
14050003 | 14050003
14050003
14050003
14050003 | 14050003
14050003
14050003
14050003 | 14050003
14050003
14050003
14050003 | 14050003
14050004
14050004
14050004 | | | MEDIA | | *************************************** | | | | | | | |-------------------------------------|--|--|--|--|--|---|---|--------| | A072 G32 | 0000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | NG(TASINABNO
3000 | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | বৰবৰ | বৰবৰৰ | шшаа | 0 11 0 6 11 | 0 ∢ ∠ ⊔ ш | 40000 | 0
7
6 | | | 3512 TAA9 92U2
3512 TAA9 TAM 038 | 0 | | | | | | | ······ | | ZIS EVE SED CONCEN | 04444
2 4444 | 44444 | <u> </u> | <u> </u> | п Г п п 4 | посог | ш ш | | | | 999 | 99998 | шшаак | е ше и | 8 8 | | 0 3 7 A | | | OW END
RABY | 197
197
197 | 197
197
197
197 | | | 1978 | | | | | OW BEGIN | 1977
1976
1976
1976 | 1976
1976
1976
1975 | 1952
1975
1973
1947
1978 | 1973
1976
1973
1973 | 1974
1974
1973
1974
1975 | 1973
1973
1974
1974 | 1965
1976
1973
1974 | | | NISAB
ROT4IRJ230 | | 004
024 | 024
004
024
024
024 | 024 | | 024
024 | 024 | | | DRAINAGE
AREA | | 21.50 | 260.00
152.00
648.00
755.00 | 177.00
24.00
44.00
14.20 | 1.22
3.62
1.20
1.06
6.61 | 7.97
48.40
309.00
103.00
506.00 | 652.00
26.10
8.61
2.74 | | | TYPE OF | 3 3 3 3 3 S | 33333 | S E E E E | N N N N N N N N N N N N N N N N N N N | X X X X X X X X X X X X X X X X X X X | X X X X X X X X X X X X X X X X X X X | ASS AS | | | COUNTY | 007
007
007
007 | 007
007
103
103 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 1033 | 10333 | 103 | | | 3TAT2 | 056 (056 (056 (056 (056 (056 (056 (056 (| 056
056
056
008
008 | 0008 | 0008 | 88888 | 0008 | 8888 | | | LONGITUBE | 1074100
107441
1074521
1072700 | 1072700
1073302
1073310
1072806
1072915 | 1073650
1073304
1074929
1075142
1080533 | 108 1057
108 1023
108 1 100
108 1 121
108 1 100 | 1081233
1081155
1081225
1081312
1081340 | 1081435
1081437
1081530
1081713
1081749 | 108 1408
108 2 5 14
108 3 156
108 3 155 | | | LATITUDE | 411711
412325
412614
412634 | 412636
412925
412928
400301
400218 | 395915
395518
400018
400201
400048 | 394934
394720
394848
394701
394845 | 394707
394930
394936
395001
394738 | 394851
395014
395102
395217
395516 | 400439
395537
395422
395520 | | | STATION NAME AND LOCATION | SAND C NR BAGGS WY COW C AT MOUTH NR BAGGS WY MUDDY C AB CANARY GROVE DRAW NR BAGGS, WY MUDDY C NR DAD WY MUDDY C AB LITTLEFIELD C AT MC KEIL HOMESTEA | LITTLEFIELD C AT MOUTH AT MCKEIL HOMESTEAD W
ALAMDSA C NR SULFUR SPRINGS RANCH, WY
MUDDY C AB ALAMOSA C NR SULFUR SPRINGS RANCH
LOST CREEK NEAR BUFORD, CO.
MARVINE CREEK NEAR BUFORD, CO. | NORTH FORK WHITE RIVER AT BUFORD, CO.
SOUTH FORK WHITE RIVER NEAR BUFORD, CO.
WHITE RIVER ABOVE COAL CREEK, NEAR MEEKER, C
WHITE RIVER NEAR MEEKER, CO. | PICEANCE CREEK BELOW RIO BLANCO, CO.
MIDDLE FORK STEWART GULCH NEAR RIO BLANCO, C
STEWART GULCH AB WEST FORK, NEAR RIO BLANCO.
WEST FORK STEWART GULCH NEAR RIO BLANCO, CO.
W F STEWART GULCH AT MOUTH, NEAR RIO BLANCO. | SORGHUM GULCH NEAR RID BLANCO, CO. SORGHUM GULCH AT MOUTH, NEAR RID BLANCO, CO. COTTONWOOD GULCH NEAR RID BLANCO, CO. PICEANCE CREEK TRIBUTARY NEAR RID BLANCO, CO SCANDARD GULCH NEAR RID BLANCO, CO. | SCANDARD GULCH AT MOUTH, NEAR RIO BLANCO. CO
WILLOW CREEK NEAR RIO BLANCO, CO.
PICEANCE CREEK AB HUNTER C, NEAR RIO BLANCO.
BLACK SULPHUR CREEK NEAR RIO BLANCO. CO.
PICEANCE CREEK BL RYAN GULCH, NR RIO BLANCO. | PICEANCE CREEK AT WHITE RIVER, CO.
STAKE SPRINGS DRAW NEAR RANGELY, CO.
CORRAL GULCH BELOW WATER GULCH, NR RANGELY,
DRY FORK NEAR RANGELY, CO. | | | HYDROLDGIC
Unit
Code | 14050004
14050004
14050004
14050004 | 14050004
14050004
14050005
14050005 | 14050005
14050005
14050005
14050005 | 14050006
14050006
14050006
14050006 | 14050006
14050006
14050006
14050006 | 14050006
14050006
14050006
14050006 | 14050006
14050006
14050006
14050006 | | | AIG3M | | | | | | | | | |----------------------------|--|---|--|---|--|---|---|--| | SED STOR | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | مممد | | | MOITASINADRO
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | X A D D m | ж о m о | | 20 | | ∢ | 000 | | | 3512 T8A9 92U2 | ш | шш | 0 00 | 000 0 | 00000 | 000 0 | О шш | | | SUSP SED CONCEN | ш 4 3 го m | | <u>a</u> ≥ a | 9 9 9 | | ∑∑ ∢∑ | 00 | | | OW END
PA3Y | | 1978 | 1978
1978
1975 | 1975
1975
1979
1979 | 1978
1978
1978
1978 | 1978
1978
1978 | | | | OM BEGIN | 1973
1975
1975
1975 | 1975
1975
1965
1972
1975 | 1974
1975
1974
1974 | 1974
1974
1973
1949
1974 | 1976
1976
1976
1975 | 1974
1974
1975
1975 | 1976
1976
1973
1947 | | | MIZAB
Rotairdzego | 004 | 004
004 | 88888
88888
88888
88888
88888
88888
8888 | 00000
44444 | 00000
440000
44444 | 00
4
4
4
4
4
4 | 004 | | | | . 21
. 39
. 80
. 80 | 5888 | 86886 | 84888 | 2.50
8.30
14.40
17.50 | 5,888 | 6.4.00
0.00 | | | DRAINAGE
AREA | 9 2 2 9 9 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | 3700.00
24.50
100.00
246.00 | 259
12
284
4020
4030 | 94
94
97
4130 | 11.
22.
124.
324. | 59.7
228.4
5120.0
25400.0 | | | TYPE OF | 3 3 3 3 S | N N N N N | SESSES | N N N N N N N N N N N N N N N N N N N | A S A S A S A S A S A S A S A S A S A S | N N N N N | NS N | | | YTNUDO | 103
103
103
103 | 103
103
103
103 | 047
047
047
047
047 | 047
047
047
047 | 047
047
047
047 | 047
047
047
047 | 047
047
047
047 | | | 3TAT2 | 800
800
800
800 | | 049
049
049
049 | 049
049
049
049 | 049
049
049
049 | 049
049
049
049 | 049
049
049
049 | | | LONGITUDE | 1083140
1082905
1082905
1082315 | 1082710
1082427
1082402
1084244
1090448 | 1090749
1090838
1090430
1090748
1090937 | 1090924
1090920
1090931
1091041 | 1091216
1091406
1091555
1091619
1091730 | 1090559
1091321
1091958
1092115
1092459 | 1092946
1092836
1093806
1091405 | | | LATITUBE | 395318
395318
395450
395513
395602 | |
395826
395826
394752
395054
394930 | 395258
395400
395704
395846
395715 | 395421
395650
395426
395628
395522 | 393203
393206
393931
394512
395758 | 395601
400315
400354
402434 | | | STATION NAME AND LOCATION | BOX ELDER GULCH NEAR RANGELY, CO. BOX ELDER GULCH TRIBUTARY NEAR RANGELY, CO. CORRAL GULCH NEAR RANGELY, CO. CORRAL GULCH AT 84 RANCH, CO. YELLOW CREEK TRIBUTARY NEAR 84 RANCH, CO. | DUCK CREEK AT UPPER STATION NEAR 84 RANCH, C
DUCK CREEK NEAR 84 RANCH, CO.
YELLOW CREEK NEAR WHITE RIVER, CO.
WHITE RIVER ABOVE RANGELY, CO.
WHITE R. NR. COLO. STATE LINE, UT. | WHITE RIVER ABV HELLS HOLE CANYON NR WATSON HELL'S HOLE CAN AT MOUTH NR WATSON UT EVACUATION CREEK ABV MISSOURI CR NR DRAGON U EVACUATION CR BLW PARK CAN NR WATSON UT THIMBLE ROCK CAN NR WATSON UT | EVACUATION CREEK AT WATSON UTAH EVACUATION CR TRIBUTARY NR WATSON UT EVACUATION CR NR MOUTH NR WATSON.UT WHITE R NR WATSON UT | SOUTHAM CAN WASH NR WATSON UT
SOUTHAM CAN WASH AT MOUTH NR WATSON UT
ASPHALT WASH BLW CENTER FORK NR WATSON UT
ASPHALT WASH NR MOUTH NR WATSON, UTAH
WHITE R BLW ASPHALT WASH NR WATSON UT | BITTER CREEK ABOVE DICK CANYON
SWEETWATER CANYON BLW SOUTH CAN NR WATSON UT
SWEETWATER CANYON CR NR MOUTH, NR WATSON, UT
BITTER CREEK NR BONANZA, UTAH
BITTER CR AT MOUTH NR BONANZA UT | SAND WASH NR DURAY UT
COYOTE WASH NR MOUTH NR OURAY, UTAH
WHITE RIVER AT MOUTH NEAR OURAY UTAH
GREEN RIVER NEAR JENSEN, UTAH | | | HYDROLOGIC
Unit
Code | 14050006
14050006
14050006
14050006 | 14050006
14050006
14050006
14050007
14050007 | 14050007
14050007
14050007
14050007 | 14050007
14050007
14050007
14050007 | 14050007
14050007
14050007
14050007 | 14050007
14050007
14050007
14050007 | 14050007
14050007
14050001 | | | MEDIA | | | | | | | | | |----------------------------|---|---|--|--|--|--|---|------| | NOTZ G32 | 0040 | | 0 0 | 0000 | 00000 | 00000 | 00 0 | | | MOITASINADRO
BGGO | uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS
USGS | USES
USES
USES
USES
USES | USGS
USGS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS | | | SUSP DISCHARGE | X 0 X | 0 | | 00 | | | | | | SSIZ TRAS TAM 038 | >>: | > 0000 | 0000 | | | | | | | SIZ TRAF FRUZ | <u> </u> | | 0000 | ∢ ⊻ | | | | ···· | | SUSP SED CONCEN | GUEX | <u> </u> | m00K0 | 90 11 11 | A A A A M | | 2
8
8
8 | | | OW END
RABY | 1966 | 197 | | | | | 197; | | | OW BEGIN | 1949
1949
1975 | 1974
1974
1975
1949
1967 | 1970
1978
1978
1976 | 1921
1928
1972
1967
1973 | 1979
1979
1979
1979 | 1971
1967
1972
1970
1970 | 1967
1971
1972
1970 | | | MISA8
Rotqirds30 | 014
004
004 | 004 | 000
000
000
000 | 0 14
4 10 | | · | _ | | | ,
DRAINAGE
AREA | 3920.00
35500.00 | 89.70
288.00
897.00 | 29.10
23.00
25.30
12.50 | 1500.00 | | | | | | TYPE OF | SEEE | | N N N N N N N N N N N N N N N N N N N | E E E E | N K K K K K K K K K K K K K K K K K K K | N N N N N N N N N N N N N N N N N N N | N A A A | | | YTMUOD | 047
047
047
047 | 047
047
047
047
015 | 015
007
007
007 | 015
015
015
015 | 007
007
007
007 | 015
015
015
039 | 015
015
015 | | | STATE | 049
049
049 | 0 00000 | 049
049
049
049 | 049
049
049
049 | 049
049
049
049 | 049
049
049
049 | 049
049
049 | | | LONGITUDE | 1094705
1094340
1095222 | 1094505
1093522
1094354
1094229
1093900
1111658 | 11110938
11105309
1104038
1102133 | 1102045
1100902
11111117
1111144 | 1110915
1111020
11111150
11111210 | 1111500
1111634
1111611
1111644
1111759 | 1111724
1111645
11111247
11111613 | | | LATITUDE | 401257
400420
400457
400310 | 393358
393130
395235
395630
391633 | 392236
394318
394119
394209 | 391550
385910
391518
391739
392606 | 393147
393336
393515
393535 | 391717
391919
392100
392016
391814 | 391815
392052
390604
392052 | | | STATION NAME AND LOCATION | DUCHESNE RIVER NEAR RANDLETT, UTAH
GREEN RIVER NEAR OURAY, UTAH
PARIETTE DRAW NEAR MYTON, UTAH
PARIETTE DRAW NR EIGHT MILE FLAT NEAR MYTON | PARIETTE DRAW AT MOUTH NEAR OURAY, UIAH
REID RANCH CANAL NR OURAY UT
HILL CR ABY TOWAVE RES NR OURAY UT
HILL CR NR MOUTH NR OURAY UT
WILLOW CREEK NEAR OURAY, UTAH
SWASEY CREEK BELOW SUMMER HOMES | BLACK CANYON AT BRIDGE PLEASANT VALLEY CR. BLW WINTER QUARTER GR AT SPRING CANYON BLW SOWBELLY GULCH AT HELPER, COAL CREEK NEAR HELPER HORSE CANYON NR. SUNNYSIDE, UT. | PRICE RIVER AT WOODSIDE, UTAH
GREEN RIVER AT GREEN RIVER, UTAH
SWASEY DIVERSION BELOW FOREST BD
SEELY GREEK AT GAGE
LOWRY WATER AT POTTERS PONDS | HUNTINGTON CREEK FLUSH 321
HUNTINGTON CREEK FLUSH 322
HUNTINGTON CREEK FLUSH 323
HUNTINGTON CREEK FLUSH 324
LOWER STRAIGHT CYN. AT FOREST BD | UPPER STRAIGHT CANYON LOWRY WATER AT GAGE INDIAN CREEK AT GAGE REEDER CYN BELDW SUMMER HOMES LITTLES CREEK AT GAGE | LITTLES CREEK AT HI-WAY BRIDGE
INDIAN CREEK AT ROAD CULVERT
FERRON CREEK USGS STATION
INDIAN CREEK AT ROAD CULVERT | | | HYDROLOGIC
UNIT
CODE | 14060003
14060005
14060005 | 14060005
14060006
14060006
14060006
14060006 | 14060007
14060007
14060007
14060007 | 14060007
14060008
14060009
14060009 | 14060009
14060009
14060009
14060009 | 14060009
14060009
14060009
14060009 | 14060009
14060009
14060009 | | | | · | | | | | | | | | |----------------------------|---------------------------------|--|---|--|--|--|--|--|--| | AIG3M | υ | 00 0 | 44000 | ٥٥٥٥ | ۵۵۵۵ | 00000 | 00000 | 0000 | | | ORQANIZATION
CODE | USFS | uses
uses
uses
uses | uses
uses
uses
uses
uses | USES
USES
USES
USES
USES | USFS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | | X 01 01 | a z u o | 0 K K O | 4500 | 4X 44 | 440 | | | 3ZIS 1844 4SUS | | ~ ~ O ~ | >>
>> × < 3 | νZαш | z | шZ | m | m 4 Z | | | SUSPECT CONCEN | 8 | 202 | EEONN | 00Z00 | 4 U U X | WSSX4 | RXS44 | 4402 | | | OW END
YEAR | | | 1975 | 1972
1978 | 1980 | 1979
1979
1975 | 1975
1974
1972
1974 | 1975
1974
1978 | | | VEAR
OW BEGIN | 1970 | 1976
1978
1971
1978 | 1975
1975
1975
1946
1947 | 1972
1975
1975
1969
1967 | 1974
1926
1977
1977
1947 | 1947
1977
1977
1970
1960 | 1972
1972
1972
1974
1960 | 1974
1974
1969
1972 | | | BASIN
DESCRIPTOR | | 004
024
004 | 014
014 | 000
410
410 | 124
024
024 | 024 | 024
024
024
004 | 024
024
024 | | | DRAINAGE
AREA | | 5.70
11.70
21.90 | 205.00
221.00
1284.00
1670.00
76600.00 | 841.00
1552.00
115.00 | 111800.00 | 14.00 | 69.10
69.80
96.40 | 21.90 | | | TYPE OF | MS | N N N N | SEEE | N N N N N N N N N N N N N N N N N N N | N X X X X | N N N N N | N N N N N N N N N N N N N N N N N N N | N X X X | | | COUNTY | 015 | 015
015
039
015 | 015
015
015
015 | 015
015
055
055
055 | 017
005
025
005
005 | 005
005
025
079
007 | 007
007
007
007 | 007
007
007
039 | | | 3TAT2 |
049 | 049
049
049 | 049
049
049
049 | 049
049
049
049 | 049
0049
004
004 | 0049
008
008 | 8000 | 008
008
035 | | | LONGITUDE | 111759 | | 1110745
1105920
1103956
1102220 | 1111449
1105713
1104200
1110530 | 1113910
1113515
1115323
1114032 | 1113538
1114032
1115323
1065300
1064738 | 1064845
1065024
1070235
1064120 | 1064904
1065033
1065425
1070326 | | | LATITUDE | 391814 | 392748
392731
391947
391826 | 391600
390709
390451
385220
374830 | 385900
383347
382410
381620
381640 | 375745
365153
370431
365647 | 365220
365647
370431
372647 | 371211
370830
370724
370507 | 370426
370244
370010
365717 | | | STATION NAME AND LOCATION | LITTLES CREEK AT GAGING STATION | CRANDALL CANYON AT MOUTH, NR HUNTINGTON, UT
TIE FORK CANYON NR. HUNTINGTON, UTAH
EPHRAIM TUNNEL NEAR EPHRAIM, UTAH
COTTONWOOD CR.ABV STR.CANYON,NR ORANGEVILLE. | COTTONWOOD CREEK NEAR ORANGEVILLE, UTAH
FERRON CREEK BEL PARADISE RANCH NR CLAWSON,
SAN RAFAEL R AT SAN R BR CAMPGROUND NR C DAL
SAN RAFAEL RIVER NEAR GREEN RIVER, UTAH
COLORADO RIVER AT HITE, UTAH | MUDDY C AT USGS STATION
MUDDY CR AT DELTA MINE NR HANKSVILLE, UT. 21
MUDDY CREEK AT MOUTH NR HANKSVILLE, UT. 11.0
PLEASANT CR NR CAINEVILLE, UT. 72.00
FREMONT RIVER NR CAINVILLE, UT. 71.00 | PINE C BLUE SPRUCE C G
COLORADO R AT LEES FERRY, AZ.
PARIA R. AT WHITE HOUSE RUINS NR GLEN CANYON
PARIA R. BLW. WATER POCKETS GULCH NR PAGE,AZ
PARIA R FAKE STA TONS DIV BY 10 | PARIA RIVER AT LEES FERRY, ARIZ.
PARIA R. BLW. WATER POCKETS GULCH NR PAGE.AZ
PARIA R. AT WHITE HOUSE RUINS NR GLEN CANYON
WOLF CREEK NEAR PAGOSA SPRINGS, CO.
RIO BLANCO NEAR PAGOSA SPRINGS, CO. | RIO BLANCO BL BLANCO DIV DAM, NR PAGOSA SPS. RIO BLANCO AT US HIGHWAY 84, NR PAGOSA SPGS. RIO BLANCO AT MOUTH, NEAR TRUJIL NAVAJO R AT BANDED PEAK RANCH, NEAR CHROMO. NAVAJO R IVER ABOVE CHROMO, CO. | LITTLE NAVAJO RIVER BL LITTLE OS
LITTLE NAVAJO RIVER AT CHROMO, CO.
NAVAJO RIVER AT EDITH, CO.
NAVAJO R. AB AMARGO CR. NR DULCE | | | HYBROLOGIC
Unit
Code | 14060009 | 14060009
14060009
14060009 | 14060009
14060009
14060009
14060009 | 14070002
14070002
14070003
14070003 | 14070005
14070006
14070007
14070007 | 14070007
14070007
14070007
14080101 | 14080101
14080101
14080101
14080101 | 14080101
14080101
14080101 | | | Line | г | | | | | | | | |----------------------------|--|--|---|--|---|---|---|--| | NOTZ G32
AIG3M | 00040 | 00000 | 00000 | 00000 | 0000 | 40000 | ۵۵۵۵ | | | NGITASINABRO
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHANGE | ош ш | ひとひとす | বৰবৰৰ | ZOXAZ | SmO44 | N Q.∢ | XO44 | | | 3212 TRAS TAM 038 | | | | | | | | | | SUSP SEO CONCEN | Х О ш ш п | m 44 | 44444 | HAAAH | M M M A A | A NA | XMAA | | | | 26 84
50mm | 000X4 | 4 00
4444 | no no | NN
NHOAA | m N O O ◀ | XOAA | | | OW END
AA3Y | 197
197
195
195 | 197 | 197
197
197 | 197
197
197
197 | 197 | 1958 | | | | OM BECIN | 1972
1969
1961
1968 | 1953
1944
1957
1978
1978 | 1974
1975
1975
1975 | 1970
1969
1978
1975
1970 | 1970
1969
1939
1977
1962 | 1948
1955
1970
1978
1978 | 1975
1941
1975
1975 | | | MOZAIN
Descriptor | 024
004
014 | 0
4 4 4
4 4 | | 00
4
4
00 | 0
4
4 | 024
014 | 014 | | | DRAINAGE
AREA | 1230.00
72.10
270.00
510.00 | 3260.00
3560.00
5410.00 | | 32.20
629.00
55.90 | 11.00
1090.00
1360.00
1270.00
7240.00 | 37.00
331.00
583.00
62.80 | 73.80
12900.00 | | | 30 39YT
3TI2 | X X X X X X X X X X X X X X X X X X X | N N N N N | SEEEE | N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N | | | COUNTY | 007
007
067
067 | 045
045
045
045
045 | 045
045
045
045 | 053
007
045
045 | 111
067
045
045 | 067
067
045
045
045 | 045
045
045
045 | | | 3TAT2 | 0008
0008
0008 | 035
035
035
035 | 035
035
035
035 | 008
008
035
035
008 | 008
008
035
035
035 | 008
008
035
035 | 035
035
035 | | | LONGITUDE | 1070756
1071842
1073235
1073437 | 1074151
1074850
1075910
1080542
1080730 | 1075930
1080543
1074848
1074410
1074225 | 1070946
1072350
1074521
1074521 | 1074331
1075225
1081208
1080012
1081330 | 1080224
1081117
1081451
1082409
1082342 | 1082626
1084354
1084409
1083214 | | | LATITUDE | 370126
370049
372839
372258
37034 | 364805
364350
364200
364122
363852 | 364005
364122
364327
364655
364743 | 372912
370518
364124
364124
374959 | 375104
370217
364312
364930
364322 | 371723
365959
364423
364823 | 364624
364732
364422
364447 | | | STATION NAME AND LOCATION | NAVAJO R. AT MOUTH NR JUANITA, C
SAN JUAN RIVER NR CARRACAS, COLORADO
VALLECITO CREEK NEAR BAYFIELD, CO.
LOS PINOS RIVER NEAR BAYFIELD, 'CO.
LOS PINOS RIVER AT LA BOCA, COLO. | SAN JUAN RIVER NEAR ARCHULETA.NM
SAN JUAN R NR BLANCO.NM
SAN JUAN RIVER AT BLOOMFIELD. NM
SAN JUAN RIVER AT HAMMOND BR NR BLOOMFIELD.N
GALLEGOS CANYON NR FARMINGTON, NM | 28N.11W.15.122 KUNTZ CAN AT STHWY 44,NM 29E6 SAN JUAN RIVER AT WEST HAMMOND BRIDGE, NM SAN JUAN RIVER AT BLANCO BRIDGE, NM 30N.09W.25.143 PUMP CANYON AT ARCHULETA.NM 6 30N.09W.19.422 GOBERNADOR WASH AT ARCHULETA | MIDDLE FORK PIEDRA RIVER NR PAGOSA SPRINGS,
PIEDRA RIVER NEAR ARBOLES, COLO.
CANON LARGO NR BLANCO,NM
29N.O9W.26.334 CANYON LARGO NR BLANCO,NM 29E
ANIMAS RIVER AT HOWARDSVILLE, CO. | MINERAL CREEK ABOVE SILVERTON, CO.
ANIMAS RIVER NEAR CEDAR HILL, N. MEX.
ANIMAS RIVER AT FARMINGTON, NM
30N.11W.09.311 ANIMAS R BL HIWAY 550 AT AZTE
SAN JUAN RIVER AT FARMINGTON, NM | LA PLATA RIVER AT HESPERUS, CO.
LA PLATA RIVER AT COLORADO-NEW MEXICO STATE
LA PLATA RIVER NEAR FARMINGTON, NM
SAN JUAN R NR FRUITLAND, NM | SHUMWAY ARROYO NEAR WATERFLOW, NM SAN JUAN RIVER AT SHIPROCK, NM SAN JUAN RIVER AT FRUITLAND BRIDGE, NM SAN JUAN RIVER IN HOGBACK DIVERSION BYPASS, | | | HYDROLOGIC
Unit
Code | 14080101
14080101
14080101
14080101 | 14080101
14080101
14080101
14080101 | 14080101
14080101
14080101
14080101 | 14080102
14080102
14080103
14080103 | 14080104
14080104
14080104
14080105 | 14080105
14080105
14080105
14080105 | 14080105
14080105
14080105
14080105 | | | MEDIA | T Total | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | | | | · · · · · · · · · · · · · · · · · · · | |----------------------------|--|--|---|--|--|--|---|---------------------------------------| | ADTZ G3Z | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | NOITASINADRO
3000 | uses
uses
uses
uses
uses |
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP OISCHARGE | વવવવ | 42444 | w w A A A | N AOR | বৰৰৰ | 44 64 | α | | | 35/2 TAAS TAM G38 | | | | | | | | | | SUSP SED CONCEN | 4444 | 4Z444 | m m w a a | N A N | বৰৰৰ | ANMKA | αααα | | | CITCH SED CONCEN | ত বৰবৰ | WZ 4 4 4 | m m w d k | ND A A N | 44444 | A N H N A | S S S S | | | OW END
RABY | 1975 | | | 1980 | | 1975 | 1975 | | | OW BEGIN | 1975
1975
1975
1975 | 1978
1976
1979
1977
1974 | 1974
1974
1976
1978
1978 | 1978
1974
1978
1978 | 1977
1978
1978
1976
1976 | 1977
1975
1974
1977 | 1977
1975
1977
1974 | | | NISA8
AOT4IRJ230 | | | | 904 | | | | | | DRAINAGE
AREA | | 578.00
8.21
31.00 | 183.00
45.60 | 4350.00 | | | | | | TYPE OF
SITE | A 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | A A A A A A A A A A A A A A A A A A A | A A A A A | M M M M M M M M M M M M M M M M M M M | A A A A A | A S A S A S A S A S A S A S A S A S A S | SSSS | | | COUNTY | 045
045
045
045
045 | 031
045
045
045
045 | 045
045
045
045 | 045
045
031
045 | 045
045
045
045
045 | 045
045
045
045
045 | 045
045
045
045 | | | STATE | 0 3 3 2 0 0 3 2 0 0 3 2 0 0 0 0 0 0 0 0 | 035
035
035
035 | 035
035
035
035
035 | 035
035
035
035
035 | 035
035
035
035
035 | 035
035
035
035
035 | 035
035
035
035 | | | LONGITUDE | 1082610
1084134
1082550
1082550 | 1073139
1075504
1075325
1075647
108 1052 | 1081157
1081512
1081506
1082722
1082716 | 1083357
1083527
1080818
1074843
1080120 | 1075720
1081038
1075714
1083234
1075635 | 1082021
1080747
1074318
1080842
1080715 | 1080846
1081511
1083252
1083357 | | | LATITUDE | 364631
364650
364843
365029 | 355607
360143
360206
360918
361407 | 361351
361637
361533
361826
362111 | 362157
364328
355841
360308 | 360614
360641
360743
360809
360916 | 361137
361407
361432
361439 | 361528
361534
361751
362157 | | | STATION NAME AND LOCATION | SHUMWAY ARROYD ABOVE DUNLAP FARM NR WATERFLO
SAN JUAN RIVER AT SHIPROCK BRIDGE, NM
WESTWATER ARROYD ABOVE SAN JUAN MINE, NM
30N.15W.06.422 WESTWATER ARR NR SPRINGS 3SWE
SAN JUAN RIVER ABOVE MANCOS, NM | CHACO WASH NR STARLAKE TRADING POST. NM
CHACO WASH AT CHACO CANYON NATIONAL MONUMENT
GALLO WASH AT CHACO NATIONAL MONUMENT, NM
AH-SHI-SLE-PAH WASH NEAR KIMBETO ,NM
ALAMO WASH NEAR TANNER LAKE , NM | DE-NA-ZIN WASH NR BISTI TRADING POST, NM HUNTER WASH AT BISTI TRADING POST, NM HUNTER TRIBURARY AT ROAD XING S. OF BISTI TP TEC-NI-DI-TSD WASH NR BURNHAM, NM BURNHAM, NM | CHACO RIVER NE BURNHAM, NM
CHACO RIVER NEAR WATERFLOW, NM
20N.12W.08.323 KIMMENIOLI WASH 9 MI S LK VAL
21N.09W.17.233 GALLO WASH AT DIKE NR CHACO N
21N.11W.05.4220 CHACO R BL E.WASH,CHACO N.M. | 22N.11W.25.433 ESCAVADO WASH AT HIWAY 56 BR. 22N.13W.25.322 KIMMENIOLI WASH NR LAKE VALLE 22N.11W.24.214 TSOSIE SWALE NR KIMBETO.NM NRO67.0225XO788 CDYOTE WASH NR NASCHITII.NM 22N.10W.07.143 AHSHISLEPAH WASH,6 M W KIMBET | NROGG.O500X0388 CHACO R BL DENAZIN W NR BIST
COAL CREEK ABOVE TANNER LAKE NEAR BISTI TP ,
23N.O8W.O7.2331 KIMBETO W AT STHWY 44.NM
23N.12W.O8.1341 DENAZIN TRIB 7.4 MI SE BISTI
DE-NA-ZIN WASH ABOVE TANNER LAKE .NM | 23N.12W.05.1334 DENAZIN TRIB 7.2 MI SE BISTI
23N.13W.05.1413 HUNTER T AT RDX
NRO49.0268X1397 CHACD R BL HUNTER WA NR BURN
NRO49.0367X0923 CHACD R AT BRIDGE NR BURNHAM | | | HYDROLOGIC
Unit
CDDE | 14080 105
14080 105
14080 105
14080 105
14080 105 | 14080106
14080106
14080106
14080106
14080106 | 14080106
14080106
14080106
14080106 | 14080106
14080106
14080106
14080106
14080106 | 14080106
14080106
14080106
14080106
14080106 | 14080106
14080106
14080106
14080106 | 14080106
14080106
14080106
14080106 | | | ROTZ G3Z
AIG3M | ۵۵۵۵۵ | 0000 | | |----------------------------|---|---|---| | ONGENIZATION
COOE | nses
nses
nses
nses
nses | USGS
USGS
USGS
USGS | | | SUSP OISCHARGE | 44000 | AANO | | | 3512 TAA9 TAM 038 | | | | | BEIZ TRAM MEUZ | ৰৰ ৫৯ | 4440 | | | SUSP SED CONCEN | 44000 | 44ZO | | | OW END
YEAR | 1978 | | | | OW BEGIN | 1976
1977
1960
1978 | 1975
1977
1969
1852 | | | BASIN
AOT41A3230 | 124 | 124
014 | | | DRAINAGE
AREA | 550.00 | 350.00 | | | TYPE OF | ************************************** | MS
MS
NS
NS | | | CDUNTY | 045
045
083
037 | 083
037
083
037 | | | STATE | 035
008
008 | 008
049
049 | · | | LONGITUDE | 1083441
1083349
108427
1090200
1093441 | 1090150
1091121
1090054
1095151 | | | LATITIDE | 362813
363417
370139
373338 | 370010
371251
371927
370849 | | | STATION MAME AND LOCATION | NRO49.0433XO206 SANDSTEE WASH NR SANDTEE TP,
NRO32.0352X1230 CHACD R AB 4CPP NR FRUITLAND
MANCOS RIVER NEAR TOWADC, CO.
SAN JUAN R AT FOUR CORNERS, CO | SAN JUAN R AT 4 CORNERS BRIDGE.CO
SAN JUAN R AB MCELMO CK AT ANETH.UT
MCELMO CREEK NEAR COLORADO-UTAH STATE LINE
SAN JUAN RIVER NEAR BLUFF, UTAH | | | HYDRDLOGIC
Unit
CODE | 14080106
14080106
14080107
14080201 | 14080201
14080201
14080202
14080205 | | | ¥IG3W | | | | · · · · · · · · · · · · · · · · · · · | | | | | | |----------------------------|---------------|---|---|---|---|--|---|---|--| | NOT2 G32 | | <u> </u> | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | OND ANIZATION
CODE | | USBR
USBR
USBR
USBR
USBR | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | | 7 | 4 lb m D | ашааа | ል የ የ መ የ የ | NZARA | Z K X W | | | 3512 TRAS 92U2 | | ZZZZ | W Z Z Z Z | Σ | ш хшш | a m | w | <u> </u> | | | 2025 CONCEN | | EEE30 | MEEEE | Σ 00m0
∑m m | 0000
0000
0000 | A W H K K | ZZARR | ZAXW | | | OW END
YEAR | | | 1977
1977
1977 | 1977 | 1978
1974
1978 | 1967 | 1979 | 1979 | | | MD38 WD
AA3Y | | 1964
1958
1964
1958 | 1925
1975
1975
1975 | 1975
1966
1958
1966
1973 | 1966
1966
1962
1967
1961 | 1966
1977
1966
1977 | 1946
1977
1977
1977 | 1977
1977
1968
1968 | | | NIZAB
AOTAIRJ230 | _ | | 124 | 024
124
004
004 | 000
440
410
410 | 00000
444444 | 000
004
004
004 | 013 | | | DRAINAGE
AREA | <u>N</u> | 183700.00 | 137800.00
4.81
14.80
2.49
9.80 | 16.60
1085.00
171700.00
74.00
5.65 | 35.70
350.00
934.00
1530.00
338.00 | 1650.00 | 5090.00
5980.00 | 2125.00
2193.00 | | | TYPE OF | | A S S S S S S S S S S S S S S S S S S S | MS M | 33333
33333 | AS AS AS | A S S S S S S S S S S S S S S S S S S S | NS N | AS AS | | | COUNTY | | 071
027
065
027
027 | 005
025
025
025
025 | 025
005
015
025
025 | 025
053
053
053
053 | 053
053
053
015 | 015
015
003
015
015 | 015
053
003
003 | | | 3TAT2 | | 000
000
000
000
000 | 004
049
049
049 | 000
000
000
000
000
000 | 049
049
049
049 | 049
049
0049
004 | 000
033
000
000
000
000 | 0004
049
032
032 | | | LONGITUDE | ADC | 1142600
1143715
1143735
1143800
1144300 | 1120508
1122030
1121937
1122046
1122219 | 0 1122046
0 1123445
3 1144413
9 1123613
0 1124642 | 1124802
1125840
1131225
1132342
1134635 | 1133240
1133756
1134050
1134646 | 1135135
1135525
1141810
1135135 | 1134646
1133756
1145905
1145415 | | | LATITUDE | ORA | 343715
324345
332550
324400 | 360605
372149
371918
371810
372011 | 371810
365150
360058
372019 | 372511
371235
371154
370945
371305 | 370335
370149
370050
365713 |
365517
365330
364010
365517
365657 | 365713
370149
360520
360720 | | | STATIOM NAME AND LOCATION | LOWER COL | COLORADO R AT RIVER SEC
COLORADO R AT YUMA ARIZ
COLO R AT TAYLOR FERRY
GILA R AT MOUTH AZ
COLORADO R AT N INTERNA | COLORADO R. NEAR GRAND CANYON, ARIZ. MILL CREEK ABOVE STUDY AREA NR GLENDALE.UT. SKUTUMPAH CR. BL STUDY AREA NR GLENDALE.UT. INTERMEDIATE DRAINAGE NR. GLENDALE, UT. THOMPSON CREEK ABY STUDY AREA NR GLENDALE, U | THOMPSON CREEK BLW STUDY AREA NR GLENDALE, U
KANAB CREEK NR FREDONIA, ARIZ.
LAKE MEAD AT HOOVER DAM, ARIZNEV.
EAST FORK VIRGIN RIVER NR GLENDALE, UTAH
NF VIRGIN R.NR.GLENDALE,UTAH | NF VIRGIN R BLW BULLOCK CANYON NR GLENDALE UNDRTH FORK VIRGIN RIVER NEAR SPRINGDALE, UTAH VIRGIN RIVER AT VIRGIN UTAH VIRGIN RIVER NR HURRICANE UTAH SANTA CLARA RIVER AB WINSOR DAM NR SANTA CLA | FORT PIERCE WASH NR ST. GEORGE, UTAH
VIRGIN R. AT BLOOMINGTON,UT
VIRGIN RIVER NEAR ST. GEORGE,UTAH
VIRGIN R. ABV 115 RESTAREA NR LITTLEFIELD, A
VIRGIN R. BLW 115 RESTAREA NR LITTLEFIELD,AZ | VIRGIN R. AT MOUTH OF NARROWS NR LITTIEFIELD
VIRGIN R. AT LITTLEFIELD, AZ
VIRGIN R. AB HALFWAY WASH NR RIVERSIDE NV
VIRGIN R. AT MOUTH OF NARROWS NR LITTIEFIELD
VIRGIN R. BLW 115 RESTAREA NR LITTLEFIELD,AZ | VIRGIN R. ABV I15 RESTAREA NR LITTLEFIELD, A VIRGIN R. AT BLOOMINGTON,UT LAS VEGAS WASH NR HENDERSON, NV LAS VEGAS WASH NR BOULDER CITY, NV | | | HYDROLOGIC
Unit
Code | | 150059 F
150059 Q
150059 S
150059 S | 15010001
15010003
15010003
15010003 | 15010003
15010003
15010005
15010008 | 15010008
15010008
15010008
15010008 | 15010009
15010010
15010010
15010010 | 15010010
15010010
15010010
15010010 | 15010010
15010010
15010015 | | | MEDIA | | | | | | | | | | |----------------------------|---|---|--|--|---|--|--|---|------| | MOTZ G3Z | | 0000 | 00000 | 000 4 | 00000 | 00000 | 000 | ٥٥ | ···· | | MOTASINADRO
3000 | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USBR
USBR | USGS
USGS
USBR
USBR | | | SUSP OISCHARGE | | Σ∢Σ | Σ বৰব | 400N | AAZNN | 2222 | 0 2 2 | ш | | | 3SI2 TRAS TAM G3B | | 0 | | | <u> </u> | | OEE | ¥ 2 | | | SOZE SED CONCEN | | Z A Z A D | 20444 | A A 0 0 0 2 Z Z Z | Z Z Z Z Z | NNNN | ZZ E N N | Z Z Z Z | | | CW END | , | | | | 1972 | | 1976 | | | | MID38 WD
AA3Y | | 1978
1971
1976
1978 | 1976
1977
1975
1976 | 1975
1971
1973
1979 | 1973
1979
1974
1957 | 1973
1973
1973
1973 | 1978
1972
1972
1964
1955 | 1939
1965
1964
1964 | | | NIZA8
AOT4IA3230 | | 004
124
124 | 124 | 124
124
004 | 00 00
4 00 4 | 0000
444444 | 004 | 124 | | | DRAINAGE
AREA | | 30.90
80.00
747.00
975.00 | 68.60 | 11300.00
12200.00
809.00 | 51.00
68.00
24000.00
26500.00 | 34.10
.62
.62
18.60
49.00 | 137.00
1650.00
1660.00 | 180700.00 | | | TYPE OF | | AS W
S W
S W | NS N
S N
S N
S N | AS S AS | NS N
S N
S N | NS N
S N
S N | N S N S N S N S N S N S N S N S N S N S | EEEE | | | YTNUOD | | 00000 | 017
017
031
031 | 001
0017
0017
0017 | 005
005
005
005
017 | 017
017
017
017 | 017
005
005
015
071 | 001
071
025
065 | | | STATE | | 0000
4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 004
035
035
035 | 0035
004
004
004 | 00000
44444 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00000
44444 | 000
000
000
000 | | | tongityDE | | 1092724
1091110
1092118
1092423 | 1095914
1100700
1084441
1090220
1084114 | 1082947
1100945
1101517
1101203
1092700 | 1113924
1113756
1112440
1113400 | 1102211
1102402
1102428
1102249
1102620 | 1102632
1110919
1111204
1142745
1143520 | 1144416
1140923
1142950
1143210 | | | LATITUDE | | 340100
340156
341950
343501 | 341046
342800
353145
352240
353150 | 353923
345352
345404
345418
354400 | 351318
351104
355240
355535
363103 | 363252
363154
363152
363439
363033 | 362534
360636
360618
344115 | 360055
341858
334310
335535 | | | STATION NAME AND LOCATION | | LITTLE COLORADO RIVER AT GREER, ARIZ.
NUTRIOSO CR. AB. NELSON RES NR SPRINGERVILLE
LITTLE COLORAD R AB LYMAN RES NR ST JOHNS, A
LITTLE COLORADO RIVER AB ZION RES NR ST JOHN
ZUNI R AB BLACK ROCK RESERVOIR | SHOW LOW CREEK NEAR LAKESIDE, ARIZONA
COTTONWOOD WASH NR SNOWFLAKE
PUERCO RIVER AT GALLUP, NM
21N.13W.11.144 PUERCO RIVER NEAR STATE LINE,
PUERCO RIVER AT THE HOGBACK, NM | PUERCO RIVER TRIBUTARY BL MINES AT CHURCHROC
LITTLE COLORADO RIVER AT HOLBROOK, ARIZ.
LITTLE COLORADO R NR JOSEPH CITY, AZ.
LEROUX WASH NR HOLBROOK AZ
KIN LI CHEE WASH NR GRANADO | RIO DE FLAG AT FLAGSTAFF, ARIZ.
RIO DE FLAG AT 140 AT FLAGSTAFF,AZ
LITTLE COLORADO R AT CAMERON ARIZ.
LITTLE COLORADO RIVER NEAR CAMERON, ARIZ.
MOENKOPI WASH TRIB NEAR KAYENTA, ARIZ | CDAL MINE WASH NEAR KAYENTA, ARIZ
CDAL MINE WASH TRIB NEAR KAYENTA, ARIZ
CDAL MINE WASH TRIB NO 2 NEAR KAYENTA, ARIZ.
YELLOW WATER CANYON NEAR KAYENTA, ARIZ
YELLOW WATER CANYON NR SHONTO | CDAL MINE WASH NR MOUTH NR SHONTO, ARIZ
MOENKOPI WASH NR MOENKOPI AZ
MOENKOPI WASH AT MOENKOPI
COLORADO R NEAR TOPOCK
COLORADO R AT NEEDLES BRIDGE | COLORADO RIVER BLW HOOVER DAM,ARIZ-NEV
COLORADO R AQUEDUCT NR PARKER DAM ARIZ-CALIF
COLORADO R BL PALO VERDE DAM
COLO R AT YATER YHEEL | | | HYDROLOGIC
Unit
Code | | 15020001
15020001
15020001
15020002 | 15020005
15020005
15020006
15020006 | 15020006
15020008
15020008
15020009 | 15020015
15020015
15020016
15020016 | 15020018
15020018
15020018
15020018 | 15020018
15020018
15020018
15030101 | 15030101
15030101
15030104
15030104 | - | | WAD. | T | | | | | | | | |----------------------------|--|--|---|--
---|---|--|-----| | ROTZ G32
AIG3M | 00000 | 0000 | 0000 | 00000 | 00000 | 00000 | 0000 | ··· | | NOITAS NADRO
BODD | US GS US GS S S US GS S S US GS S S US GS | USGS
USGS
USGS
USGS
USGS | USBR
USGS
USGS
USFS | USFS
USFS
USFS
USFS
USFS | USGS
USGS
USFS
USFS | USGS
USGS
USGS
USGS
USGS | USFS
USFS
USFS
USFS | | | SUSP DISCHARGE | ZZXX | XXAXX | ш | ш | 7 H | m 4 Cr Z | | | | 3512 TRAY TAM 038 | | | | | | | | | | 3512 TAA9 92U2 | | | O m ∢ | | w w | ш ∢ | | · | | 2026 SED CONCEN | 40282 | XZAXX | OMOAA | <u> </u> | A A A A | m A 55 A | 4044 | | | OW END
YEAR | | 1979 | 1972
1975
1975 | 1975
1978
1978
1978 | 1969
1975
1975 | 1972
1973
1975 | 1975
1976
1975
1975 | | | OW BEGIN | 1953
1965
1977
1977 | 1977
1977
1977
1977 | 1977
1969
1969
1975 | 1975
1967
1967
1967
1967 | 1958
1967
1975
1975 | 1967
1969
1967
1976 | 1975
1967
1975
1975 | | | NISA8
Rotairos30 | 124 | 00
4
4
00
4
00
4 | 014 | | 004 | 0
4
4
4
4
4
4 | | | | DRAINAGE
AREA | 182700.00 | | 5140.00 | | 1864.00 | 2829.00
3360.00
4010.00 | | | | TYPE OF
SITE | 3 3 3 3 3
0 0 0 0 0 | N A A A A A A A A A A A A A A A A A A A | X X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | X X X X X | SEE | N N N N N N N N N N N N N N N N N N N | | | YTNUOD | 071
027
015
025 | 025
025
025
015
015 | 027
027
023
003
003 | 017
017
003
017
003 | 017
017
017
017 | 017
023
011
011
003 | 6003
0000
0000 | | | 3TAT2 | 000
000
000
000 | 000
000
000
000
000 | 004
004
035
035
035 | 035
035
035
035
035 | 035
035
035
035
035 | 035
035
035
004
035 | 035
035
035
035 | | | LONGITUDE | 1140822
1144716
1133725
1131755 | 1131350
1131755
1131755
1132635 | 1140140
1090248
1080432
1075307 | 1081513
1081212
1081443
1081304
1081557 | 1083212
1083857
1085510
1083534
1081505 | 1084030
1090240
1090250
1091835
1085527 | 1085140
1085247
1084444
1084442 | | | LATITUDE | 341744
322917
342745
343705 | 343623
343645
343705
343250
343230 | 341543
324142
332113
332937 | 331103
331046
331327
330228
331348 | 330340
331000
330159
325053 | 324337
324105
324112
325757
332709 | 332332
331450
334056
334056 | | | STATION NAME AND LOCATION | COLORADO RIVER BELOW PARKER DAM, ARIZCALIF
MAIN DRAIN AT ARIZ-SONORA BOUNDARY
BIG SANDY RIVER NEAR WIKIEUP,ARIZ.
BURGO CREEK ABY GOULDER CREEK NR BAGDAD.AZ | COPPER CREEK NR MOUTH NR BAGDAD, AZ.
BOULDER CREEK NR MOUTH NR BAGDAD,AZ.
BURRO CREEK ABV BOULDER CREEK NR BAGDAD,
BURRO CREEK AT US 93 BRIDGE NR BAGDAD, A | BILL WILLIAMS R NR PLANET BILL WILLIAMS R NR PLANET, ARIZ. SUNSET CA AB NM-AZ STATELINE,NM TAYLOR CREEK ABOVE WALL LAKE HARDCASTLE CANYON NE OF BEAVHED | LITTLE CR ABOVE CONF WITH GILA R
E F GILA R AT FIRST RD CROSSING
M F GILA R AT VISITOR CENTER
SAPILLO RIVER AT HIGHWAY BRIDGE
W F GILA R ABOVE CLIFF DWELLINGS | GILA RIVER NEAR GILA, NM MOGDLLON CREEK NEAR CLIFF, NM MCNIGHT CREEK BELOW S.AN N FORKS GILA RIVER BELOW CLIFF NM BEAR CREEK BELOW CHERRY CREEK | GILA RIVER NEAR REDROCK, NM NEW MODEL CA AB NM-AZ ST.LINE,NM GILA RIVER AT N.MEX-ARIZ.ST.LINE NR VIRDEN, GILA RIVER NEAR CLIFTON, ARIZ. SAN FRANCISCO ABOVE ALMA NM | MINERAL CR ABOVE GLENWOOD NM
FRISCO HOT SPRINGS BELOW GLNWOOD
TULAROSA CR ABOVE CONF OF NEGRIT
NEGRITO CR ABOVE CON OF TULAROSA | | | HYDROLOGIC
Unit
Code | 15030104
15030108
15030108
15030201
15030202 | 15030202
15030202
15030202
15030202
15030202 | 15030204
15030204
150360 C
15040001
15040001 | 15040001
15040001
15040001
15040001 | 15040001
15040001
15040002
15040002 | 15040002
15040002
15040002
15040002 | 15040004
15040004
15040004
15040004 | | | MEDIA | | | | | | | | |----------------------------|---|--|--|--|--|---|--| | MOTZ G32 | 00000 | 0000 | | 00000 | 000 | 000 | 0004 | | ORGANIZATION
SGOD | USFS
USFS
USFS
USFS | USFS
USGS
USGS
USGS
USGS | USGS
USGS
AZOO3
AZOO3
AZOO3 | USGS
USGS
USGS
AZOO3
USGS | USGS
USGS
USGS
AZOO1
AZOO1 | USBR
USGS
USGS
USGS
AZOO1 | USGS
USGS
USGS
AZOO3 | | SUSP DISCHARGE | | พพ⊼≨ | ∢ Σ | N N B | 77 | 220 | ΣΣ | | SED MAT TAM GSB | | · | | | ⋖ | | | | ZUSP SED CONCEN | | шш ш | Α Ε | m A A | ∑ ₩ Ø | <u>о ш</u> | ~ ~ ~ ~ | | | ზა და | ω | ω 4
▼ Σ Ø Ø Ø | 3 4
2 B C B Z | 0 0 3 Z | ω
OΣXŒΩ | ΣΣΣΣ . | | OW END
RA3Y | 197
197
197
197 | 197 | 197 | 197 | 196 | 1968 | | | OW BEGIN | 1975
1967
1967
1967 | 1970
1963
1963
1976
1959 | 1963
1974
1967
1967
1971 | 1976
1949
1962
1971
1966 | 1979
1962
1965
1969
1969 | 1977
1967
1976
1965
1969 | 1974
1976
1972
1972 | | NIZAB
Rotqirj230 | | 014
024
004
024 | 004 | 124
024
024 | 004
024
024 | 024 | 124
0024
004 | | 44. | | 8888 | 8.8 | 888 8 | 888 | 8 8 | 888 | | DRA!NAGE
AREA | | 1653.
2766.
2770.
7896. | 24. | 13268.
18011.
1219.
2500. | 4360.
4449.
4471. | 533. | 8581.
1232.
632. | | TYPE OF | 3333
8888
88888 | ************************************** | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | M M M M M M M M M M M M M M M M M M M | 3 3 3 3
0 0 0 0 | | COUNTY | 8000
8000
8000 | 003
011
011
009 | 009
009
007
021 | 007
002
003
021
003 | 021
021
021
019
019 | 023
023
023
019
019 | 021 | | STATE | 035
035
035
035
035 | 035
004
004
004 | 0000
4 4 4 4 4 | 000
4 4 4 4 4 | 00000
444444 | 000
4
4
4
4
4
4
4
4 | 0000
0000
0000
0000 | | LONGITUDE | 1083627
1084726
1085130
1085918 | 1085406
1085247
1091743
1091806
1093038 | 094539
101310
104300
104300 | 104555
105833
101026
104600 | 104327
104455
104611
105650
105645 | 105 103
105 930
105 85 2
105 305 | 121008
101240
100958
104300 | | ä | | | | | | | | | LATITUDE | 333224
333815
335305
334904
334913 | 334857
331448
330258
330133
325206 | 325000
331108
330500
330500 | 330006
330610
313733
325500
320735 | 325103
325635
325838
321328 | 312813
321316
321437 | 331356
334246
334411
341300 | | STATION NAME AND LOCATION | SOUTH FK OF NEGRITO CR
SAN FRANCISCO BELOW RESERVE NM
CENTERFIRE CR ABOVE LUNA NM
SAN FRANCISCO RIVER AT 180 BRIDG
TROUT CREEK, FOR RD 119 CROSSING | SAN FRANCISCO RIVER BELOW LUNA SAN FRANCISCO RIVER NEAR GLENWOOD, NM SAN FRANCISCO RIVER AT CLIFTON, ARIZ. SAN FRANCISCO RIVER NEAR CLIFTON, ARIZ. GILA R AT HEAD OF SAFFORD VALLEY NR SOLOMON | FRYE CREEK AT THATCHER, ARIZ.
GILA RIVER AT CALVA, ARIZ.
DRIPPING SPRINGS WASH AB GILA R
GILA R AB DRIPPING SPRINGS WA
GILA R NR DIAMOND A RANCH | GILA RIVER AT WINKELMAN, ARIZ.
GILA R AT KELVIN ARIZ
SAN PEDRO RIVER AT CHARLESTON, ARIZ.
SAN PEDRO R AB GILA R
SAN PEDRO RIVER NEAR BENSON, ARIZ. | SAN PEDRO R BL ARAVAIPA C NR MAMMOTH AZ
SAN PEDRO RIVER NEAR WINKELMAN, AZ.
SAN PEDRO R AT WINKELMAN, ARIZ.
HIGH SCHOOL WASH FLUME AT TUCSON
RAILROAD WASH FLUME AT TUCSON | SANTA CRUZ NR CONF W LOS ROBLES WA
SANTA CRUZ RIVER NR. NOGALES, ARIZ.
SANTA CRUZ RIVER AT RID RICO, ARIZ.
SANTA CRUZ RIVER AT TUCSON, ARIZ.
ARCADIA WASH FLUME AT TUCSON | SANTA CRUZ RIVER NEAR LAVEEN, ARIZ. BLACK RIVER NEAR FORT APACHE, ARIZ. MILE 5.0 WHITE RIVER NEAR FORT APACHE, ARIZ. MILE 4.5 CANYON CR FISH HATCHERY EFFLUENT | | HYDROLOGIC
Unit
Code | 15040004
15040004
15040004
15040004 | 15040004
15040004
15040004
15040005 | 15040005
15040005
15050100
15050100 | 15050100
15050100
15050202
15050203
15050203 | 15050203
15050203
15050203
15050301 | 15050301
15050301
15050301
15050301
| 15050303
15060101
15060102
15060103 | | MEDIA | | | | | | · | |----------------------------|--|---|---|---|--|---| | 9012 G32 | 44000 | 0000 | 00000 | 0040 | 000 | | | ORGANIZATION | A Z003
A Z003
A Z003
A Z003 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USBLM
USBLM | | | SUSP DISCHARGE | Σ | VV | 0 Z m m | Σ ∢ | ωΣΣ | *************************************** | | BED MAT PART SIZE | | | | Σ | o | | | 3512 TRAS 92U2 | ш | | I | N MZ | ΣΟ | | | 2029 CONCEN | ∑ ∑ S S S W | 44400 | ∢ ∑wI | Z Z Z Z < | ΣΣΣΣ | | | OW END
AA3Y | | | 1979 | 1966
1966
1979 | | | | OW BEGIN | 1972
1972
1957
1956 | 1978
1978
1978
1978 | 1968
1963
1976
1967
1967 | 1965
1965
1967
1977 | 1960
1978
1978
1981 | | | NISA8
AOT4IA3230 | 024
004
014 | 000
024
000
000
000 | 0000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 00
00
00
4 | 014 | | | DRAINAGE
AREA | 4306.00
675.00
6232.00 | 255.00
2530.00
3520.00 | 24.60
142.00
5024.00
36.40
6188.00 | 4.58
4.49
49650.00
1637.00 | 57950.00
1250.00
1023.00
47.20 | | | 30 39YT
3TI2 | ************************************** | N N N N N | N N N N N | N N N N N | 3333 | | | COUNTY | 007
007
007
007 | 025
025
025
005
005 | 025
025
025
007
013 | 013
013
021
021 | 027
019
003
035 | | | STATE | 000
4000
4000 | 0004
0004
0004 | 0004
0004
0004 | 000
000
000
000
000
000
000 | 0004 | | | LONGITUBE | 1104300
1104300
1105515
1111810 | 1123645
1122026
1120355
1114349 | 1114023
1114630
1114700
1114132 | 1112912
1112739
1124617
1121814 | 1143309
1122036
1093504
1100635 | | | LATITUDE | 341300
341300
333710
335848 | 345200
345342
345105
345313
344928 | 344601
344343
342700
340939
334905 | 335738
335658
331336
333624 | 324245
315652
312108
422528 | | | STATION NAME AND LOCATION | CANYON CR FISH HATCHERY INTAKE CANYON C AB STATE FISH HATCHERY SALT RIVER NEAR ROOSEVELT, ARIZ. TONTO CREEK ABV. GUN CR., NR ROOSEVELT, AZ SALT R BL STEWART MOUNTAIN D ARIZ | WILLIAMSON VALLEY W NR PAULDEN, ARIZ.
VERDE RIVER NEAR PAULDEN, ARIZ.
VERDE RIVER NR CLARKDALE, ARIZ.
OAK CREEK AT SEDONA, AZ.
OAK CREEK AT RED ROCK CROSSING NR SEDONA,ARI | RATTLESNAKE CANYON NEAR RIMROCK, ARIZ.
DRY BEAVER CREEK NEAR RIMROCK, ARIZ.
VERDE RIVER NEAR CAMP VERDE, ARIZ.
WET BOTTOM CREEK NR CHILDS, ARIZ.
VERDE R BL BARTLETT D ARIZ | WF SYCAMORE CR AB MCFAR CAN, N SUNFLOWER, AZ EAST FORK SYCAMORE CREEK NEAR SUNFLOWER, ARI GILA R AB DIVERSIONS AT GILLESPIE DAM AZ. GILA R PAINTED ROCK DAM AGUA FRIA RIVER AT EL MIRAGE, ARIZ. | GILA RIVER NEAR MOUTH, NEAR YUMA, ARIZ.
VAMORI WASH NR KOM VO AZ
WHITEWATER DRAW NEAR DOUGLAS, ARIZ.
DRY BASIN CREEK T28N R112W SEC12 | | | HYDROLOGIC
Unit
Code | 15060103
15060103
15060103
15060103 | 15060201
15060202
15060202
15060202 | 15060202
15060202
15060203
15060203 | 15060203
15060203
15070101
15070101 | 15070201
15080101
15080301
15500000 | | | WEDIY | | | | | | | | - | | |----------------------------|---|---|--|--|--|---|--|--|--| | SED STOR | | <u> </u> | 000 | w e+ e+ | 200 | 000 | 0000 | 0000 | | | ONGANIZATION
GODE | | USGS
USFS
CAC.
CAO64
CAO64 | CA064
CA064
CA064
CA064
CA064 | CA064
CA064
CA064
CA064
CA064 | CA064
USGS
USGS
USGS
ID002 | USFS
USFS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
UTOO1 | | | SUSP DISCHARGE | | | | | ZΨ | www | ш оши | XIX | | | 3512 TRAS 92U2 | | Σ | | ···· | ٧ | >>
7 T | | Σ | | | SUS SED CONCEN | | <u>≥</u> | >>>> | >>>> | 2 A Z Z E | >>IIW | MAGAZ | XIX
M 4 | | | YEAR | · * · · · · · · · · · · · · · · · · · · | 0 | 4 4 | 4444 | 4 | 0 | | | | | OW FND | | 197 | 197 | <u> </u> | 197 | 197 | <u> </u> | 1968 | | | OW BEGIN | | 1977
1957
1972
1972
1972 | 1972
1972
1972
1972 | 1972
1972
1972
1972
1972 | 1972
1967
1964
1974
1975 | 1977
1977
1973
1973
1964 | 1964
1973
1964
1963
1964 | 1964
1963
1963
1967 | | | MIZAB
ADT9183230 | | | | | 014
014
024 | 014 | 004
014
004
124
014 | 004
004
014 | | | | | | | | 88 | 7029.00
2060.00
27.40 | 98288 | . 25 | | | DRAINAGE
AREA | | | | | 246. | 29.
60.
27. | 50.
58.
21.
20. | 18.
7. | | | DRA!
AR | | | | | 2 4 | 200 | 6
4 | | | | _ | 9 | | | | | | | | | | 40 39YT
3T18 | | N S S S S S S S S S S S S S S S S S S S | SW | 0
0
0
0
0
0
0
0
0
0 | SSE | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | SEE | | | YTNUOD | | 007
041
017
017 | 017
017
017
017 | 017
017
017
017 | 017
023
007
007
029 | 005
005
003
057
035 | 035
035
035
035 | 035
035
035
035 | | | 3TAT2 | _ ō | 016
049
006
006 | 900 | 900 | 006
056
016
016 | 049
049
049 | 049
049
049
049 | 049
049
049
049 | | | TUDE | Ā | 95439
95520
95523 | 5539
5545
5709
5730 | 95655
195655
195654
195641
95641 | 195740
105812
110312
112035
114300 | 114700
115308
120600
120528 | 14652
14924
14655
15526
14748 | 114845
114819
115235
115500 | | | LONGITUDE | <u></u> | 956 | 955
957
957 | 956
956
956
956 | 95740
05812
10312
12035
14300 | 114700
115308
120600
120528
114750 | 1465
1492
1465
1552
1474 | 148
152
152
153 | | | | Щ | = = = | ===== | | | | | | | | 15 | $lue{}$ | 826
518
539 | 224
01
22
22 | 149
16
03
01 | 28 4 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0 | 07
20
39
35 | 00
8 8 8 7
2 3 3 3 | | | LATITUDE | 7 | 3855
3855
3855
3855 | 385527
385524
385459
385701
385622 | 385616
385613
385616
385603 | 385422
414836
421240
421300
422800 | 414440
414315
413435
411642
403440 | 403707
403922
404120
404339
404235 | 404500 1
404648 1
404733 1
404212 1 | | | 71 | <u> </u> | мммм | <u> </u> | <u> </u> | w 4 4 4 4 | | | TD 4 4 4 4 | | | STATION NAME AND LOCATION | GREAT BAS | FY77 REESTABLISH DWDC 52053
SHERRILL DRIVE UT
HEAVENLY VALLY CREEK AT 8800 FT
HEAVENLY VALLEY CREEK AT 8160 FT C
HEAVENLY VALLEY CREEK AT 8120 FT | HEAVENLY VALLEY CREEK AT 8000 FT C
HEAVENLY VALLEY CREEK AT 7960 FT C
HEAVENLY VALLEY CREEK AT 6440 FT C
HEAVENLY VALLEY FRONT NO 1 CA
HEAVENLY VALLEY FRONT NO 2 CA | HEAVENLY VALLEY FRONT NO 3 CA
HEAVENLY VALLEY FRONT NO 4 CA
HEAVENLY VALLEY FRONT NO 5 CA
HEAVENLY VALLEY FRONT NO 8 CA
COLD CREEK UPSTREAM CA | COLD C AT PIDNEER TRAIL CA
TWIN CREEK AT SAGE WYO
BEAR R AT BORDER WY
BEAR LAKE OUTLET CANAL NEAR PARIS IDAHO
STATE FISH HATCHERY GRACE ID | LOGAN R AB ST DAM NR LOGAN UT
LOGAN R BELOW ST DAM NR LOGAN UT
BEAR R NR CORINNE
WEBER RIVER NR PLAIN CITY UTAH
LITTLE COTTONWOOD CREEK NEAR SALT LAKE CI | BIG COTTONWOOD CR NR SALT LAKE CITY UTAH
BIG COTTONWOOD C AT COT LANE SLC UTAH
MILL CREEK NEAR SALT LAKE CITY, UTAH
JORDAN R @ 2100 SO SALT LAKE CITY UTAH
PARLEYS CK.AT SUICIDE RK.,NR.SALT LAKE CITY | EMIGRATION CREEK NEAR SALT LAKE CITY, UTAH
RED BUTTE CREEK AT FT. DOUGLAS NR. SLC, UTAH
CITY CK AB WASATCH DRIVE NR SALT LAKE CITY U
SB VITRO WASTE D AB CONFL WITH VIT | | |
HYDROLOGIC
Unit
Code | | 16006500
160066 D
160068 I
160068 I | 160068 I
160068 I
160068 I
160068 I | 160068 I
160068 I
160068 I
160068 I | 160068 I
16010101
16010102
16010201
16010202 | 16010203
16010203
16010204
16020102
16020204 | 16020204
16020204
16020204
16020204 | 16020204
16020204
16020204
16020204 | | | AIG3M | | ۵۵ | ۵ ۵ | 000 | 4444 | <u>a</u> | Δ. | |----------------------------|--|--|--|--|--|--|--| | | w w w w w | SSSSS | SSSSS | | | | | | NOITASINADRO
CODE | USFS | USGS
USGS
USFS
USFS | USFS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | CAO64
CAO64
CAO64
CAO64
CAO64 | CA064
CA064
CA064
CA064
CA064 | CA064
CA064
CA064
CA064 | | SUSP DISCHARGE | | шш | m 4 | α ΣZw | | | | | 35.12 TRAS TAM 038 | | | | | | | | | 3512 TRAY 92U2 | Σ | ОШ | O. B. ∢ | A ED X H | | | | | SUSP SED CONCEN | 44002 | OMEEE | ZEOZ4 | αΣΣZW | <u> </u> | <u> </u> | <u> </u> | | ON3 WD
Ragy | 1972 | | 1966 | 1979 | | 1974
1974
1974
1974 | 1974
1974
1974
1974 | | OW BEGIN | 1974
1974
1957
1957 | 1900
1967
1971
1971
1971 | 1971
1971
1974
1962
1976 | 1976
1977
1974
1949
1949 | 1972
1972
1972
1972
1972 | 1972
1972
1972
1972
1972 | 1972
1972
1972
1972 | | BASIN
ROT9183230 | 0004 | 014 | 024 | 024
024
014 | | | | | BRAINAGE
AREA | 14.00 | 6270.00
80.90
4.50
7.50
3.50 | 2.00
12.00
23.00
830.00 | 1150.00
15700.00
16100.00
225.00 | | | | | TYPE OF
SITE | ************************************** | MS AS SW | 38
38
38
38
38 | MS SW SW SW | MS M | SW
01
01
01 | 10
10
10
10 | | COUNTY | 017
041
041 | 027
0027
001
001 | 000
007
007 | 007
013
027
027
013 | 017 | 017
017
017
017 | 017 | | 3TAT2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9 4 4 9
9 9 4 9 9
9 9 9 9 9 | 032
032
032
032
032
032 | 900 | 900 | 900 | | <u></u> | | | | | | | # 0 10 + | | LONGITUDE | 1124000
1121525
1114100
1115835 | 1122335
1130202
1122336
1122404
1122442 | 1122111
1122430
1124603
1161205
1152935 | 1154845
1175945
1181210
1181820
1175001 | 1195439
1195520
1195523
1195539
1195545 | 1195709
1195730
1195707
1195655 | 1195635
1195633
119563
119564 | | LATITUDE | 373700
373635
384700
384700 | 392855
374020
381927
381849
381800 | 381906
381735
381513
403625
411050 | 404105
405205
404130
402800
415800 | 385518
385539
385537
385527
385527 | 385459
385701
385622
385616
385613 | 385616
385613
385608
385603 | | STATION NAME AND LOCATION | MAMMOTH CREEK
E F SEVIER R TROPIC RE
SHEEP C NR SALINA UT
WF SHEEP C NR SALINA UT
MILL CREEK NEAR GLENWOOD, UTAH | SEVIER RIVER NEAR LYNNDYL, UTAH
COAL CREEK NEAR CEDAR CITY, UTAH
MERCHANT C UPPER BEAVER
MERCHANT C LOWER BEAVER
NF THREE C LOWER BEAVER | MF THREE C UPPER BEAVER
MF THREE C LOWER BEAVER
BEAVER RIV AT ADAMSVILLE, UTAH
HUMBOLDT R AT PALISADE, NV
N F HUMBOLDT R AT DEVILS GATE NR HALLECK, NV | S F HUMBOLDT R AB DIXIE C NR ELKO, NV HUMBOLDT R NR ROSE C NV HUMBOLDT R NR IMLAY, NV HUMBOLDT R NR RYE PATCH, NV MC DERMITT C NR MC DERMITT, NV | HEAVENLY VALLEY CREEK AT 8800 FT HEAVENLY VALLEY CREEK AT 8160 FT C HEAVENLY VALLEY CREEK AT 8120 FT HEAVENLY VALLEY CREEK AT 8000 FT C HEAVENLY VALLEY CREEK AT 7960 FT C | HEAVENLY VALLEY CREEK AT 6440 FT C
HEAVENLY VALLEY FRONT NO 1 CA
HEAVENLY VALLEY FRONT NO 2 CA
HEAVENLY VALLEY FRONT NO 3 CA
HEAVENLY VALLEY FRONT NO 4 CA | HEAVENLY VALLEY FRONT NO 5 CA
HEAVENLY VALLEY FRONT NO 6 CA
HEAVENLY VALLEY FRONT NO 7 CA
HEAVENLY VALLEY FRONT NO 8 CA | | HYDROLOGIC
Unit
Code | 16030001
16030001
16030003
16030003
16030003 | 16030005
16030006
16030007
16030007 | 16030007
16030007
16040101
16040101 | 16040103
16040108
16040108
16040108 | 16050101
16050101
16050101
16050101 | 16050101
16050101
16050101
16050101 | 16050101
16050101
16050101
16050101 | | WEDIY | | | 0.0000 | () () () () | ~~~ | () () () | | | | |----------------------------|-------------|--|---|--|--|---|---|--|---| | 90T2 Q3 2 | | 4 4 4 4 4
C C C | 4 លិលលល់
ទ ០ ០ ០ ០ | 20000 | 20000 | 00000 | 20000 | 0000 | | | ONDANIZATION
CODE | | CA064
CA064
CA064
CA064
CA064 | CAO64
NVOO5
NVOO5
NVOO5 | NV005
NV005
NV005
NV005 | NVOO5
NVOO5
NVOO5
NVOO5 | NVOO5
NVOO5
NVOO5
NVOO5 | NVOO5
NVOO5
NVOO5
NVOO5 | NVOO5
NVOO5
NVOO5 | | | SUSP DISCHARGE | | | | | | | | | | | 3512 TRAS TAM G38 | | | | | *************************************** | | | | | | SUSP PART SIZE | | >>>> | | | | | | | | | | | 4 4 4 4
3 3 3 3 3 > | >>>>> | № 4 4 4 | № 4 4 4 | 4 ™ ™ 4 4 | <u> </u> | 444 ₹ × × × × × × × × × × × × × × × × × × | | | OW END
RAJY | | 197
197
197 | 197
197
197 | 197
197
197
197 | 197
197
197
197 | 197
197
197
197 | 197
197
197
197 | 197,
197,
197, | | | MO BEGIN
RABY | | 1972
1972
1972
1972
1974 | 1974
1970
1970
1972 | 1972
1972
1972
1970 | 1972
1972
1972
1972 | 1970
1972
1971
1972
1972 | 1970
1970
1972
1972 | 1972
1972
1972
1970 | | | BASIN
BESCRIPTOR | | | | | | | | | | | DRAINAGE
AREA | | | | | | | | | | | 40 49YT
3T12 | | N N N N N N N N N N N N N N N N N N N | NS NA SWA | N S A S A S A S A S A S A S A S A S A S | AS SW
SW
SW
SW
SW | MS SW
SW
SW
SW
SW | MS SW
SW
SW
SW
SW | MS SW | | | COUNTY | | 017
017
017
017 | 061
0017
061
061 | 061
061
061
017 | 017
017
017
017 | 017
017
005
005
005 | 005
031
031
031 | 031
031
031 | | | STATE | | 900
900
900 | 900
900
900
000
000 | 900 | 900
900
900
900
900 | 006
006
032
032 | 032
032
032
032 | 032
032
032 | *************************************** | | LONGITUDE | | 195713
195740
1200728
1200710 | 1201011
1195840
1200925
1200940
1200942 | 1200930
1200825
1200850
1200700 | 1200650
1200440
1200440
1200054 | 1195923
1195730
1195611
1195600 | 195620
195638
195523
195520 | 195650
195730
195725 | | | LATITUDE | | 385401
385422
390042
390110
390811 | 390812
385556
390755
390620 | 390445
390405
390345
390305 | 385705
385600
385525
384807 | 385522
385505
385758
385815
390355 | 390515
391425
391510
391530 | 391627
391435
391540
391505 | | | STATION NAME AND LOCATION | | COLD CREEK UPSTREAM CA COLD C AT PIONEER TRAIL CA LONELY GULCH BELOW RESERVOIR CA LONELY GULCH AT VICTORIA DR CA WARD CREEK CA | WARD CREEK CA
TROUT C AT S LAKE TAHDE CA
WARD C AT HWY 89 CA
BLACKWODD C AT HWY 89 CA
MADDEN C AT HOMEWOOD CA | HOMEWOOD C AT HOMEWOOD CA
MCKINNEY C AT HWY 89
MCKINNEY C AT CASCADE DR CA
GENERAL C AB HWY 89
MEEKS C AT MEEKS BAY CA | EAGLE C AB HWY 89 TALLAC C AT HWY 89 UPPER TALLAC C AB HWY 89 GRASS LAKE C NR MEYERS CA UPPER TRUCKEE R NR MEYERS CA | UPPER TRUCKEE R AT S LK TAHDE CA
HEAVENLY VALLEY C AT PIDNEER TRAIL
EDGEWOOD C AT HWY 50 NV
BURKE C AT HWY 50 NV
LOGAN HOUSE C AB HWY 50 NV | GLENBROOK C AT GLENBROOK NV INCLINE C AT INCLINE VILLAGE NV INCLINE C AT SKI INCLINE NV INCLINE C AT TYROLEAN VILLAGE NV THIRD C AT LAKESHORE BLVD NV | THIRD C AT HWY 27 NV
WOOD C AT LAKESHORE BLVD NV
WOOD C AT HWY 27 NV
SECTION C AT SILVERTIP DR NV | | | HYDROLOGIC
Unit
Code | | 16050101
16050101
16050101
16050101 |
16050101
16050101
16050101
16050101 | 16050101
16050101
16050101
16050101 | 16050101
16050101
16050101
16050101 | 16050101
16050101
16050101
16050101 | 16050101
16050101
16050101
16050101 | 16050101
16050101
16050101
15050101 | | | MEDIA | | | | | | | | | |-----------------------------|--|--|--|---|--|---|--|--| | NOTZ daz | 3 2 C C D C D C D C D C D C D C D D C D | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | ONDANIZATION
CODE | NVOOG
NVOOG
NVOOG | USFS
USFS
USFS
USFS
USFS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | 2 | 3 000 | 00100 | ▼3 0mm | | 30€ | | | BSIS TRAS SUZ | | U | # V ~ ~ | 7710V N | W ~ ~ ~ <i>A</i> | пαпαα | ααΖα | | | SUSP SEG CONCEN | > > > V | 44440 | 30000 | 220X¤ | ×30mm
m∝∝∝∢ | | 300 | | | | 4
4
0
0 | 004 | 40444 | 00 00 | 4 W | ოოო | 4444 | | | OW END
YEAR | 197
197
197
197 | 197
197
197 | 197
197
197
197 | 19 19 | 197 | 197 | 197
197
197 | | | OW BEGIN | 1972
1972
1972
1970
1970 | 1977
1977
1977
1977
1970 | 1970
1974
1970
1970 | 1970
1970
1973
1971 | 1973
1971
1972
1969
1969 | 1969
1969
1969
1969 | 1971
1972
1970
1973 | | | BASIN
0ESCRIPTOR | | 004 | 00000
44444 | 00000
444444 | 00000
44444 | 000
000
000
000 | 904 | | | DRAINAGE
AREA | | 6.
9 | 54.80
10.80
6.38
8.08
8.08 | 2.06
11.20
2.00
2.00
8.90 | . 48
9.70
1.07
1.09 | 1.69
2.05
2.05
4.30
7.00 | 4.07
36.70
40.40 | | | TYPE OF
STIE | * * * * * * * * * * * * * * * * * * * | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | A S A S A S A S A S A S A S A S A S A S | AS A | N A A A A A A A A A A A A A A A A A A A | A A A A A A A A A A A A A A A A A A A | | | COUNTY | 061
061
061
031 | 017
017
017
017 | 017
017
017
017
061 | 061
061
061 | 061
061
031 | 031
031
031 | 005
017
017
017 | | | 3TAT2 | 006
006
006
032 | 900
900
900
900
900 | 900 | 900 | 006
006
032
032 | 032
032
032
032
032 | 032
006
006
006 | | | LONGITUDE | 1200510
1200550
1200550
1195917
1195909 | 1195907
1195905
1195904
1195904
1200054 | 1195923
1200412
1200638
1200729 | 1201024
1200942
1200937
1201311 | 1201305
1200924
1200550
1195918 | 1195725
1195730
1195650
1195644
1195638 | 1195620
1195817
1195840
1200017 | | | LATITUOE | 391305
391155
391055
391053
385220 | 385228
385229
385229
385230 | 385522
385248
385705
390209 | 390514
390527
390627
390809
390829 | 390828
390756
391155
391500
391510 | 391540
391435
391625
391426 | 390515
385512
385556
390100 | | | . STATION NAME AND LOCATION | WATSON C AT HWY 28 CA
DOLLAR C NR TAHOE CITY CA
BURTON C AT HWY 28 CA
FIRST C AT HWY 28 NV
STREAM FROM OLD MEYERS DUMP | TH END OF OLD MEYERS DUMP BSTATION N. OF OLD MEYERS DUMP VE JUNCTION WITH UN-NAMED CR. OF POWER SUB-STATION GRASS LAKE CREEK NEAR MEYERS CALIF | UPPER TRUCKEE RIVER AT SOUTH LAKE TAHOE CALIGLEN ALPINE CREEK NR MEYERS EAGLE CREEK NEAR CAMP RICHARDSON CALIF MEEKS C AT MEEKS BAY CALIF OUAIL LAKE CREEK AT HOMEWOOD CALIF | MADDEN CREEK NR HOMEWOOD CALIF
MADDEN CREEK AT HOMEWOOD CALIF
BLACKWOOD CREEK NR TAHOE CITY CALIF
WARD CREEK NR TAHOE PINES, CALIF
WARD CREEK RRIBUTARY NEAR TAHOE PINES, CALIF | WARD CREEK LOOP ROAD TRIBUTARY NR TAHOE PINE WARD CREEK AT HY 89 NEAR TAHOE PINES, CALIF DOLLAR CREEK NR TAHOE CITY CALIF FIRST C NR CRYSTAL BAY, NV SECOND C NR CRYSTAL BAY, NV | WOOD C NR CRYSTAL BAY, NV
WOOD C AT MOUTH NR CRYSTAL BAY, NV
THIRD C AT INCLINE VILLAGE, NV
THIRD C NR CRYSTAL BAY, NV
INCLINE C NR CRYSTAL BAY, NV | GLENBRDOK C AT GLENBROOK, NV
TROUT CREEK NR TAHOE VALLEY CALIF
TROUT CREEK AT SOUTH LAKE TAHOE CALIF
89 ED 1.70 | | | HYOROLDGIC
Unit
CDDE | 16050101
16050101
16050101
16050101 | | MEDIA | | | · · · · · · · · · · · · · · · · · · · | | | | | | |----------------------------|--|--|--|--|---|--|---|--| | MOTZ GBZ | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | NDITAZINADRO
3003 | USGS
USGS
USGS
USGS
USGS | CA009
CA009
CA009
CA009 | CA009
CA009
CA009
CA009 | CA009
CA009
CA009
CA009 | CA009
CA009
CA009
CA009 | CA009
CA009
CA009
CA009 | CA009
CA009
CA009 | | | SUSP DISCHARGE | IXZXZ | | | | | | | | | BEIS THAS TAM 038 | | | | | | | | | | BAIR TRAN NEUR | Z×ZZZ | | | | | | | | | SUSP SEO CONCEN | IXZXZ | ZAXAA | AZZXA | XZX Z | 44444 | XX44X | 4424 | | | OM END | 1974
1974
1974
1974 | 1975
1975
1975
1975 | 1975
1975
1975
1975 | 1975
1975
1975
1975 | 1975
1975
1975
1975 | 1975
1975
1975
1975 | 1975
1975
1975
1975 | | | OW BEGIN | 1972
1972
1972
1972 | 1975
1975
1975
1975 | 1975
1975
1975
1975 | 1974
1975
1975
1975 | 1975
1975
1975
1975 | 1974
1974
1975
1975 | 1975
1975
1975
1975 | | | BASIN
DESCRIPTOR | | | | | | | | | | ORAINAGE
AREA | | | | | | | | | | 40 34YT
3TI2 | N X X X X X X X X X X X X X X X X X X X | X X X X X | SSSSS | N N N N N | SESES | N N N N N | N N N N | | | COUNTY | 017
017
017
017 | 061
061
061
061 | 06 1
06 1
06 1 | 061
061
061
061 | 061
061
061
061 | 06 1
06 1
06 1
06 1 | 061
061
051 | | | 3TAT2 | 900
900
900
900 | 900 | 900 | 900 | 900 | 900 | 900 | | | LONGITUDE | 1200016
1200012
1200014
1200013 | 1200658
1200637
1200641
1200641 | 1200638
1200712
1200717
1200645
1200644 | 1200815
1200715
1200650
1200657 | 1200700
1200704
1200704
1200700 | 1200701
1200706
1200707
1200708 | 1200703
1200706
1200726
1200724 | | | LATITUDE | 390104
390209
390221
390244
390350 | 391546
391533
391550
391531
391529 | 391554
391806
391805
391714
391643 | 391706
391804
391740
391711 | 391653
391654
391651
391651
391651 | 391646
391633
391635
391633 | 391624
391524
391549
391559 | | | STATION NAME AND LOCATION | 89 ED 1.94
89 ED 2.99
89 ED 2.21
89 ED 2.44
28 PL 3.50 | GAUGE 2
PEAST FORK BELOW SAWMILL PIPE
SAWMILL VALVE
CULVERT UNDER SAWMILL FLAT ROAD
BELOW DAM SPILLWAY | DRAINAGE FROM DAM ROAD MIDDLE FORK MARTIS ABOVE MARTIS MARTIS CREEK ABOVE WEST MARTIS SMALL CREEK AT BASOUE DRIVE SMALL CREEK AT NORTHSTAR DRIVE | GAUGE 4 WEST MARTIS ABOVE MARTIS GAUGE 3 WEST MARTIS AT BASQUE DRIVE W. MARTIS BELOW NORTHSTAR DRIVE | ROCK LINED DRAINAGE DITCH 1 ROCK LINED DRAINAGE DITCH 2 ROCK LINED DRAINAGE DITCH 3 ABOVE ROCK LINED DRAINAGE DITCH DRAINAGE FROM UNIT 18 | TRAPEZOIDAL WEIR VILLAGE CULVERT PARKING LOT DROP INLET 1 PARKING LOT DROP INLET 3 WEST FORK ABOVE VILLAGE CULVERT | DRAINAGE FROM T1 LIFT WEST FORK ABOVE T1 DRAINAGE GAUGE 1 NEW DRAINAGE NEAR 313 SPRINGS | | | HYDROLOGIC
Unit
Code | 16050101
16050101
16050101
16050101 | 16050102
16050102
16050102
16050102
16050102 | 16050102
16050102
16050102
16050102 | 16050102
16050102
16050102
16050102 | 16050102
16050102
16050102
16050102
16050102 | 16050102
16050102
16050102
16050102 | 16050102
16050102
16050102
16050102 | | | ₩EDI¥ | | ~~ | 00000 | | | 0 0 | ۵ | ٥٥٥ | | |----------------------------|---|----------------------
---|--|--|---|---|---|--| | NOTZ GBZ |
<u> </u> | 00 | 00000 | 0000 | | | | Σ | | | ORGANIZATION
CODE | CAOOS
CAOOS
USFS | USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
CAO1
USFS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USBL | | | SUSP DISCHARGE | | S | αΣшα | ସ ଏହ | Z 4 | ы | ш | mmm | | | BED MAT PART SIZE | > | | | | > | | > | | | | 3512 TAA9 92U2 | | | 4 4 | <u> </u> | <u> </u> | 80 m 80 | <u> </u> | <u> </u> | | | SUSP SED CONCEN | ນ ເນ
▼ ▼ ≻ | <u>a</u> v | | E A A A E | Z > 4 Z | R M Z A Z | O>WEO | <u> пппо</u> | | | OW END
YEAR |
1975 | | 1975 | 197 | 1977 | 197 | | | | | OW BEGIN | 1975
1975
1977 | 1972
1973 | 1972
1968
1951
1967
1969 | 1977
1978
1973
1964
1966 | 1977
1974
1977
1952
1952 | 1960
1970
1977
1979 | 1977
1977
1960
1977 | 1965
1965
1960
1975 | | | BASIN
Descriptor | | 004 | 014 | 124
124
124 | 024 | 124 | 014 | 014
004
004 | | | DRAINAGE
AREA | | 25.80
40.00 | 40.00
10.80
932.00
2.34
1431.00 | 1676.00
1728.00
1827.00 | 356.00 | 1302.00 | 2600.00 | 20.00
11.10
37.30 | | | 10 19YT
3TI2 | AS AS | N N
N N | A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S | N M M M M M M M M M M M M M M M M M M M | MS M N N N N N N N N N N N N N N N N N N | SEE | SEREE | X X X X | | | YTNUO3 | 061
061
057 | 061 | 057
057
057
031 | 001
029
061
031 | 019
003
005
005 | 003
023
001
001 | 019
051
021
021 | 023
033
033
033 | | | 3TAT2 | 900 | | 006
006
032
032 | 032
032
032
032 | 032
006
032
032 | 006
032
032
032 | 032
032
032
032 | 032
032
032 | | | LONGITUDE | 1200747
1200748
1200159 | | 1200700
1201407
1200159
1195155 | 1191835
1192625
1200711
1191609
1192010 | 1192255
1194920
1194625
1194210 | 1195000
1191840
1194225
1190415 | 1190625
1193030
1190550
1184814 | 1171440
1144115
1181210
1154345 | | | LATITUDE | 391529
391530
392541 | 9 9 | 392554
392554
392541
393235
393105 | 393625
393505
391810
393819
394640 | 394530
384630
384845
385050 | 384610
391730
391055
393215 | 382630
383740
390910
385200 | 385315
391205
375000
390900 | | | STATION NAME AND LOCATION | MAIN DRAINAGE AT HALFWAY HOUSE
WEST OR C DRAINAGE AT HALFWAY P
TRUCKEE.R AT FARAD | | MARTIS CREEK NEAR TRUCKEE CA
2 SAGEHEN CREEK NR TRUCKEE CALIF
2 TRUCKEE R AT FARAD. CA
2 PEAVINE C NR RENO, NV
2 TRUCKEE R AT VISTA, NV | TRUCKEE CA AT WADSWORTH NV
TRUCKEE R BL DERBY DAM NR WADSWORTH, NV
MARTIS CR AT HWY 267,CA
TRUCKEE R AT WADSWORTH, NV
TRUCKEE R NR NIXON, NV | W WALKER R NR WELLINGTON NV
WF CARSON R RTE 89 BRIDGE
WF CARSON R NR HWY 88 IN CA
E F CARSON R NR GARDNERVILLE, NV
FY77 REESTABLISH OWDC 51089 | 1 W F CARSON R AT WOODFORDS, CA
CARSON R NR FORT CHURCHILL, NV
CARSON R NR NEW EMPIRE NV
3 TRUCKEE CA NR HAZEN, NV
3 TRUCKEE CA NR HAZEN NV | 1 E WALKER R AB DIVERSION TO TOPAZ L 2 W WALKER R AB DIVERSION TO TOPAZ L 3 WALKER R NR WABUSKA, NV 3 WALKER R BL SCHURZ NV 4 COTTONWOOD C NEVADA | S TWIN R NR ROUND MOUNTAIN, NV STEPTOE C NR ELY, NV CHIATOVICH C NR DYER, NV WHITE SAGE | | | HYDROLOGIC
Unit
Code | 16050102
16050102
16050102 | 16050102
16050102 | 16050102
16050102
16050102
16050102 | 16050102
16050102
16050102
16050103
16050103 | 16050103
16050201
16050201
16050201 | 16050201
16050202
16050202
16050203
16050203 | 16050301
16050302
16050303
16050303 | 16060004
16060008
16060010 | | | AIG3M | | | | | | | | | |----------------------------|--------------|---|---|---|---|---|--|---| | NOTE GRE | | 00000 | 00000 | N P | <u> </u> | 00000 | 00000 | 0000 | | ONGANIZATION
GODE | | USGS
USGS
USGS
OROO | OROO1
OROO1
USGS
USGS
USGS | USGS
USGS
USFS
USSCS | USGS
USGS
USSCS
USSCS
USSCS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USFS
USFS | USFS
USFS
USFS
USFS | | SUSP DISCHARGE | | шшш | | | |
0 00 00 M ≥ | 7 0 | | | SKIR TAN TAM GSB | | | ΣΣΣ | ΣΣ Σ | ΣΣ | | | | | 2026 PART SIZE | | <u> </u> | <u> </u> | ZZMZZ | ZZZZ | <u> </u> | <u> А ш</u> | | | | | | 33222 | ₹₹₩₽ ₹ | Z Z O O X | Z ₩ 9 12 | 5 0 × × |
× Z ∢ × | | OW END
RABY | | 196 | 196 | 196 | 197. | 197 | 197 | 197
197
197
197 | | OW BEGIN | | 1975
1975
1975
1962 | 1964
1963
1977
1977 | 1977
1977
1967
1977 | 1977
1977
1977
1977 | 1966
1966
1966
1970
1967 | 1966
1973
1965
1973
1970 | 1970
1970
1970
1970 | | NIZAB
DESCRIPTOR | | | | | | 004
000
004
004 | 004
004
004 | | | DRAINAGE
AREA | NO
O | | | | | 8420.00
8985.00
838.00
23.80
768.00 | 216.00
26.60
13400.00 | | | TYPE OF | _5 | SEE | SEEEE | N K K K K K K K K K K K K K K K K K K K | N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | 3333
0000 | | COUNTY | | 015
055
005
041 | 041
005
041
047 | 027
031
055
057
045 | 023
023
005
077
053 | 053
053
053
053
053 | 053
021
021
081
039 | 039
039 | | 3TAT2 | | 004
044
044
044
044 | 041
041
041
053 | 053
053
018
016
041 | 056
056
016
016
030 | 030000000000000000000000000000000000000 | 030
016
030
030 | 000000000000000000000000000000000000000 | | LONGITUDE | /EST | 1235200 | 1235200 | | 1155000 | 1151337
1151911
1151850
1155208 | 1151702
1162454
1162459
1133000 | 1133110
1134650
1132250
1133850 | | LATITUDE | _¥
ï | 443200 | 443200 | | 482915 | 485228
482403
482120
481226
481300 | 481401
484740
485443
463506
461130 | 461340
462820
460750
463440 | | STATION NAME AND LOCATION | PACIFIC NORT | ROGUE RIVER NEAR AGNESS,OREG.
JOHN DAY R AT MCDONALD FERRY,OREG.
TUALATIN RIVER AT WEST LINN,OREG.
DEER C II | DEER C IV
DEER C V
FY76 CHANGE OPERATION OWDC54193 TO
ALSEA R NR TIDEWATER OR
SIMILKAMEEN R - INT BDY | FY77 CHANGE OPERATION OWDC51913 TO FY77 CHANGE OPERATION OWDC51915 TO HAYDEN CREEK SF PALOUSE R AT MOSCOW ID OWYHEE R BL OWYHEE DAM | FY77 REESTABLISH OWDC 66891 FY77 CHANGE OPERATION OWDC51071 TO PORTNEUF R BL MARSH C ID ROCK C AT ROCKLAND ID LYNX CREEK KN4002 < | KOOTENAI RIVER NEAR REXFORD, MT.
KOOTENAI RIVER BL LIBBY DAM, NEAR LIBBY, MT.
FISHER RIVER NEAR LIBBY, MT.
ROSS CREEK NEAR TROY MT
FISHER RIVER ABOVE WOLF CREEK, NEAR LIBBY, M | WOLF CREEK NEAR LIBBY, MT.
BALL CREEK NEAR BONNERS FERRY, IDAHO
KOOTENAI RIVER NR COPELAND, ID
AMBROSE CREEK
MIDDLE FK ROCK CR NR POTATO L&S | ROCK CR BL WEST FORK ROCK CREEK
ALDER CR AT MOUTH
EAST FK ROCK CR BL E FK RESERVR
GRIZZLY CRK NR MOUTH | | HYDROLOGIC
Unit
Code | | 170073 U
170074 E
170074 T
170074AD | 170074AD
170074AD
17007400
17007400 | 17007500
17007500
170076 W
17007600 | 17007900
17007900
17007900
17007900 | 17010101
17010101
17010101
17010101 | 17010102
17010104
17010104
17010201 | 17010201
17010202
17010202
17010202 | | V1031 | | | | | | | | | | |----------------------------|------------------------|--|--|--|--|--|--|--|---------------| | 8012 G32
A1G3M | 0 | 0000 | 0000 | 0 0 | ں مو | 00000 | 00000 | 0000 | · | | MOITASINADRO
BOOD | S. | 12 T S | USFS
USFS
USFS
USFS | USES
USSCS
USSCS
USSCS
USSCS | USGS
USGS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS | | | SUSP DISCHARGE | | | | | шO | | | | | | SEC MAT PAR SIZE | | | | | | | | | | | SUSP SED CONCEN | | ×××2 > | < × α × α | Zmmmz | m o ≥ ≥ ≻ | >>>> | >>>> | >>> | | | | n n | ນ ວາວ ວາ | വവവവ | ທ ທ | ന ന | | | | · | | OW END
RABY | 6 | 197
197
197 | 197
197
197 | 197 | 197 | | | | | | DW BEGIN | 1 0 | 1970
1970
1970 | 1970
1970
1970
1970 | 1970
1972
1972
1972
1967 | 1969
1965
1968
1968 | 1973
1973
1973
1973 | 1973
1973
1973
1973 | 1973
1973
1977
1977 | | | NISA8
AOT41RJ230 | | | | 900 | | | | | | | DRAINAGE
AREA | | | | 15.10 | 96.90
427.00 | | | | | | 3112
3112 | A S | | ************************************** | N N N N N N N N N N N N N N N N N N N | X X X X X X X X X X X X X X X X X X X | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | X X X X X X X X X X X X X X X X X X X | N N N N | | | YT N UD3 | 680 | ოფოო ი | 680
680
680 | 039
039
039
049 | 049
061
063
081 | 081
081
081
081 | 081
081
081 | 081
081
081 | | | STATE | 030 | 0000 | 030000000000000000000000000000000000000 | 030
030
030
030 | 030
030
030
030 | 030 | 030 | 030 | | | LONGITUDE | ₽ ₽ | 0 44 0 0 | 1134210
1133320
1132940
1133220 | 1134130
1131900
1132000
1131900
1122414 | 1123040
1142830
1153500
1135300
1141915 | 1141936
1141746
1140905
1140704
1141651 | 1141611
1142353
1141609
1141536 | 1141154
1141000
1134315
1134320 | | | LATITUDE | 6 | 460550
464220
463340
462230 | 462000 | 463300
463300
463400
463400
470237 | 465921
490004
472000
465800
453340 | 453535
453648
453946
454149
454415 | 454743
454500
454756
454955 | 455156
455436
455555
455550 | | | STATION NAME AND LOCATION | MEADOW CR BL DRY GULCH | | WELCOME CRK AT MOUTH WEST FK ROCK CR AT WEST FK GS WILLOW CRK NR SLIDEROCK MIN | WYMAN CR AT MOUTH S F FLUME LOWER WILLOW C NR HALL N F FLUME LOWER WILLOW C NR HALL OUTFLOW FLUME L LOWER WILLOW C BLACKFOOT RIVER NEAR LINCOLN, MT. | BLACKFOOT RIVER BL ALICE CREEK, NR LINCOLN, FLATHEAD BRITISH COLUMBIA BIG CREEK RATTLESNAKE CREEK WEST FORK BITTERROOT | DEER CREEK
HUGHES CREEK
OVERWHICH CREEK
SLATE CREEK
WEST FORK BITTERROOT | WEST FORK BITTERROOT NEZPERCE FORK NEZPERCE FORK BOULDER CREEK | PIQUETT CREEK
WEST FORK BITTERROOT RIVER
MOOSE CREEK
MARTIN CREEK | | | HYDROLOGIC
Unit
Code | 17010202 | 17010202
17010202
17010202
17010202 | 17010202
17010202
17010202
17010202 | 17010202
17010202
17010202
17010203 | 17010203
17010203
17010204
17010205 | 17010205
17010205
17010205
17010205 | 17010205
17010205
17010205
17010205 | 17010205
17010205
17010205
17010205 | | | | | | | | | | | | |----------------------------
---|--|---|--|---|--|---|--| | 8072 G32
A1G3M | 000 | 000 0000 0 | 00000 | 00000 | 00000 | 00000 | 0000 | | | NOITAS MADRO
3000 | 1. S. | USFS
USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USGS
USGS
USFS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USFS | | | SUSP DISCHARCE | | | | | N 4 | 4 4 | 4 4 | | | BED MAT FART SIZE | | | ······ | | | | | | | SUSP SED CONCEN | | · | >>>> | >>>> ш | m A | 04040 | 4044 | | | | | | | | 8 8
0 0 X Q 4 | 04040 | 4044 | | | OW END
AA3Y | | | · | 1970 | 1968 | | 197 | | | OW BEGIN | 766 | 1973
1973
1973
1973
1973
1973 | 1973
1973
1973
1973 | 1973
1973
1973
1973 | 1948
1964
1974
1975 | 1975
1975
1975
1975 | 1975
1975
1975
1974 | | | MIZAB
Rotqirəzəd | | | | 904 | 024
124
004 | • | | | | ORAINAGE
AREA | | | | 1128.00 | 4464.00
4500.00
104.00 | 321.00
129.00
35.70 | 642.00 | | | 17PF OF
311E | 3.3. | A A A A A A A A A A A A A A A A A A A | X X X X X X X X X X X X X X X X X X X | M S M S M S M S M S M S M S M S M S M S | A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S S A S | MS AS | A A A A | | | YT N UO3 | 081 | 081
081
081
081
081 | 081
081
081 | 081
081
081
029 | 029
029
017
029
029 | 680
680
680
680 | 089
089
089
017 | | | 3TAT2 | 030 | 030 030 | | 030 | 030
030
030
030 | 030 | 030
030
030
046 | | | LONGITUDE | | 1140346
1140015
1140147
1141145
1140010
1140325 | 23
14
15
45 | 1135400
1135425
1140930
1135320 | 1141102
1141523
1161300
1145827 | 1150142
1150142
1150139
1150139 | 1151022
1151343
1151343
1163800 | | | LATITUDE | າ ເກີນ ເກີ | 455300
455744
455947
455713
460550
460631
460754 | 461000
461014
460944
461606
461655 | 462340
462420
463215
463910
482943 | 482143
481238
480800
475627
475627 | 474405
474405
474346
474346
473900 | 473900
473531
473531
480600 | | | STATION NAME AND LOCATION | | RYE CREEK NORTH FORK RYE CREEK CHAFFIN CREEK SLEEPING CHILD C SLEEPING CHILD C LITTLE SLEEPING CHILD CREEK | SOUTH FORK SKALKAHO
DALY CREEK
SKAIKAHO CREEK
BLODGETT CREEK
WILLOW CREEK | BURNT FORK CREEK
GOLD CREEK
KOOTENAI CREEK
EIGHTMILE CREEK
M F FLATHEAD RIVER NEAR WEST GLACIER, MT. | FLATHEAD RIVER AT COLUMBIA FALLS, MT.
FLATHEAD RIVER NEAR KALISPELL, MT
THOMPSON RIVER NEAR MARION, MT.
THOMPSON RIVER NEAR MARION, MT. | THOMPSON R AB L THOMPSON R NR THOMPSON FALLS THOMPSON R AB L THOMPSON R NR THOMPSON FALLS. M LITTLE THOMPSON RIVER NEAR THOMPSON FALLS. M LITTLE THOMPSON RIVER NEAR THOMPSON FALLS. WEST FORK THOMPSON FALLS. | WEST FORK THOMPSON RIVER NR THOMPSON FALLS, THOMPSON RIVER NEAR THOMPSON FALLS, MT. THOMPSON FALLS, MT. | | | HYDROLOGIC
Unit
Code | 17010205
17010205 | 17010205
17010205
17010205
17010205
17010205
17010205 | 17010205
17010205
17010205
17010205 | 17010205
17010205
17010205
17010205 | 17010208
17010208
17010213
17010213 |
17010213
17010213
17010213
17010213 | 17010213
17010213
17010213 | | | SEO STOR | 0000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | |----------------------------|---|--|---|---|---|---|---|--| | ONGANIZATION
3000 | USFS
USFS
USGS | USGS
USGS
IDOO4
USFS | USFS
USFS
USFS
USFS | uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | шш | | ш | ш∑ш∂к | 00000 | 0000 | | | | 3512 TAA9 TAM 038 | | | | | | | Σ | | | SUSP SED CONCEN | α 4 m m m | | X Z Z Z W | m ≥ m Q α
m ≥ m | 00000 | 00000 | O E O E | | | OW END
RABY | 1978 | 1973 | | 1973 | 1973
1973
1973
1973
1973 | 1973
1973
1973
1973
1971 | 1971 | | | OW BEGIN | 1974
1974
1973 | 972
967
969
970 | 1970
1970
1970
1970 | 1966
1958
1951
1972 | 1972
1972
1972
1972
1972 | 1972
1972
1972
1972
1969 | 1969
1969
1969 | | | MOTGIRDS30 | 004 | | 004 | 004
123
124 | 024 | 024 | 024
124
024 | | | DRAINAGE
Area | 124.00 | , | 275.00 | 22.00
6020.00
60200.00 | 160.00
80.20 | 2220.00 | 3800.00
48.20
36.00 | | | TYPE OF
STI2 | M S S S S S S S S S S S S S S S S S S S | N N N N N | AS A | AS S AS S | 3 | AS S AS | NS N | | | YTNUOD | 017
017
017 | | 079
079
079
079
009 | 055
063
065
019
019 | 910
910
910
910 | 019
019
019 | 019
019
065
065 | | | 3TAT2 | 016
016
016 |) | 016
016
016
016 | 016
053
053
053
053 | 053
053
053
053
053 | 053
053
053
053
053 | 053
053
053
053 | | | LONGITUDE | 1161600 | . անաանութ | 1152400
1161100
1155500
1152100 | 1163910
1175105
1174632
1181331 | 1181239
1181120
1181446
1181611
1181929 | 1182606
1182438
1182222
1182206 | 1181255
1174504
1174752 | | | LATITUDE | 482200
482200
482512
48131 | 1 6 6 4 6 4 | 470800
471700
471500
470300 | 474922
475018
485521
482604 | 481841
481732
481027
480859
480434 | 480250
480104
475823
475618
485853 | 485904
480328
480706 | | | STATION NAME AND LOCATION | PACK RIVER NEAR COLBURN, IDAHO
PRIEST RIVER NEAR PRIEST RIVER, IDAHO | S FK CDEUR D'ALENE RIVER AT KELLOG3 ID
S FK CDEUR DALENE R AT SMELTERVILLE, IDAHO
ST. JOE R AT ST MARIES IDAHO
SHERLOCK CREEK AT MOUTH
QUARTZ CREEK AT FR 218 BRIDGE | SIMMONS CREEK AT FR 218 BRIDGE ST JOE RIVER AT CALDER, IDAHO ST JOE RIVER AT HOYT FLAT ST JOE RIVER AT RED IVES ST. MARIES RIVER NEAR SANTA IDAHO | HAYDEN CK'BELOW N FK, NR HAYDEN LAKE, IDAHO
SPOKANE RIVER AT LONG LAKE, WASH
COLUMBIA RIVER AT NORTHPORT, WASH.
BARNABY CREEK NR. RICE
LITTLE JIM CREEK NR. DAISY | HALL CREEK AT INCHELIUM, WASH.
STRANGER CREEK AT INCHELIUM
NEZ PERCE CREEK NR. KEWA
FALLS CREEK NR. KEWA | NINEMILE CREEK NR. FRUITLAND
LITTLE NINEMILE CREEK NR. FRUITLAND
SIXMILE CREEK NR. MILES
THREEMILE CREEK NR. MILES
KETTLE RIVER NEAR FERRY, WASH. | KETTLE RIVER NEAR LAURIER, WASH.
KETTLE RIVER NR BARSTOW, WASH.
SHEEP CREEK AT SPRINGDALE, WASH.
DEER CREEK NEAR VALLEY, WASH. | | | HYDROLOGIC
Unit
Code | 17010214
17010214
17010214 | 17010302
17010302
17010304
17010304 | 17010304
17010304
17010304
17010304 | 17010305
17010307
17020001
17020001 | 17020001
17020001
17020001
17020001 | 1702001
1702001
1702001
1702001 | 17020002
17020003
17020003 | | | WEDIY | | | | | | | | | |----------------------------|---|--|---|---|---|---|---|--| | 8012 032 | α | 00000 | 00000 | 00000 | 00000 | 00000 | ٥٥٥٥ | | | MOITASINADRO
3003 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 0 | ZGZGW | Z0000 | 040110 | 0000Z | 00240 | 0000 | | | 3512 TRAS TAM 038 | | | | | | | | | | BSIZ TRAS SZUZ | | | | | | | | | | SINCE SED CONCEN | 300± ₹ 0₹ | | 20000 | 0 4 0 H 0 | 0000Z | 00240 | 0000 | | | OW END
PEAR | 1968
197-
197-
197-
197- | 197
197
197
197 | 1973
1973
1973
1973 | 1973
1973
1973 | 1973
1973
1973
1973 | 1973
1973
1973
1973 | 1973
1973
1973
1973 | | | OW BEGIN | 1968
1969
1969
1969 | 1972
1972
1968
1968 | 1972
1972
1972
1972
1972 | 1972
1967
1972
1960
1972 | 1972
1972
1972
1972
1972 | 1972
1972
1972
1972 | 1972
1972
1972
1972 | | | BASIN
DESCRIPTOR | 024
004
024
024 | 904 | | 024
004
004 | | 124 | 024 | | | DRAINAGE
AREA | 94.10
132.00
37.00
83.00
265.00 | 308.00 | | 890.00 | | | 122.00
123.00 | | | TYPE OF | * * * * * * * * * * * * * * * * * * * | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | MS SW
SW
SW
SW | A A A A A A A A A A A A A A A A A A A | AS SW
SW
SW
SW
SW | A A A A | | | COUNTY | 065
065
065
065
019 | 019
047
019
019
019 | 019
019
019 | 00000 | 010
010
010 | 047
047
047
047 | 047
047
047 | | | 3TAT2 | 0 53
0 53
0 53
0 53 | 053
053
053
053
053 | 053
053
053
053 | 053
053
053
053
053 | 053
053
053
053 | 053
053
053
053 | 053
053
053 | | | LONGITUDE | 1174250
1174453
1175424
1175156 | 1184341
1190149
1184756
1184457 | 1184412
1184414
1184053
1184119 | 1184113
1184151
1184209
1184125 | 1183955
1184022
1183919
1183924
1184012 | 1184149
1185655
1190004
1185905 | 1185852
1185846
1185839
1190132 | | | LATITUDE | 481700
482758
482805
483844
483837 | 482838
482826
482718
482733
482619 | 482455
481839
481540
481325
481019 | 480812
480628
480620
480504
480454 | 480416
480355
480301
480147
480033 | 480026
480042
481328
481234
481047 | 481035
480955
480723
480738 | | | STATION NAME AND LOCATION | CHEWELAH CREEK AT CHEWELAH, WASH. LITTLE PEND OREILLE RIVER NEAR COLVILLE, WAS HALLER C NR ARDEN WASH MILL CREEK NEAR COLVILLE, WASH. SANPOIL R AB THIRTEENMILE CR NR REPUBLIC WA | THIRTEENMILE CREEK NR. REPUBLIC
LDST CREEK NR. DISAUTEL
GDLD CREEK NR. REPUBLIC
W F SANPOIL RIVER NR REPUBLIC, WASH
SEVENTEENMILE CREEK NR. REPUBLIC | NINETEENMILE CREEK NR. REPUBLIC
NORTH NANAMKIN CREEK NR. KELLER
THIRTYMILE CREEK NR. KELLER
BRIDGE CREEK AT MOUTH NR. KELLER
CACHE CREEK NR. KELLER | IRON CREEK NR. KELLER
SANPOIL R NR KELLER, WASH
BRUSH CREEK NR. KELLER
SANPOIL R ABV JACK CR AT KELLER, WASH
JACK CREEK AT KELLER | COPPER CREEK NR. KELLER
MEADOW CREEK NR. KELLER
SILVER CREEK NR. KELLER
JOHN TOM CREEK NR. KELLER
DICK CREEK NR. KELLER | MANILA CREEK NR. KELLER
PETER DAN CREEK AT ELMER CITY
MILL CREEK NR. NESPELEM
MILL CREEK NR. NESPELEM
NESPELEM CANAL NR. NESPELEM | NESPELEM RIVER AT NESPELEM, WASH. NESPELEM R BLW MILLPOND AT NESPELEM, WASH LITTLE NESPELEM RIVER NR. NESPELEM MESPELEW GIVED AT MOUTH NR. NESPELEM | | | HYDROLOGIC
Unit
Code | 17020003
17020003
17020003
17020003 | 17020004
17020004
17020004
17020004 | 17020004
17020004
17020004
17020004 | 17020004
17020004
17020004
17020004 | 17020004
17020004
17020004
17020004 | 17020004
17020005
17020005
17020005 | 17020005
17020005
17020005 | | | MEDIA | ۵۷۷ | υ <u>0</u> 0 | 90000 | ں م | ٥٥٥٥ | 00 | | | |----------------------------|--
--|--|---|---|---|--|--| | NOT2 G32 | | | | | | | | | | ORGANIZATION
SOOD | USGS | USGS
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USBR
USBR
USBR
USBR | USBR
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USBR | | | SUSP DISCHARGE | Z | 20 | 0220 | ш | | | | | | IS12 TAA9 TAM 038 | | Σ | | | | | | | | BSI2 TRAM MZUZ | | Σ | | | | | | | | SOUS SED CONCEN | 200 | | 3000E | EZWEZ | <u>≥ ∞ ∞ ∞ ∞</u> | M E E E E | <u> </u> | | | OW END
RABY | 97 | 1975
1975
1971
1971
1973 | 1973
1973
1973
1973 | 1971
1970
1971
1975 | 1971 | 1972
1975
1971
1971 | 1971
1973
1970 | | | OW BEGIN | 1972
1976 | 1958
1958
1970
1969
1972
1972 | 1972
1972
1972
1972
1966 | 1969
1960
1972
1969
1967 | 1969
1966
1967
1974 | 1975
1967
1969
1969 | 1969
1973
1970
1964 | | | BASIN
BOT91RD230 | | 123
123
124
123
024 | 123 | 004
004
004
024 | 000 | 124
004
124
004 | 024
004
024 | | | | | 28 88 8 | 8 | 88288 | 8 | 8888 | 888 | | | DRAINAGE
AREA | ; | 3195.
3195.
96.
7260. | 8080. | 130.
3550.
22.
62. | 344 | 203.
150.
591. | 1000.
39. | | | TYPE OF | A S | | N N N N N | N N N N N | S S S S S S S S S S S S S S S S S S S | SSSSS | 3 2 3 3
3 2 5 5
3 2 5 5 | | | YTNUOD | 047
047 | 047
047
047
047
047 | 047
047
047
047
047 | 047
047
047
047 | 007
025
025
025
025 | 025
007
007
007
007 | 007
007
007
025 | | | 31AT2 | 053
053 | 05
05
05
05
05 | 053
053
053
053
053 | 053
053
053
053
053 | 053
053
053
053
053 | 053
053
053
053
053 | 053
053
053
053 | | | LONGITUDE | 1190634 | 1192509
1192509
1192505
1192738
1192742
1192638 | 1191945
1192602
1192546
1193007
1194211 | 1194132
1193702
1200850
1200112
1195902 | 1204120
1195524
1195633
1195302
1195345 | 1194937
1202450
1205209
1203942
1204308 | 1203646
1203020
1202524
1192707 | | | LATITUDE | 480848
483800
484745 | 485551
485551
485555
483926
483757
482552 | 481452
481940
481922
482412
481650 | 485001
485905
484928
482544
480439 | 481930
464855
465548
471254 | 471307
474830
475227
474538
473228 | 473500
472548
472958
471540 | | | STATION NAME AND LOCATION | REEK NR. NESPELEM
R USGS STA NR TONAS
R CNTY RD BR ELLIS | TONASKEI CKEEK AI OROVILLE, WASH. OKANDGAN R AT OROVILLE BONAPARTE CREEK NEAR WAUCONDA, WASH. OKANDGAN RIVER NEAR TONASKET, WASH. WANNACOTT CREEK NR. OMAK OMAK CREEK NEAR OMAK, WASH. | KARTAR CREEK NR. OMAK
NO NAME CREEK NR. OMAK
NO NAME CREEK AT MOUTH NR. OMAK
OMAK CREEK AT OMAK | TOATS COULEE CREEK NEAR LOOMIS, WASH. SIMILKAMEEN RIVER NR NIGHTHAWK WASH ANDREWS CREEK NEAR MAZAMA, WASH. BEAVER CREEK BELOW SOUTH FORK, NEAR TWISP, W | STEHEKIN RIVER AT STEHEKIN, WASH. LOWER CRAB C AT SEC 3J15N23E RB4C AT SEC 28 17N 23E OD WASTEWAY AT WEST CANAL W35.9 B WASTEWAY AT END | D72-141 DRAIN AT WHITE TRAILS ROAD
ENTIAT RIVER NEAR ARDENVOIR, WA.
WHITE RIVER NEAR PLAIN, WASH.
WENATCHEE RIVER AT PLAIN, WASH
ICICLE CREEK ABOVE SNOW CREEK, NEAR LEAVENWO | WENATCHEE RIVER AT PESHASTIN, WASH.
MISSION CREEK ABOVE SAND CREEK NEAR CASHMERE
WENATCHEE RIVER AT MONITOR, WASH.
ROCKY FORD CR AT RT 17 | | | HYDROLOGIC
UNIT
CODE | | 17020006
17020006
17020006
17020006
17020006 | 17020006
17020006
17020006
17020006 | 17020007
17020007
17020008
17020008 | 17020009
17020010
17020010
17020010 | 17020010
17020010
17020011
17020011 | 17020011
17020011
17020011
17020012 | | | NOT2 G32
AIG3M | ۵ | 00000 | 00000 | 00000 | υυυ | 000 | وموض | |----------------------------|---|--|--|--|---|---|--| | ORDANIZATION
CODE | USGS
USGS
USGS
USGS
USGS | USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR
USBR | USGS
USGS
USGS
USBR
USBR | USBR
USBR
USBR
USBR | | ZOZE DIZCHYNGE | | | | | | | | | 3XIZ TRAY 92UZ | | | | | | | | | ZUS SED CONCEN | ZZZOM | 88888 | 88888 | | 200000 | Odzno | ω ω ω ω | | #A3Y | 7 1 7 7 1 7 7 1 7 7 1 7 7 1 | | | 4 | - | 10 | | | OM END | 0 t t t t t t t t t t t t t t t t t t t | | | 197 | 197 | <u> </u> | | | OW BEGIN | 1969
1969
1970
1970 | 1956
1956
1958
1959 | 1963
1967
1967
1964 | 1972
1972
1956
1972
1972 | 1973
1974
1974
1975
1969 | 1969
1970
1958
1974
1975 | 1975
1975
1975
1975 | | BASIN
DESCRIPTOR | 024
024
124 | | | | 024 | 124 | | | | 0.886 | | | | 8. | 888 | | | DRAINAGE
AREA | 64.
1042.
327. | | | | 2228. | 458.
42.
4842. | | | TYPE OF | N N N N N N N N N N N N N N N N N N N | SK
DR
DT | D D S C C | S X X O Y X O Y X O Y Y | 00 T S E S E S E S E S E S E S E S E S E S | SW
SW
TO | 000 | | COUNTY | 043
043
025
025 | 025
025
025
025
025 | 001
025
025
025
025 | 001
001
025
025
025 | 025
025
001
001
025 | 025
001
025
021
021 | 021 | | 3TAT2 | 053
053
053 | 053
053
053
053 | 053
053
053
053 | 053
053
053
053 | 053
053
053
053 | 053
053
053
053 | 053
053
053 | | LONGITUDE | 118 1854
1185056
1185546
1190610 | | 192102
193940
191600
192549
195208 | 192115
191810
191306
193550 | 191317
195230
192158
190350 | 192639
185115
194948
191500
185215 | 185130
185130
185445
190005 | | LATITHOE | 472423
472423
472138
473947
473654 | 850
037
003
240 | 465237 1
465832 1
471120 1
465834 1 | 464851 1
465345 1
470017 1
465234 1 | 471044 1
471205 1
464833 1
464836 1
471122 1 | 471836 1
470745 1
464948 1
461930 1 | 463505 1
463505 1
463505 1 | | STATION NAME AND LOCATION | CDAL CREEK AT MOHLER, WASH.
CRAB CREEK AT IRBY, WASHINGTON
WILSON CREEK BE. CORBETT DRAW, NR. ALMIRA, W
WILSON CREEK T WILSON CREEK, WASH. | POTHOLES CANAL AT MILE O.2
LIND COULEE AT RT 17 CROSSING
W645 DRAIN IN SEC 34 18N 25E
EL63.8 W W AT END
WINCHESTER W W AT 17/27-3D | CRAB C LAT AT CRAB C W W W CA AT FRENCHMAN HILLS W W CRAB CR AT CO RD 7N BRIDGE FR HILLS W W AT SEC 9 17N/27E DW239B DRAIN AT W CA | DPE 215 AT ROUTE 26 LOWER CRAB C AT MC MANNAN ROAD RCD W W AT D SULLIVAN RD CROSSING DCC1 AT RED ROCK COULEE ROAD CCL WASTEWAY AT UNIT 88 BLOCK 88 | EL 25 A W W AT PUMPING PLANT
W645 DRAIN AT COUNTY ROAD R NW
PE16.4M12 WASTEWAY AB DPE215
D46-179 DRAIN AT GILLIS ROAD
CRAB CREEK NEAR MOSES LAKE, WASH. | RDCKY FORD CREEK NEAR EPHRATA, WASH
FARRIER CDULEE NEAR SCHRAG, WASH.
CRAB CR NR BEVERLY, WASH
SURFACE RUNOFF FROM BLOCK 1
BELOW EL 85 M WW | ESO COULEE WEST OF CONNELL
ESO COULEE BELOW EL 85 Z WW
ESO COULEE BELOW D 18-97 DRAIN
ESQ COULEE SR-17 OVERPASS | | HYDROLOGIC
Unit
Code | 17020013
17020013
17020013
17020013 | 17020015
17020015
17020015
17020015 | 17020015
17020015
17020015
17020015 | 17020015
17020015
17020015
17020015 | 17020015
17020015
17020015
17020015 | 17020015
17020015
17020015
17020016 | 17020016
17020016
17020016
17020016 | | ROT2 G32
AIG3M | ۵۵۵۵۵ | 00000 | 00000 | 00000 | ۵ ۵ | 0000 | 0000 | | |----------------------------|---|---
--|--|---|--|--|---------------------------------------| | ORGANIZATION
BGOD | USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR | | | SUSP DISCHARGE | | | | | | | | | | SSIZ TÄAN TAM 038 | | | | | | | | · | | SUSP PART SIZE | 00000 | 888888 | 8 8 8 8 8 8 | 8 8 8 8 8 8 | <u> </u> | <u> </u> | 000000 | | | | | | <u> </u> | <u> </u> | ري
ا | <u> </u> | <u> </u> | | | ON3 WO
RA3Y | | | | | 197 | | | | | OW BEGIN | 1975
1975
1975
1975
1975 | 1976
1975
1975
1975 | 1975
1975
1975
1976 | 1975
1975
1975
1974 | 1974
1968
1968
1970
1956 | 1956
1956
1956
1964 | 1964
1964
1964
1964 | | | BASIN
ROTAIRD230 | | | | | | | | | | DRAINAGE
AREA | | | | | | | | | | 17PP 0F | 00
10
10
10
10 | 10
10
10
10 | 10
10
10
10 | 10
10
10
10 | O C C C C C C C C C C C C C C C C C C C | 88858
88888 | NNLL | | | COUNTY | 021
021
021
021 | 021
021
021
021 | 021
021
021 | 021
021
021
021 | 021
005
077
005
021 | 021
021
021
021 | 021
021
021 | | | STATE | 053 (053 (053 (053 (053 (053 (053 (053 (| 053
053
053
053 | 053
053
053
053 | 053
053
053
053 | 053 | 053
053
053
053 | 053
053
053
053 | | | 30 | | | | | | | | · · · · · · · · · · · · · · · · · · · | | LONGITUDE | 190010
190010
190010
190010 | 190045
190045
190200
190245
190450 | 190500
190510
190620
190640 | 191145
191300
191455
191510 | 1191505
1190600
1200900
1194400 | 190208
190259
191426
191533
190940 | 191459
190141
191524
190256 | | | LATITUBE | 463505 1
463500 1
46340 1
463240 1 | 462730 1
462730 1
462530 1
462445 1 | 462220 1
462115 1
462045 1
462005 1 | 462015 1
462100 1
462140 1
462645 1
462910 1 | 462050 1
461400 1
462500 1
461300 1 | 464324 1
463526 1
462317 1
463020 1 | 463131 1
462707 1
462131 1
464348 1 | | | STATION NAME AND LOCATION | ESO COULEE BELOW DPE 38 B DRAIN
ESO COULEE BELOW DPE 38 DRAIN
ESO COULEE BELOW PE 38 WW
ESO COULEE BELOW PE 38.9 E WW
ESO COULEE BELOW PE 38.9P2 WW | ESQ COULEE ELTOPIA GAGING STATION ESQ COULEE BELOW ELTOPIA B CA WW ESQ COULEE BELOW EB 8 WW ESQ COULEE BELOW PE 38.985 WW ESQ COULEE BELOW PE 59 WW | ESQ COULEE BELOW DIVERSION STR
ESQ DIV CA BELOW EB 15 WW
ESQ DIV CA BELOW PE 59.4 D WW
ESQ DIV CA BELOW PE 59.4 WW
ESQ DIV CA BELOW PE 59.4 K WW | ESQ DIV CA BELOW PE 59.4 WW
ESQ DIV CA BELOW PE 66 M WW
ESQ DIV CA BL P P LAT CROSSING
ABANDONED PE 47 J WW
BLK 15 S OF ABANDONED RINGOLD WW | ABANDONED PE 65 WW COYOTE DR - AMON WW NR KENNEWICK W ROZA CA AT MILE 44.2 NR GRANGER WA CHANDLER CA MI 2.8 NR PROSSER WA SCODTENEY W W AT SCOOTENEY RE | POTHOLES E CA AT MILE 26.6 POTHOLES E CA AT MILE 38.0 POTHOLES E CA AT MILE 65.8 PE 16.4 W AT OUTLET COL R WB5 LAT AT HEAD | WB5G LAT AT WB5G W W
ELTOPIA B CA AT E B W W
ESQUATZEL DIV CHANNEL AT END
ELG8D WW AT RT 17 | | | HYOROLOGIC
Unit
Code | 17020016
17020016
17020016
17020016 | | 9072 032
A103M | 0000 | | 00000 | 0000 | ۵ | ٥ | ٥٥٥ | | |----------------------------|--|---|---|---|---|---|---|---| | NOITA Z INADRO
3000 | USBR
USBR
USBR | USGS
USGS
USGS
USGS
USGS
USGS | USBR
USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR
USBR | USBR
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USBR
USBR
USGS | | | SUSP DISCHARGE | | × | | | | | | | | 3512 TRAY TAM 038 | | Σ | | | | | | | | BSIZ TRAM MZUZ | | Ζ Σ | | | | | , | | | SOZE ZED CONCEN | 20 00 00 | | EZZZZ | Z Z Z Z W | ωαααΣ | EEEEE | 4 E E 4 | | | OW END
RABY | | 1970
1971
1971 | | | 1973
1971
1971
1971 | 1971
1971
1975
1971 | 1976 | | | OW BEGIN | 1974
1974
1975 | 97
96
96
97
97 | 1974
1974
1974
1974 | 1974
1974
1974
1974
1974 | 1971
1969
1969
1969
1910 | 1969
1969
1965
1965 | 1976
1974
1974
1969 | | | BASIN
BESCRIPTOR | | 124
000
004
014 | | | 0
4
4
4
4
10
4
4
10 | 024
004
124 | 004 | | | ORAINAGE
AREA | | 96000.00
96900.00
27.80
234.00
551.00 | | | 54.70
63.60
203.00
495.00 | 172.00
69.50
382.00
382.00
1594.00 | 12.70 | | | TYPE OF | 0 N Z Z | A A A A A A A A A A A A A A A A A A A | NS AS S | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | | | YTNUOD | 0221 | 025
001
021
021
021 | 077
077
037
037
037 | 037
037
037
037
037 | 037
037
037
037
037 | 037
037
037
037
037 | 037
077
077
077 | | | 3TAT2 | 053
053 | 00000 | 053
053
053
053
053 | 053
053
053
053
053 | 053
053
053
053
053 | 053
053
053
053
053 | 053
053
053
053 | | | LONGITUDE | 1191648
1190030
1191028 | ന നയയനന | 1202929
1202825
1205656
1203058 | 1202947
1203002
1203135
1202858
1202850 | 1203000
1212006
1211208
1210400
1205655 | 1205136
1202847
1203025
1203025
1202844 | 1210140
1203511
1204205
1211930 | | | LATITUDE | 463212
463435
463435
464604 | 463824
461846
464920
463931
462745 | 464041
463622
471133
470133
465843 | 465538
465536
465537
465122
465710 | 470440
471917
471541
471441
471135 | 471448
470737
465504
465504 | 471320
463755
463522
464730 | | | STATION NAME AND LOCATION | WBS WW 1 AT COLUMBIA RIVER
ESQUATZEL CHANNEL AT SHEFFIELD RD
D15-146 DRAIN AT BELLEVUE DRIVE
PF16 4 WW AT ADAMS CHINTY ITNE | COLUMBIA R AT VERNITA BR N COLUMBIA RIVER AT RICHLAND PROVIDENCE COULEE AT CUNNI ESQUATZEL COULEE AT CONNEL ESQUATZEL COULEE AT ELTOPI FY76 REESTABLISH OWDC 5420 | YAKIMA R AT HARRISON RD BRIDGE
YAKIMA R AT TERRACE HGTS. BRIDGE
YAKIMA R AT CLE ELUM
WILSON C AT SANDERS RD
WILSON C AT DAMMON RD | WIPPLE WW AT THRALL RD
WILSON C AT THRALL RD
YAKIMA R AT ELLENSBURG
YAKIMA R AT UMTANUM
COLEMAN C NW 1/4 SEC 20 17N 19E | KITTITAS CA SE1/4 SECG 18N 19E
YAKIMA RIVER NEAR MARTIN, WASH.
KACHESS RIVER NEAR EASTON, WASH.
CLE ELUM RIVER NEAR ROSYLN, WASH.
YAKIMA RIVER AT CLE ELUM, WASH. | TEANAWAY RIVER BELOW FORKS, NR. CLE ELUM, WA
NANEUM CREEK NEAR ELLENSBURG, WASH.
WILSON C AT THRALL WA
WILSON CREEK AT THRALL, WASH.
YAKIMA R AT UMTANUM WASHINGTON | FANHOUSE NO. 3 NR ROSLYN, WASH
NACHES R AT NELSON BRIDGE
WIDE HOLLOW C NR GROMORE
DEEP CR NR GOOSE PRAIRIE WASH. | | | HYOROLOGIC
Unit
Code | 17020016
17020016
17020016 | 17020016
17020016
17020016
17020016
17020016 | 17030001
17030001
17030001
17030001 | 17030001
17030001
17030001
17030001 | 17030001
17030001
17030001
17030001 | 17030001
17030001
17030001
17030001 | 17030001
17030002
17030002
17030002 | - | | A103M | | Δ. | <u> </u> | υυ | 00000 | 00000 | υυυυ | onto 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | |----------------------------|---|---|---|--
--|--|---|--| | | | | | | | | ~~~~ | | | MOIT A SINADRO
3000 | USGS
USGS
USGS
USGS
USGS | USBR
USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR
USBR | USBI
USBI
USBI
USBI | | | SUS DISCHARGE | | | | | | | | | | 3512 TRAY TAM 038 | | | | | | | | | | SUSP SED CONCEN |
45445 | 22222 | 22222 | 222 | ***** | 2222 | EEEE | | | |
A ¥ A ₹ ₹ | ωω - | 8 2 2 2 2 2 | 8 2 2 2 2 | 22222 | ~~~~ | 2 2 2 2 | | | OW END
RABY | 197
197
196
197 | 197
197
197 | 197
197
197 | 197 | | | | | | OW BEGIN | 1969
1962
1969
1969 | 1968
1968
1968
1968 | 1968
1968
1970
1968 | 1968
1968
1974
1974 | 1974
1974
1974
1974 | 1974
1974
1974
1974 | 1974
1974
1971
1974 | | | BASIN
DESCRIPTOR | 014
004
004
124 | | | | | | | | | | 70.70
78.90
3.91
39.00 | | | | | | | | | DRAINAGE
AREA | 70.
78.
3.
239.
941. | | | | | | | | | TYPE OF | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | S S S S S S S S S S S S S S S S S S S | N N N N N | S S S S S S S S S S S S S S S S S S S | A S S A S | A S S A S | AS AS | | | COUNTY | 077
077
077
077 | 077
005
007
077 | 077
077
005
077
077 | 077
077
077
077 | 077
077
077
077 | 077
077
077
077 | 077
077
077
077 | | | STATE | 053
053
053
053 | 053
053
053
053
053 | 053
053
053
053 | 053
053
053
053 | 053
053
053
053 | 053
053
053
053 | 053
053
053 | | | UDE | | | | | | | | | | LONGITUDE | 1211729
1210449
1210010
1204605 | 1201100
1193500
1201400
1202100
1203100 | 1203400
1202834
1194600
1200800 | 200800
200800
200900
202614
203156 | 1202828
1202818
1195845
1195851
1200108 | 200031
195959
210104
210109 | 200205
1201147
195954
201500 | | | _ | | | | | | *** | *** | | | LATITUDE | 465222
465839
464033
464016
464444 | 162000
161600
161900
161900
162100 | 62500
63126
61300
62100
62100 | 62300
62300
61300
63247
63416 | 163234
163207
161956
161903
161835 | 51657
51647
51557
51439
51450 | 161435
162006
161354
162204 | | | LA. | 3 S
2 4 4 4 4
3 6 6 6 6 | 44444 | 4 4 4 4 4
0 0 0 0 | 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 4 4 4 4 | 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 4 4 4
0 0 0 0 | | | STATION NAME AND LOCATION | BUMPING RIVER NEAR NILE, WASH.
AMERICAN R NR NILE WASH
HAUSE CREEK NEAR RIMROCK, WASH.
TIETON RIVER AT CANAL HEADWORKS NR NACHES,
NACHES RIVER BELOW TIETON RIVER, NEAR NACHE | DID 25 NR GRANGER WA
KENNEWICK CA HDWKS NR CHANDLER WA
MARION DR AT HWY 22 NR TOPPENISH W
MARION DR AT ROB RD NR TOPPENISH W
MARION DR AT LAT C NR TOPPENISH WA | NEW RESER CA-DROP 3-NR WAPATO WA
NEW RESER CA - HOWKS NR WAPATO WA
CHANDLER CA MI O.6 NR PROSSER WA
DID 2 NR GRANGER WA
DID 2 NR GRANGER WA | DRAIN 27.2 NR GRANGER WA
DRAIN 26.6 NR GRANGER WA
SUNNYSIDE CA MI 24.7 NR GRANGER WA
DRAIN AT BIRCHFIELD RD
WIDE HOLLOW C AT W WASHINGTON AV | WIDE HOLLOW C AT UNION GAP STP
AHTANUM C AT MOUTH
SULPHUR C AT NORTH AV SUNNYSIDE
SULPHUR C WW AT FACTORY RD SUNYS
DRAIN DID #3 AT S HILL RD | DRAIN DID #3 AT DUFFY RD
SULPHUR C WW AT DUFFY RD
SULPHUR C WW AT MORSE RD
SULPHUR C WW AT MCGEE RD
GRIFFIN LAKE INLET | GRIFFIN LAKE OUTLET
YAKIMA R AT BRIDGE NR GRANGER
YAKIMA R AT BRIDGE NR MABTON
E TOPPENISH OR AT WILSON RD | | | HYDROLOGIC
UNIT
CODE | 17030002
17030002
17030002
17030002 | 17030003
17030003
17030003
17030003 | 17030003
17030003
17030003
17030003 | 17030003
17030003
17030003
17030003 | 17030003
17030003
17030003
17030003 | 17030003
17030003
17030003
17030003 | 17030003
17030003
17030003 | | | w103 | | ******* | | | | | | |----------------------------|---|--|---|--|---|--|---| | 8012 G32
A103M | 00000 | υυυ | 0000 | 0000 | 00 0 | 00 0 | ۵۵۵۵ | | MOITASINABIO
BOOD | USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR
USBR | USEPA
USEPA
USEPA
USEPA
USEPA | USEPA
USEPA
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | SUSP DISCHARGE | | | | × 3 × | ×× | | ××× | | BED MAT PART SIZE | | | | | | | | | BIS THAN NEUS | | | | | | | | | 2026 SED CONCEN | Z Z Z Z Z | Z Z Z W W | 4454 | ∢ Ш×3× | XXEE4 | Σ∢mΣΣ | ×3×× | | OW END
RABY | | 1974 | 1974
1974
1974
1974 | 1974
1974
1976
1976 | 1976
1976
1971
1974 | 1971
1974
1974
1971 | 1976
1976
1976 | | DW BEGIN | 1974
1974
1974
1974 | 1974
1974
1975
1971 | 1973
1973
1973
1973 | 1973
1973
1976
1976
1976 | 1976
1976
1969
1969 | 1969
1973
1973
1969 | 1976
1976
1976
1976 | | NISA8
ROTAIROS30 | | | | 024 | 124
004 | 024
023
023 | 024 | | DRAINAGE
AREA | | | | | 3479.00
68.90 | 24.80
173.00
3650.00 | | | TYPE OF
SITE | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 00000
00000 | 3 3 3 3 3 S | 3 3 3 3 3
3 3 3 3 3 | N N N N N | 8 8 8 8 8
8 8 8 8 8 | NERE | | COUNTY | 077
077
077
077 | 005
005
077
077 | 077
077
077
077 | 077
077
077
077 | 077
077
077
077 | 077
077
077
077 | 077
077
077
077 | | 3TAT2 | 053
053
053 | 053
053
053
053
053 | 053
053
053
053
053 | 053
053
053
053
053 | 053
053
053
053
053 | 053
053
053
053
053 | 053
053
053
053 | | LONGITUDE | 1201348
1201910
1201734
1200757 | 1194048
1194102
1200100
1200820
1200340 | 1205206
1205220
1203003
1204713
1205207 | 1205306
1202435
1200107
1195727 | 1195328
1194948
1202758
1205510 | 1205436
1205220
1203003
1202820
1202707 | 1200222
1195820
1195614
1195529 | | I ATITUDE | 462011
461927
462003
461534
462036 | 461432
461403
461730
461330 | 463155
463137
463255
461840
462723 | 462641
461512
462325
462220
462049 | 461902
461722
463204
463340
463155 | 463033
463137
463255
463210
463022 | 462127
462048
461926
461745 | | STATION NAME AND LOCATION | SUB-DRAIN 35 AT PARTON RD MARION DR AT HWY 97 WANITY SLOUGH AT MYERS RD SOUTH DR AT HWY 22 NR SATUS GRANGER D AT HWY 223 AB GRANGER | SPRING C AT HESS RD SNIPES C. AT DLD INLAND EMPIRE R DR DID#3 15'AB RENDRNG PLNT OTLT NEQUIST D NW 1/4 SEC 25 9N 21 E SATUS D 302 NW 1/4 SEC 34 9N 22E | NF AHTANUM CR. AT TAMPICO
S.F. ANTANUM CR. AT TAMPICO
AHTANUM CR. @GDODMAN RD EUNIONGAP
TOPPENISH CR. NR FORT SIMCOE
NF SIMCOE CR. NR FORT SIMCOE | SF SIMCDE CRK NR FT SIMCDE DRY CREEK NR TOPPENISH ROZA CANAL AT SCOON RD NR SUNNYSIDE WASH ROZA CANAL BLW SULPHUR CR WSTWY NR SUNNYSIDE ROZA CANAL AT BLK CANYON CR NR SUNNYSIDE WAS | ROZA CANAL AT FACTORY RD NR SUNNYSIDE WASH
ROZA CANAL AT WILGUS RD NR GRANDVIEW WASH
YAKIMA R ABV AHTANUM CR AT UNION GAP WASH
NORTH FORK AHTANUM CREEK NEAR TAMPICO, WASH
N.F. AHTANUM CR AT TAMPICO | SDUTH FORK AHTANUM CREEK AT CONRAD RANCH, NE
S.F. AHTANUM CR AT TAMPICO
AHTANUM CR AT GOODMAN RD AT UNION GAP
AHTANUM CREEK AT UNION GAP, WASH.
YAKIMA R AT PARKER | SUNNYSIDE CANAL AT MAPLE GROVE RD NR SUNNYSIDE CANAL BLW SULPHUR CR WSTWY NR SUNN SUNNYSIDE CANAL AT EDISON RD NR SUNNYSIDE WASUNNYSIDE CANAL AT BETHMAY RD MR GRAMDVIEW, | | HYDROLOGIC
Unit
Code | 17030003
17030003
17030003
17030003
17030003 | 17030003
17030003
17030003
17030003 | 17030003
17030003
17030003
17030003 | 17030003
17030003
17030003
17030003 | 17030003
17030003
17030003
17030003 | 17030003
17030003
17030003
17030003 | 17030003
17030003
17030003
17037003 | | MEDIA | | | | | | | | | |----------------------------|--
--|--|---|---|--|---|--| | 9012 032 | 0000 | 0000 | 00000 | 0 000 | 00000 | 00000 | 0000 | | | MOITAS INADRO
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USBR
USGS
USFS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | × | 0000 | OZOGE | 4 4 | 44444 | 4 | বৰ ৰ | | | BED MAT PART SIZE | | | | | | | | | | SSIZ TRAN NZUZ | | шш | m Imi | ∢ | | · | | | | SUSP SED CONCEN | ×ddd∑ | m0000 | DZOOZ | 40474 | 44444 | 44444 | 4444 | | | OW END
FIA3Y | 1976
1974
1974
1975 | 1974 | 1976 | 1972 | 1971
1972
1972
1972 | 1972
1972
1972
1972 | 1972
1972
1972
1972 | | | VEAR
OW BEGIN | 1976
1973
1973
1973 | 1973
1976
1976
1976 | 1976
1970
1951
1965 | 1965
1964
1900
1974
1965 | 1971
1971
1972
1972 | 1972
1972
1972
1972 | 1972
1972
1972
1972 | | | BASIN
Descriptor | 024 | 024
024
024
024 | 024
123
123
004
124 | 004
124
014 | | | | | | DRAINAGE
AREA | 122.00 | | 5359.00
5615.00
10.60
3465.00 | 448.00
5752.00
2.00
27.40 | | | | | | TYPE OF | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | N N N N N N N N N N N N N N N N N N N | N A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | X X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | | | YTNUD3 | 077
077
077
077 | 077
077
077
077 | 077
077
005
039
023 | 023
019
019
029
023 | 023
001
019
019
019 | 019
019
019 | 019
019
019 | | | 3TAT2 | 0053
0053
0053 | 053
053
053
053 | 053
053
056
056 | 056
016
016
056 | 0.56
0.16
0.16
0.16 | 0016 | 016 | | | LONGITUDE | 1195325
1204713
1205207
1205306 | 1202435
1195838
1195837
1195953 | 1200107
1195954
1192837
1104212 | 1105834
1113905
1113933
1111835 | 1105900
1122112
1120159
1120200 | 1120234
1120719
1120755
1120158 | 1120157
1120720
1120512
1120438 | | | LATITUBE | 461532
461832
462723
462723 | 461512
461929
461724
461700
461658 | 461503
461353
461513
432708
431147 | 430835
433645
433645
424818
424330 | 425028
434 138
432556
432556 | 432621
432626
432631
432656
432713 | 432753
432753
432808
432814 | | | STATION NAME AND LOCATION | SUNNYSIDE CANAL AT GRANDVIEW WASH TOPPENISH CREEK NEAR FT. SIMCDE, WASH. N.F. SIMCDE CR NR FT SIMCDE SF SIMCDE CR NR FT SIMCDE TOPPENISH CR NR SATUS, WASH | DRY CR NR TOPPENSIH DID 18 DRAIN AT SUNNYSIDE WASH BLACK CANYON CR AT WANETA RD NR SUNNYSIDE, WA DID 9 DRAIN NR SUNNYSIDE WASH DID 3 DRAIN NR SUNNYSIDE WASH | SULPHUR CR WASTEWAY NR SUNNYSIDE WASH YAKIMA RIVER AT MABTON, WASH. YAKIMA RIVER AT KIONA, WASH CACHE CREEK NEAR JACKSON, WYO. | GREYS RIVER AB RESERVOIR NR ALPINE WY
SNAKE R NR HEISE ID
SNAKE RIVER NR HEISE, IDAHO
MILL CR100YD ABV.FOREST BNDY
SWIFT CREEK NEAR AFTON, WYO. | SALT R NR AUBURN WYO SPOIL BANKS DRAIN AT EAGLE, IDAHO DRAIN WELL INFLOW 1N-38E-7ACC1 DRAIN WELL INFLOW 1N-38E-7BD01 DRAIN WELL INFLOW 1N-38E-7BD01 | GERMAN CANAL 1N-38E-7BBB1
DRAIN WELL INFLOW 1N-37E-4CCC1
DRAIN WELL INFLOW 1N-37E-5DCB1
DRAIN WELL INFLOW 1N-38E-6ACB1
DRAIN WELL INFLOW 2N-38E-32DDC1 | DRAIN WELL INFLOW 2N-38E-31ABC1 DRAIN WELL INFLOW 2N-37E-33BCB1 DRAIN WELL INFLOW 2N-37E-27DDC1 DRAIN WELL INFLOW 2N-37E-26CDB1 | | | HYDROLOGIC
Unit
Code | 17030003
17030003
17030003
17030003 | 17030003
17030003
17030003
17030003 | 17030003
17030003
17030003
17040103 | 17040103
17040104
17040105
17040105 | 17040105
17040201
17040201
17040201 | 17040201
17040201
17040201
17040201 | 17040201
17040201
17040201
17040201 | | | MEDIA | | | | | | | *************************************** | | |----------------------------|-------------|---|---|---|---|---|--|---| | 9072 G32 | • | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | MOITASINADMO
3003 | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | SUSP OISCHARGE | - | 4 4 | 4 4 | | 44 4 | 4 m | -বৰৰ | 4 | | 32IS TRAY TAM G38 | | | | | | | | | | SUSP PART SIZE | | | | | , | | | | | POZE ZED CONCEN | | 44444 | 44444 | 44444 | 44444 | 44444 | 44444 | 4444 | | OW END
YEAR | | 1972
1972
1972
1972
1972 | 1972
1972
1972
1973 | 1973
1973
1972
1972 | 1973
1972
1972
1973 | 1973
1972
1972
1972
1973 | 1973
1973
1972
1972 | 1972
1972
1972
1972 | | OW BEGIN | | 1972
1972
1972
1972 | 1972
1972
1972
1973 | 1973
1973
1972
1972 | 1972
1972
1972
1972 | 1973
1972
1972
1972
1972 | 1973
1972
1972
1972 | 1972
1972
1972
1972 | | BASIN
Descriptor | | | | | | | | | | DRAINAGE
AREA | | | | | | | | | | 3T12 | - | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | MS SW
SW
SW
SW | MS M | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | 3333
0000 | | COUNTY | | 0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0 | 010
010
010
010 | 010
010
010 | et 0
et 0
et 0
et 0 | 010
010
010
010 | 0
0
0
0
0
0 | | 3TAT2 | | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 910
910
910 | | LONGITUDE | | 1120132
1115935
1120607
1120440 | 1120550
1120557
1120943
1120043 | 1120344
1120150
1120641
1120019 | 1120430
1120434
1120520
1120349 | 1120314
1120340
1120513
1120454
1120513 | 1115508
1120212
1120533
1120426 | 1120407
1120421
1120408
1120415 | | LATITUDE | | 432833
432834
432836
432846
432853 | 432854
432856
432856
432858 | 432922
432923
432923
432934
432943 | 432948
432948
432948
432953
432959 | 433002
433003
433013
433015
433015 | 433041
433041
433114
433120 | 433130
433133
433134
433145 | | STATION NAME AND LOCATION | | DRAIN WELL INFLOW 2N-38E-30ADC1 DRAIN WELL INFLOW 2N-38E-28ACC1 DRAIN WELL INFLOW 2N-37E-27BCC1 DRAIN WELL INFLOW 2N-37E-26BBD1 DRAIN WELL INFLOW 2N-37E-26BBD1 | DRAIN WELL INFLOW 2N-37E-27BBA1
DIVERSION DITCH 2N-37E-27BBA2
DRAIN WELL INFLOW 2N-37E-30BBB1
DRAIN WELL INFLOW 2N 38E 20DCC1
DRAIN WELL INFLOW 2N-38E-20DAD1 | DRAIN WELL INFLOW 2N-37E-24CBB1
DRAIN WELL INFLOW 2N-38E-19ACC1
DRAIN WELL INFLOW 2N-37E-21ACC1
DRAIN WELL INFLOW 2N 38E 20ADA1
DRAIN WELL INFLOW 2N 38E 20ADA1 | DRAIN WELL INFLOW 2N-37E-14CDC1 DRAIN WELL INFLOW 2N-37E-14CDC2 DRAIN WELL INFLOW 2N-37E-15DCD1 DRAIN WELL INFLOW 2N-37E-14DDD1 DRAIN WELL INFLOW 2N-37E-14DDD1 | DRAIN WELL INFLOW 2N-38E-17CBC1 DRAIN WELL INFLOW 2N 37E 13CBC1 DRAIN WELL INFLOW 2N-37E-15DAB1 DRAIN WELL INFLOW 2N-37E-14BCC1 DRAIN WELL INFLOW 2N-37E-14BCC1 | DRAIN WELL INFLOW 2N-39E-7CDC1 DRAIN WELL INFLOW 2N-38E-18BAB1 DRAIN WELL INFLOW 2N-37E-10BDA1 DRAIN WELL INFLOW 2N-37E-11BAD1 DRAIN WELL INFLOW 2N-37E-11BAD1 | DRAIN WELL INFLOW 2N-37E-11ABA1
DRAIN WELL INFLOW 2N-37E-2CDD1
DRAIN WELL INFLOW 2N-37E-2DCD1
DRAIN WELL INFLOW 2N-37E-2DCB1 | | HYDROLOGIC
Unit
Code | | 17040201
17040201
17040201
17040201 | AIG3M | T | | | | | | | | | |----------------------------|---
--|--|--|--|---|---|--|--| | ROTZ GBZ | | 00000 | 00000 | 00000 | 400 | 00000 | 000 | 0000 | | | ONG AN ZATION
3000 | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USES
USES
USES
USER
USER | USGS
USBR
USBR
USBR
USBR | USBR
USBR
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | বৰ | ব বব | বৰ ৰব | யய | 3 | ш ш О | 3333 | | | 3512 TAA9 TAM 038 | | | | | > | | | | | | 3512 TRAS SZUZ | | | | | | | | | | | SUSP SED CONCEN | | 44444 | 44444 | 44444 | > = = = = = = = = = = = = = = = = = = = | <u> </u> | 88890 | 3333 | | | OW END
YEAR | | 1972
1972
1972
1972 | 1972
1972
1972
1972 | 1972
1972
1973
1973 | 1973 | 1978 | 1972 | 1978
1978
1978
1978 | | | OW BEGIN | | 1972
1972
1972
1972 | 1972
1972
1972
1972 | 1972
1972
1973
1972 | 1977
1974
1965
1960
1964 | 1977
1971
1971
1971 | 1963
1960
1972
1963
1977 | 1977
1977
1977
1977 | | | BASIN
Descriptor | | | | | | | 004 | | | | DRAINAGE
ARFA | | | | | | | 335.00
890.00 | | | | SITE OF | | N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | X X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | X X X X X X X X X X X X X X X X X X X | 3 3 3 3
3 3 3 3 | | | COUNTY | | 010
010
010
010 | 010
019
019 | 019
019
019
019 | 043
043
043
039 | 043
081
081
065
043 | 081
043
081
043
043 | 065
065
065
065 | | | STATE | | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016
056 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0 | 016
016
016 | | | LONGITUDE | | 1120425
1120432
1120123
1120123 | 1120334
1120156
1115858
1120400
1115934 | 1120347
1115822
1120832
1120406
1121037 | 1112352
1111554
1111707
1114020 | 1114150
1111400
11112645
1113330 | 1111230
11113655
1111230
11113655
11113655 | 1114301
1114525
1114637
1114901 | | | LATITUDE | | 433145
433158
433354
433432
433518 | 433535
433550
433613
433617
433643 | 433646
433701
433702
433704
434806 | 442511
443013
442906
435800
440300 | 435339
435620
434930
435045
435400 | 434654
435540
434654
435538 | 435306
435313
435257
435310 | | | STATION NAME AND LOCATION | | DRAIN WELL INFLOW 2N-37E-2CDA1
DRAIN WELL INFLOW 2N-37E-2BDC1
DRAIN WELL INFLOW 3N-38E-29BBC1
DRAIN WELL INFLOW 3N-38E-20BCC1 | GREAT WESTERN CANAL 3N-37E-13BCA1 DRAIN WELL INFLOW 3N-38E-7DCC1 DRAIN WELL INFLOW 3N-38E-10CBB1 DRAIN WELL INFLOW 3N-37E-11ADC1 DRAIN WELL INFLOW 3N-37E-11ADC1 | DRAIN WELL INFLOW 3N-37E-2DDD1
DRAIN WELL INFLOW 3N-38E-3DBC1
DRAIN WELL INFLOW 3N-37E-6DAD1
DRAIN WELL INFLOW 3N 37E O2DBA1
DRAIN WELL INFLOW 6N-36E-35DAD1 | HENRYS F BLW ISLAND PARK RE ID THIRTY CR AT BIG SPR NR MACKS INN ID MOOSE CREEK NEAR BIG SPRINGS HENRYS FORK AT ST ANTHONY ID NF SQUIRREL C NR SQUIRREL ID | A BITCH CR 1/4 MI US HWY 32 X-ING BITCH CR 1/4 MI US HWY 32 X-ING SF TETON R SH 33 X-ING CANYON C 1000 FT US SH 33 X-ING TETON R 1 MI BELOW DAMSITE | TETON R NR DRIGGS ID TETON R NR ST ANTHONY ID TETON RIVER AB LEIGH CREEK NR DRIGGS ID TETON R NR ST ANTHONY IDAHO NORTH FK TETON R AT TETON, ID | N FK TETON R AT POWERLINE RD ID
N FK TETON R AT SUGAR DETOUR BR ID
N FK TETON R AT SALEM HWY BR ID
N FK TETON R AT LAST BR ID | | | HYDROLOGIC
Unit
Code | | 17040201
17040201
17040201
17040201 | 17040201
17040201
17040201
17040201 | 17040201
17040201
17040201
17040201 | 17040202
17040202
17040203
17040203 | 17040203
17040204
17040204
17040204 | 17040204
17040204
17040204
17040204 | 17040204
17040204
17040204
17040204 | | | AIGEM | | | | | | | | | |----------------------------|---|--|---|--|---|--|---|--| | NOT2 032 | ممدد | 000 | 00000 | 00000 | 0000 | 00 00 | 0000 | | | ORGANIZATION
SGOS | USBR
USBR
USGS
USGS
USGS | USBR
USBR
USGS
USGS
USGS | USGS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USGS
USGS
USGS | USBR
USBR
USBR
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | スス | ৰ ব | | | < m α | ш | 44 | | | SEED MAT TAM 036 | | | | | | | | | | 2029 PART SIZE | ΣΣΧαω | | - 40 40 M | | | = | | | | | 0 4 U | 00 0
V V V | <u>დ</u> | N N
XSXGX | 2 00 C | <u>იით გ</u>
<u>გოთო∢</u> | 4444 | | | OW END
YEAR | 197 | 197 | 197: | 197 | 197 | 197
197
196
197 | | | | OW BEGIN | 1974
1974
1973
1967
1965 | 1964
1964
1970
1965
1972 | 1973
1974
1974
1974 | 1974
1974
1974
1974 | 1975
1975
1965
1965
1970 | 1975
1976
1964
1975 | 1977
1971
1977
1977 | | | BASIN
NOTGIRDS30 | 024 | 124
124 | | | 124
124 | 024 | | | | DRAINAGE
AREA | 627.00 | 9790.00 | 60.00
00.00
00.00
00.00 | 1.00 | 1295.00
1250.00 | 182.00 | | | | TYPE OF
SITE | 88888
00000 | N N N N N N | M M M M M M M M M M M M M M M M M M M | X X X X X X X X X X X X X X X X X X X | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | M S S S S S S S S S S S S S S S S S S S | | | CONMIX | 019
019
019
019 | 011
011
019 | 019
029
029
029
029 | 029
029
029
029
029 | 029
029
011
005 | 031
067
077
077 | 031
031
067
031 | | | STATE | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016 | | | LONGITUDE | 1114700
1114435
11114707
11114607 | 1123106
1120805
1120805
1123106
1120815 | 1120943
1111157
111112345
1112045 | 1112446
1111831
1112202
11111630 | 1111814
1111828
1122835
1122805
1123238 | 1135949
1133345
1125245
1125245 | 1134540
1134730
1135211
1135242 | | | LATITUDE | 432700
433456
432430
433535
425140 | 430731
432450
432450
430731
432624 | 432642
424128
424130
425114
425147 | 425100
42445
424737
424722
424437 | 424439
424443
430750
425520 | 423130
424025
424620
424620
423140 | 423243
423330
423307
423259 | | | STATION NAME AND LOCATION | WILLOW C 9M SE OF IONA AT OLD BRDG
WILLCREEK BL RIRIE DAM DUTLET
WILLOW CR AB RIRIE LAKE NR DZONE IDA
WILLOW CREEK NR RIRIE, IDAHO
PORTNEUF R AT POCATELLO ID | SNAKE R NR BLACKFOOT ID
SNAKE R NR SHELLEY ID
SNAKE RIVER NEAR SHELLEY IDAHO
SNAKE RIVER NEAR BLACKFOOT IDAHO
DRAIN WELL INFLOW 1N-37E-5CCD1 | DRAIN WELL INFLOW 1N-37E-6CBC1
STEWART CR ABV. CONF.W/DIAMONDCR
DIAMOND CR ABV CONF.W/STEWART CR
ANGUS CR 1/2 MI ABV NF BY
SHEEP CR. FTBRDG 1.5MI ABV NF BY | ANGUS CREEK NEAR HEADWATERS
MABIE CR AT FOREST BOUNDARY
BLACKFOOT R BELOW NF BNDY
KENDALL CR AT NF BOUNDARY
1/4 MILE ABOVE FOREST BDRY | 100 YARDS ABOVE FOREST BDRY. 250 YARDS BELOW FOREST BDRY. BLACKFOOT RIVER NEAR BLACKFOOT, IDAHO PORTNEUF RIVER AT POCATELLO, IDAHO PORTNEUF RIVER AT POCATELLO, IDAHO | MILNER LAKE E OF PP ON S SIDE
WALCOTT LAKE, 3 MILES FROM DAM
SNAKE R AT NEELEY ID
SNAKE RIVER AT NEELEY IDAHO
ROCK CR NR ROCKLAND ID | SNAKE R AT HWY 30 BRIDGE NR HEYBURN ID
SNAKE R AT BURLEY ID
MAIN DRAIN AT MILNER LK NR BURLEY ID
SNAKE R BEL MAIN DRAIN NR BURLEY ID | | | HYDROLOGIC
Unit
Code | 17040205
17040205
17040205
17040205 |
17040206
17040206
17040206
17040206 | 17040206
17040207
17040207
17040207 | 17040207
17040207
17040207
17040207 | 17040207
17040207
17040207
17040208 | 17040209
17040209
17040209
17040209 | 17040209
17040209
17040209
17040209 | | | MEDIA | | | | | | | | · · · · · · · · · · · · · · · · · · · | |----------------------------|--|---|---|---|---|---|---|---------------------------------------| | NOT2 GB2 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | ORGANIZATION
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USBR
USBR
USBR | USBR
USBR
USBR
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | V | ৰৰ ব | Z ∢ | ⋖ | বৰ | 44444 | 4424 | | | SED MAT PART SIZE | | | | | | | | | | 3ZIS IMAN NZUZ | | | | | | | Σ | | | SUSP SED CONCEN | 22 4 A A A A A A A A A A A A A A A A A A | 4444 | 4 Z 4 4 4
0 0 0 0 0 | 000000
44222 | ₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ | 9 9 9 9 P | 2 G | · · · · · · · · · · · · · · · · · · · | | ON3 WO
RA3Y | 197 | 197
197
197
197 | 197
197
197
197 | 197:
197:
197:
197: | 197
197
197
197 | 197
197
197 | 197 | | | OW BEGIN | 1977
1972
1977
1972 | 1972
1972
1973
1972
1972 | 1972
1972
1972
1972 | 1972
1973
1975
1975 | 1975
1975
1975
1976
1976 | 1976
1965
1976
1976
1973 | 1965
1976
1950
1972 | | | BASIN
Descriptor | | | | | 124 | 124 | 124 | | | ORAINAGE
AREA | | | | | 300.00 | | 35800.00 | | | TYPE OF | N N N N N N N N N N N N N N N N N N N | 33333 | X X X X X X X X X X X X X X X X X X X | SSSSSS | N N D D N N | SSSSS | N A A A | | | COUNTY | 053
067
031
031 | 067
067
067
067
067 | 067
067
067
067
067 | 067
067
083
083
083 | 083
083
083 | 083
083
083
083
047 | 047
083
039
053 | | | 3TAT2 | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 016
016
016
016 | 0 0 1 6 0 0 1 6 0 0 1 6 0 0 1 6 0 0 1 6 0 0 1 6 | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016 | | | LONGITUDE | 1140015
1134111
1135350
1135550 | 1135053
1134958
1134119
1134113 | 1134111
1134112
1134535
1133341 | 1133337
1133745
1141724
1142946 | 1145112
1144845
1143935
1142815 | 1143929
1144241
1144652
1144740 | 1145402
1145753
1151206
1141903 | | | LATITUDE | 423137
424014
423223
423303
423328 | 423711
423857
423948
423956
424011 | 424013
424013
424140
424201
424209 | 424239
424645
422524
423356
422410 | 422837
423935
423920
423617
423725 | 423858
423958
423954
423940
424327 | 425055
425454
430008
423949 | | | STATION NAME AND LOCATION | SNAKE R AB MILNER DAM NR MILNER ID
F MAIN DRAIN AT CAMP HOLLEY LK NR R
IRRIGATION DRAIN NR STARRHS FERRY
10S 22E 18CCB1 CANAL
10S 21E 13ACB1 DRAIN WELL INFLOW | 09S 22E 26BBA1 DRAIN WELL INFLOW FROM POND 09S 22E 11DDD1 K MAIN DRAIN AT WASTE WELL 09S 24E 06DDD1 DRAIN WELL INFLOW 09S 24E 06DDB1 DRAIN WELL INFLOW 09S 24E 06DAA3 DRAIN WELL INFLOW | 09S 24E O5BCC TRIBUTARY TO F MAIN DRAIN
09S 24E O5BCC F MAIN DRAIN NR RUPERT, IDA
08S 23E 27CCA1 DRAIN WELL INFLOW
08S 25E 29BDD1 DRAIN WELL INFLOW FROM POND
08S 25E 20BDB1 DRAIN WELL INFLOW | 08S 25E 20CAD1 DRAIN WELL INFLOW 07S 24E 26DD1 DRAIN WELL INFLOW ROCK CREEK 7 M SOUTH OF HANSEN ROCK C IN PARK NR US HWY #30 N COTTONWOOD C AT 2800 NDRTH | DEEP CREEK AT 3300 NORTH DEEP CREEK NR AUTD WRECKING YARD CEDAR DRAW .5 M FROM MOUTH SNAKE RIVER AB BLUE LAKES SPRING ROCK CREEK NR MOUTH NR TWIN FALLS IDAHO | SNAKE RIVER ABOVE CRYSTAL SPRINGS
SNAKE RIVER NEAR BUHL, IDAHO
SNAKE RIVER BELOW CLEAR LAKES SPRING
MUD CREEK AT MOUTH NEAR BUHL IDAHO
SNAKE RIVER ABOVE 1000 SPRINGS NR HAGERMAN I | SNAKE R BL LOWER SALMON FALLS NR HAGERMAN ID
SNAKE RIVER AT SHOESTRING RD NR BLISS IDAHO
SNAKE RIVER AT KING HILL IDAHO
09S 18E 11BAA1 CANAL DIV | | | HYDROLOGIC
Unit
Code | 17040209
17040209
17040209
17040209 | 17040209
17040209
17040209
17040209 | 17040209
17040209
17040209
17040209 | 17040209
17040209
17040212
17040212 | 17040212
17040212
17040212
17040212 | 17040212
17040212
17040212
17040212 | 17040212
17040212
17040212
17040212 | | | ALSO 1912 SQUS | 10 10 10 10 10 |
--|--| | MOI 1 2 2 MAN A M | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 35.12 TRA9 92.U2 \$5.12 TRA9 TAM G38 | य रययय | | 35/2 TRA9 92U2 | | | | | | | 4 4444 | | 2 3 222 3 2222 3 2222 3 2222 3 2 | | | 0W END 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 197
197
197
197
197 | | 0W BEGIN
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
19 | 1972
1972
1972
1973
1973 | | HOTAIRD230 421 421 421 421 421 421 421 421 421 421 | | | DRAINAGE
AREA
2 120 . 00 | | | NOWN NOWN NOWNN NOWNN NOWNN NOWNN NOWNN NOWNN NAWNN NAWNN NAWNN NAWNN NOWNN NO | X | | 0053 0053 0053 0053 0053 0053 0053 0053 | 047
047
063
063 | | 2000 0000 0000 0000 0000 0000 0000 000 | | | 10MGITUDE
1141945
1141238
1141235
1141235
1142212
1142212
1142212
1142319
1142350
1142350
1142350
1142350
114250
1142350
114250
114250
114250
114250
114250
114250
114250 | 4 4400 | | 424 62 5 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 | 2222
2255
3558 | | FROM POND FROM POND FROM S FROM S | | | INFLOW IN | INFLOW INFLOW | | W AND | DIV
WELL
WELL
WELL | | TATION NAME AND DRAIN WELL | CANAL
DRAIN
CANAL
DRAIN
DRAIN | | 095 18E 03DDB2 DRAIN WELL 095 19E 03DDB2 DRAIN WELL 095 19E 03DAA1 CANAL DIV 095 19E 03DAA1 CANAL DIV 095 19E 03DAA1 CANAL DIV 085 19E 34DAA2 DRAIN WELL 085 19E 34DAA2 DRAIN WELL 085 19E 34DAA1 DRAIN WELL 085 19E 13CAD1 DRAIN WELL 085 19E 10CC1 DRAIN WELL 075 15E 33CAD1 DRAIN WELL 075 15E 33DBB1 DRAIN WELL 075 15E 33DBB1 DRAIN WELL 075 17E 19ACC1 DRAIN WELL 075 17E 16BAA1 DRAIN WELL 065 13E 04CD1 DRAIN WELL | 13CCD1
19DDB1
20CAA1
02BAD1
02BAD1 | | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 15 E | | | | | HYDROLOGIC
UNIT
COUR
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212
17040212 | 17040219
17040219
17040221
17040221 | | ROTZ G3Z
AIG3M | 0000 | <u> </u> | <u> </u> | <u> </u> | 00000 | 00000 | 0000 | |----------------------------|--|---|--|---|---|---|---| | MOITAXINAURO
3003 | USGS
USGS
USGS
USGS
USGS | USGS
USBR
USBR
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR | | SUSP DISCHARGE | 4474 | | | ۵ | | | | | 3512 TAA9 TAM 038 | | ∑ ш | | | | | | | SIZ TRAS 92U2 | 4 | Σ ω | шшшшш | шшшш | | | | | ZOZE ZED CONCEN | 44748 | ∑ 000000 | шшшшш | шшшш∢ | <u> </u> | ΣΣΣΣΣ | ΣΣΣΣ | | OW END
YEAR | 1973
1973
1972 | 1969 | 1978
1940
1940
1979
1940 | 1940
1940
1940
1940 | | | | | OW BEGIN | 1973
1973
1967
1965 | 1973
1977
1966
1967
1975 | 1976
1939
1975
1975 | 1939
1939
1939
1939 | 1976
1976
1976
1971
1971 | 1971
1971
1971
1971 | 1971
1971
1971
1972 | | BASIN
Descriptor | 004 | 024
024 | 0004
0004
0004
0004 | 024
024
024
024 | | | | | DRAINAGE
AREA | 253.00
2630.00 | 440.00 | 8.00
37.00
4.80
5.75
6.10 | 6.50
13.10
22.30
119.00
399.00 | | | | | TYPE OF | ************************************** | N N N N N N N N N N N N N N N N N N N | N N N
N N N N N N N N N N N N N N N N | N N N N N | X X X X X X X X X X X X X X X X X X X | SEEEE | X X X X | | COUNTY | 063
063
073
073
073 | 001
007
073
027
015 | 039
015
015
015 | 015
015
015
015 | 039
039
039
001 | 001
027
027
027
027 | 027
027
027
027 | | STATE | 016
016
016 | 016
032
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
001
001
016
016 | 016
016
016
016 | 0 1 6
0 1 6
0 1 6 | | LONGITUDE | 1142434
1142425
1155900
1154310 | 1162512
1162450
1165712
1165712 | 1155433
1154700
1154700
1154800 | 1154830
1154730
1154930
1155500 | 1153350
1152640
1152640
1162000 | 1162705
1163040
1163510
1164210
1164005 | 1163530
1163440
1163230
1163430 | | LATITUDE | 425609
425624
424706
424616 | 431730
414731
425227
425227
433756 | 433440
435000
434930
434830
434830 | 434900
435400
435030
434600
433853 | 432130
432130
432130
433130
433345 | 433710
433730
434020
434030 | 433542
4335420
433420
433040 | | STATION NAME AND LOCATION | OGS 17E OZBBD1 DRAIN WELL INFLOW
OSS 17E 35CDB1 DRAIN WELL INFLOW
B JACKS CR NR BRUNEAU ID
BRUNEAU RIVER NEAR HOT SPRING, IDAHO
SNAKE R NR MURPHY ID | SNAKE RIVER NEAR MURPHY, IDAHO
SF OWYHEE R AT PETAN RD
JORDAN C NR JORDAN VALLEY OREG
JORDON CR AB LONE TREE CR NR JORDON VLY OR
COTTONWOOD CREEK AT ARROWROCK RESERVOIR ID | GROUSE CREEK NR ARROWROCK DAM ID MOORE CK AB GRANITE CK NR IDAHO CITY ID GRANITE CK NR IDAHO CITY ID BANNOCK CREEK NEAR IDAHO CITY, IDAHO PINE CK AB BARRY PLCR DIV NR IDAHO CITY ID | PINE CK NR IDAHO CITY ID ELK CK AB GOLD HILL PLCR DIV NR IDAHO CITY I ELK CK NR IDAHO CITY ID MODRE CK AB THORN CK NR IDAHO CITY ID MORES CREEK AB ROBIE CREEK NR ARROWROCK DAM | ANDERSON RANCH RES 6 MI AB DAM
ANDERSON RANCH RES. 100 YD ABV D
S F BOISE R 500 YDS BL DAM
TENMILE CR AT CLOVERDALE RD
TENMILE CR RIDENBAUGH CROSSING | TENMILE RD AT CHERRY LANE TENMILE CR AT CAN ADA ROAD TENMILE CR NR MOUTH INDIAN CR AT MOUTH INDIAN CR AT AT AV CALDWELL | INDIAN CR AT KARCHER RD NAMPA
INDIAN CR AT NAMPA BLVD NAMPA
INDIAN CR CENTER SEC26 T3N R2W
NEW YORK CA AT LK SHORE DRIVE | | HYDROLOGIC
Unit
CDDE | 17040221
17040221
17050102
17050103 | 17050103
17050105
17050108
17050108 | 17050112
17050112
17050112
17050112 | 17050112
17050112
17050112
17050112 | 17050113
17050113
17050113
17050114 | 17050114
17050114
17050114
17050114 | 17050114
17050114
17050114
17050114 | | | y | | | | | | | | | |----------------------------|---|--|---|---|--|--|--|--|--| | NOTS G32
AIG3M | | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | υυυς | | | ONGANIZATION
SOOD | | USBR
USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR | | | SUSP DISCHARGE | | | | | | | | 4 | | | SEIZ TRAS TAM 038 | | | | | | | | | | | SUSP PART SIZE | | | | | | | | | | | | | <u>σΣΣΣΣ</u> | <u> </u> | Z Z Z Z Z | 22222 | <u> </u> | 0 0 | 00°.
¥ ∑∑ ▼ | | | OW END
YEAR | | 197 | | | | | 197 | 1979
1979
197 | | | OW BEGIN | | 1972
1972
1972
1973 | 1973
1973
1973
1973 | 1973
1973
1973
1973 | 1973
1972
1973
1972
1972 | 1973
1972
1973
1974 | 1975
1975
1975
1975
1975 | 1976
1976
1976
1971 | | | BASIN
Descriptor | | | | | | | | | | | ORAINAGE
AREA | | | | | | | | | | | TYPE OF
SITE | | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N | SEREE | 33333
2223 | 33333
00000 | N N N N | | | COUNTY | | 027
027
027
001 | 88888 | 001
001
001
027 | 027
027
027
027
027 | 027
027
027
001
027 | 027
027
027
027
027 | 027
027
027
027 | | | STATE | | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016
015 | | | LONGITUDE | | 1163425
1163420
1163747
1160420
1160745 | 1161250
1161320
1161530
1161705
1162120 | 1162410
1162320
1162940
1163705 | 1164030
1164100
1164105
1163920 | 1162930
1165300
1164810
1162205
1163750 | 1164154
1163942
1163712
1164018 | 1164133
1165437
1170043
1170039 | | | LATITUDE | | 433035
433030
434223
433140
433345 | 433630
433640
433835
433945
434130 | 434040
434030
434050
434225
434210 | 434200
434155
434120
434100
434110 | 433250
434350
434350
434145
434055 | 433457
433315
433159
433243
433414 | 434028
434430
434916
434547 | | | STATION NAME AND LOCATION | | RIDEN BAUGH DROP AT NEW YORK CA
GARLAND DRAIN N YORK CANAL
WILLOW CR AT HWY 44
BOISE RIVER BELOW LUCKY PEAK DAM
BOISE R BELOW BÂRBER DAM | RIDENBAUGH DR E END ANN MORRISON BAXTER DR W END ANN M PARK DAVIS DR BELOW GARDEN CITY STP BOISE R AT GLENWOOD BRIDGE EAGLE DR AT EAGLE | FISH HATCHERY OUTFALL NR EAGLE THURMAN DR NR EAGLE BOISE R AT STAR BRIDGE NORTH MIDDLETON DRAIN SOUTH MIDDLETON DRAIN | HARTLEY DR NR CALDWELL (EAST) HARTLEY GULCH NR CALDWELL (WEST) BOISE R AT HWY 30 BRDG CALDWELL MASON DR NR CALDWELL MASON CR NORTH CHANNEL | INDIAN CR AT ROBISON RD DIXIE DR MOUTH NW1/4 S36 T5N R5W CONWAY GULCH W NOTUS HWY 95 DRY CREEK NR EAGLE HWY 44 CROSS MASON CREEK SOUTH CHANNEL | LK LOWELL 1.5 M E BOAT RAMP LK LOWELL NR UPPER EMBANKMENT LK LOWELL SOUTHEAST END LK LOWELL ACROSS FR U.EMBANKMENT LK LOWELL ACROSS FR U.EMBANKMENT LK LOWELL 1M SE GAGE STA LL CANL | INDIAN CREEK & WILDER HWY BRIDGE EAST END DRAIN 1 MI FROM MOUTH SAND HOLLOW DRAIN & 1ST AVE PARM SOUTH BOISE DRAIN MR PARMA, IDAHO | | | HYBROLOGIC
Unit
Code | | 17050114
17050114
17050114
17050114 | 17050114
17050114
17050114
17050114 | 17050114
17050114
17050114
17050114 | 17050114
17050114
17050114
17050114 | 17050114
17050114
17050114
17050114 | 17050114
17050114
17050114
17050114 | 17050114
17050114
17050114 | | | ROTZ G32
AIG3M | . 0 | 700 000 | 00000 | 0000 | ٥٥٥٥ | 0000 | υυυυ | | |----------------------------|----------|--|--|---|--|--|--|-----| | MOITAXINADRO
3000 | USGS | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | USGS
10004
USBR
USGS
USGS | USGS
USGS
USBR
USBR
USBR | USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR | | | SUSP DISCHARGE | ٧ | шх ссс | | | 4 N | | | | | BEI TAAS TAM 038 | | | | | | | | _\ | | SZIZ TRA9 92UZ | L | иш | | ш ш | 4 | · · · · · · · · · · · · · · · · · · | | | | SUSP SED CONCEN | | nmm⊼ 4,44 | | 4 mxs4m | ZZZNÞ | ZZZZW | ΣΣΣΣ | | | OW FND
YEAR | ე თ (| 1940
1940
1974
1974
1972
1972 | 1972
1972
1972
1974
1972 | | 1974
1975
1976
1976
1976 | 1976
1976
1976
1976 | 1976
1976
1976
1976 | | | DW BEGIN | 1972 | 1939
1973
1973
1971
1971 | 1972
1972
1972
1971
1971 | 1969
1969
1968
1971 | 1974
1957
1968
1969
1973 | 1969
1969
1970
1969 | 1969
1969
1975
1969 | | | BASIN
Descriptor | | 0004 | 124 | 014 | 004 | | | | | DRAINAGE
AREA | | 16.00 | 3220.00 | 3970.00 | 570.00 | | | | | TYPE OF | MS . | EEE EEEC | | | 33333
22000 | SSSSS | MS MS MS | | | CONMIX | 02.7 | 000
000
000
000
000
000
000
000
000
00 | 027
027
027
027
027 | 027
087
075
027
045 | 087
045
045
045 | 075
075
075
075
075 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | STATE | 016 | 000
000
000 000
000 000 | 016
016
016
016 | 20000 | 016
041
016
016 | 016
016
016
016 | 016
016
016 | | | LONGITUDE | 1170040 | 1161100
1161635
1161311
1162205
1162113
1164127 | 1163816
1163831
1164109
1164022 | 1165817
1165800
1164420
1170044 | 1165810
1172030
1162645
1163710 | 1164300
1164455
1164750
1165525 | 1162933
1162930
1163600 | | | LATITUDE | 434751 | 433300
433700
433700
433700
434145
434001 | 434213
434220
434132
434145
434145
434155 | 8 8 4 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 | 441422
435730
435615
435245
435345 | 435715
435710
435850
440235 | 435139
435030
435500
435036 | | | STATION NAME AND LOCATION | | NEW TORK CA NK BARBER ID COTTONWOOD GULCH AT BOISE ID MOUNTAIN VIEW DR AT BOISE, IDAHO AMERICAN BLVD STORM SEWER AT BOISE ID DRY CREEK AT EAGLE, IDAHO THRUMAN MILL DRAIN NR EAGLE, IDAHO FIFTEEN MILE CR AT MOUTH NR MIDDLETON, IDAHO | MILL SLDUGH AT MOUTH NR MIDDLETON, IDAHO WILLOW CREEK AT MOUTH NR MIDDLETON, IDAHO MASON SLDUGH AT MOUTH AT CALDWELL, IDAHO HARTLEY DRAIN NR CALDWELL, IDAHO MASON CREEK AT MOUTH NR CALDWELL, IDAHO CONWAY GULCH AT MOUTH NR NOTUS, IDAHO | DIAIE SLUUGH AI MUUIH NK PARMA, IDAHU BDISE RIVER NR PARMA IDA WEISER R & WEISER, IDAHO GRAVEYARD WN SAND HOLLOW DRAIN AT MOUTH NR PARMA, IDAHO SNAKE R AT NYSSA OR | WEISER RIVER AT MOUTH, AT WEISER, IDAHO BULLY CREEK NEAR VALE, DREG. PAYETTE R NR EMMETT COMBINE DR AT TUNNEL 7 NW BISSEL CREEK NEAR MOUTH | PAYETTE R NR FALK MAIN DR B LATERAL DR CEMETRAY DR NR NEW PLYMOUTH PAYETTE RIVER NEAR PAYETTE BIG WILLOW CR AT TOM PENCE RANCH | NORTH DRAIN AT HWY #16 NR EMMETT 2 S DRAIN AT LAST CHANCE CA WASTEWAY 2 BISSEL C BETWEEN SEC 28 & 29 2 NORTH DRAIN AT RR NR BRAMWELL | | | HYDROLOGIC
Unit
Code | 17050114 | 17050114
17050114
17050114
17050114
17050114 | 17050114
17050114
17050114
17050114
17050114 | 17050114
17050115
17050115
17050115 | 17050115
17050118
17050122
17050122 | 17050122
17050122
17050122
17050122 | 17050122
17050122
17050122
17050122 | | | MEDIA | | | | | | | | | |----------------------------|--|---|---|--|--|---|---|--| | NOT2 032 | 00000 | 000 | 0000 | 00000 | 00000 | 00000 | 0000 | | | ORGANIZATION
CODE | USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR | USFS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | | ααα | বৰৰ্পৰ | $\alpha \triangleleft \alpha \triangleleft \alpha$ | m K A H A | $\alpha \in \alpha \in A$ | | | 3512 TRAY TAM 038 | | <u> </u> | <u> </u> | | | | | | | SUSP SED CONCEN | | | | | | <u>u</u> | | | | | ZZZZZ | ₽₽₽₩₩ | 8448
88444 | 000000
44474 | R A R A R | S S S S S S S S S S S S S S S S S S S | 0 00 00 | | | OW END
YEAR | 197
197
197
197 | 197
197
197 | 197
197
197
197 | 197
197
197
197 | 197 | 197
197
197
197 | 19.7
19.7
19.7 | | | OM BEGIN | 1969
1969
1975
1975 | 1975
1974
1974
1965
1975 | 1975
1974
1974
1974 | 1974
1974
1974
1974 | 1974
1974
1974
1974 | 1973
1974
1975
1974 | 1974
1974
1974
1974 | | | BASIN
Bescriptor | | | 000
4
4
4
4
4
4 | 0000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0000
0000
0000
0000
0000 | 004
124
024
004 | 024
004
024
004 | | | | | | 60.50 | 20
20
20
50
50 | 37
30
30 | 88 88 | 8.
8.
8. | | | ORAINAGE
Area | | | 36.
31.
25. | 87.
8.
31.
107. | 20.
21.
7. | 605.
32.
54. | 83.
80. | | | PP PP OF | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | N A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N | N M M M M M M M M M M M M M M M M M M M | SER | | | COUNTY | 045
045
045
045
045
045 | 045
045
075
085
085 | 000000 | 00000 | 88888 | 087
087
087
087
003 | 087
003
087
087 | | | 3TAT2 | 0
9
9
9
9
9
9
9
9
9 | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 0 16
0 16
0 16 | 016
016
016
016 | 016
016
016 | | | LONGITUDE | 33400
3401
35600
43300 | 62225
62055
65020
60002
55648 | 2255
2255
2219
2830
2942 | 2735
2318
3444
2900
2239 | 2648
2223
3206
3319 | 63820
164000
64412
64525 | 164100
162324
163920
163638 | | | L CON | 9111 | | 1162
1162
1162
1162 | 116
116
116
116 | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ===== | | | | LATITUDE | 435023
435055
435100
435700 | 435615
435705
440140
444118
445512 | 445036
445649
445042
445830 | 444909
444551
445140
444500 | 444 107
443843
444030
443915
443958 | 443447
443430
443400
443523
443516 | 443350
442922
443250
442956 | | | STATION NAME AND LOCATION | SOUTH DRAIN NR BRAMWELL
SMALL DRAIN N OF RR NR BRAMWELL
COMBINE DRAIN BL BLACK CANYON PUMP
SMALL DR 1/2 MI E GRAVEYARD W W
PAYETTE R 0.5 M WEST EMMETT STP | BLACK CANYON RE IN SQUAW CARM
SQUAW C AT HWY #52 CROSSING
LITTLE WILLOW CAB LWR PAYETTE
GOLD FORK NR ROSEBERRY ID
LAKE F CR | EF WEISER R
WEISER RIVER AT TAMARACK IDAHO
EAST FORK WEISER RIVER NEAR STARKEY ID
LOST CREEK ABOVE RESERVOIR NEAR TAMARACK IDA
WEST FORK WEISER RIVER NR TAMARA | WEST FORK WEISER RIVER NEAR FRUITVALE, IDAHO
MILL CREEK NEAR COUNCIL, IDAHO
NORTH HORNET CREEK NEAR COUNCIL, IDAHO
HORNET CREEK NEAR COUNCIL, IDAHO
COTTONWOOD CREEK, AB.DIV., NR. COUNCIL, IDAH | COTTONWOOD CREEK NEAR COUNCIL ID
M FK WEISER RIVER AB FALL CREEK NR MESA ID
JOHNSON CREEK NEAR GOODRICH, IDAHO
DRY CR AT GOODRICH ID
GOODRICH CREEK NEAR GOODRICH, IDAHO | WEISER RIVER NR CAMBRIDGE ID
RUSH CREEK AT CAMBRIDGE ID
SPRING CREEK AT CAMBRIDGE IDAHO
PINE CREEK NEAR CAMBRIDGE, IDAHO
WEST FORK PINE CREEK NEAR CAMBRIDGE, IDAHO | PINE CREEK AT MOUTH AT CAMBRIDGE IDAHO
L. WEISER R. AT RUBY RANCH NR. INDIAN VALLEY
LITTLE WEISER RIVER NR MOUTH NR CAMBRIDGE ID
DIXIE CREEK NEAR CAMBRIDGE, IDAHO | | | HYDROLOGIC
Unit
Code | 17050122
17050122
17050122
17050122 | 17050122
17050122
17050122
17050123 | 17050124
17050124
17050124
17050124 | 17050124
17050124
17050124
17050124 | 17050124
17050124
17050124
17050124 | 17050124
17050124
17050124
17050124 | 17050124
17050124
17050124
17050124 | | | ALCOM
ALCOM | ا م م م | 00000 | 00000 | <u> </u> | 0000 | 00000 | 0000 | | |----------------------------|---|---|---|---|--|--|---|---| | MOITAZHMADNO
BODD | ses
nses
nses
nses | าด ดดดดด | USGS
USGS
USGS
USGS
USGS | USGS
USFS
USFS
USFS
USGS | USGS
USGS
USGS
USFS
USFS | USGS
USGS
USSCS
USSCS
USSCS | USGS
USGS
USGS
USGS | | | ZOZE DIZCHYWOE | ш 2 < < | 4 44444 | ZZ «Z | 2 4 | 4 W N | ш | m Z Z U | | | SS12 TRAS TAM 038 | ~ ~~ | | | <u> </u> | | | | | | SUSP PART SIZE | шZ « | ব বৰবৰৰ | ZZAAZ | Z | 4 X U 4 Q | л <u> </u> | m Z Z U | | | | 2000 | ពេកពេក4 | രവവ വ | N 0 0 0 Z | 12 D D D | · · | | | | OW END
YEAR | 197 | 197
197
197
197 | 197
197
197
197 | 197 | 197
197
197
197 | 197 | 1967
1967
1970 | | | OW BEGIN | 1973
1974
1974 | 197
197
197
197
197 | 1973
1959
1974
1974
| 1966
1975
1975
1974 | 1974
1969
1959
1972
1971 | 1958
1976
1977
1977 | 1964
1964
1964
1961 | | | NISA8
Descriptor | 004 | | 014
024
024
004
024 | 124 | 004
124
124 | 014 | 004 | | | ORAINAGE
AREA | 13.70 | . 52.
242. | 288.00
1460.00
36.90
53.50
32.00 | 69200.00 | 21.40
73300.00
351.00 | 92960.00
50 5.0 0 | 240.00
66.20
431.00 | | | SITE
SITE | A S S S S S S S S S S S S S S S S S S S | S S S S S S S S S S S S S S S S S S S | NS AS AS | AS AS AS | AS AS AS | 38
38
38
38
38 | AS AS AS | | | TTNUOD | 087
087
087 | 087
087
087
087
087 | 087
087
087
087
087 | 087
003
003
003
087 | 087
087
001
049
003 | 06
06
06
06
06
06
06 | 063
023
023
013 | | | 3TAT2 | 016
016
016 | | 016
016
016
016 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 016
041
041
016
016 | 053
041
041
041 | 041
053
053
053 | | | LONGITUDE | 1164953 | 6313
6315
6315
6305
6370 | 1164648
1164623
1164803
1165434
1165550 | 1165848
1164324
1164324
1164212
1170037 | 1170520
1164150
1174940
1162742
1162617 | 1165836
1181600
1174920
1175730 | 1174332
1174707
1174654
1180355 | | | LATITUOE | 443102
444335
4444335 | 442420
442440
442220
441810
441940 | 441623
441623
441337
442448
441950 | 441444
445448
445448
450503
443040 | 441758
451505
444630
453840
451503 | 460550
451900
452600
453700
453700 | 453712
463650
463551
463020 | | | STATION NAME AND LOCATION | KEITHLY CREEK, AB. DIV., NR. MIDVALE, IDAHO
KEITHLY CREEK AT MOUTH NEAR MIOVALE IDAHO
BEITHLY CREEK NEAR MIDVALE, IDAHO
BEITH OF STAND FOREK, MIDWELE DE TRAUD | CRANE CR AB RES NR CRANE ID HOG CR NR CRANE ID MILL CREEK NR CRANE TENNISON CREEK NEAR SOUTH CRANE SCHOOL, IDAH SOUTH FORK CRANE CREEK NEAR CRANE, IDAHO CRANE CREEK NR MIDVALE IDA | CRANE CREEK AT MOUTH, NEAR WEISER, IDAHO
WEISER RIVER NEAR WEISER, IDAHO
COVE C NR WEISER ID
MANN CREEK ABOVE RESERVOIR NEAR WEISER, IDAH
MONROE CREEK ABOVE SHEEP CREEK NEAR WEISER, | SNAKE RIVER AT WEISER, IDAHO
WILDHORSE R
SE R
INDIAN CREEK BL CUPRUM
SCOTT CREEK ABOVE DIVERSIONS, NEAR WEISER, I | HOG CREEK NEAR WEISER, IDAHO
SNAKE RIVER AT HELLS CANYON DAM ID-OR LINE
POWDER RIVER AT BAKER,OREG.
KURRY CREEK
COPPER CREEK | SNAKE RIVER NEAR ANATONE WASHINGTON
GRANDE RONDE RIVER NEAR HILGARD, OREG.
INDIAN CREEK NR IMBLER
GORDON CREEK NR ELGIN OR
RYSDAM CANYON NR MINAM OR | MINAM RIVER AT MINAM,OREG.
DEADMAN CR NR CENTRAL FERRY,WASH
MEADDW CREEK NR CENTRAL FERRY, WASH.
TUCANNON RIVER NEAR STARBUCK, WASH. | | | HYDROLOGIC
Unit
CODE | 17050124
17050124
17050124 | 17050124
17050124
17050124
17050124
17050124 | 17050124
17050124
17050124
17050124 | 17050124
17050201
17050201
17050201 | 17050201
17050201
17050203
17060101 | 17060103
17060104
17060104
17060104 | 17060105
17060107
17060107
17060107 | - | | AIGSM | | | | | | | | | |----------------------------|--|---|---|---|--|--|--|--| | MO12 032 | 04000 | 0 00 | 0000 | 00000 | 00000 | 00000 | 0000 | | | NOITAXINADRO
3000 | IBOO4
USGS
USGS
USGS
USGS | USGS
USBR
USFS
USFS
USFS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 9 ш и | ш | ппест | ∢ mmmm | ∢шαшш | 4 m m R R | шшкш | | | 3512 TAAS TAM 038 | | > | | | | | | | | BSIS TRAN NEUZ | ш | ш | | | ۷ | | | | | 2026 SED CONCEN | ★ ₹ ₩ ₩ Ø | | ппаап | <u> </u> | Amamm | ▼ mmxx | шшкш | | | OW END
FABY | 1963 | 1970
1978
1978 | 1979
1972
1972
1979 | 1972
1979
1979 | 1972
1972
1973 | 1972
1972
1973 | 1973 | | | OW BEGIN | 1969
1962
1964
1964 | 1960
1962
1975
1975
1975 | 1971
1971
1971
1971 | 1971
1971
1971
1971 | 1971
1971
1971
1971 | 1971
1971
1973
1971
1971 | 1971
1971
1971
1971 | | | NISA8
NOT9183230 | 124
124
004
023 | 124 | 004 | 004
024
024
004 | 00 4
00 4 | 000
4 | | | | ORAINAGE
Area | 491.00
132.00
277.00 | 108800.00 | 15.00 | 195.00
802.00
81.00
7.62 | 6.10 | 6.29 | 16.50
9.10
75.00 | | | TYPE OF
SITE | ************************************** | N N N N N | N N N N N N N N N N N N N N N N N N N | M M M M M M M M M M M M M M M M M M M | SSSSSS | N N N N N | 3 A A A | | | YTNUOJ | 057
075
075
075
075 | 021
037
037
037
037 | 037
037
037
037
037 | 037
037
037
037
037 | 037
037
037
037
037 | 037
037
037
037
037 | 037
037
037
037 | | | 3TAT2 | 0 16
053
053
053
053 | 053
016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016 | | | LONGITUDE | 1165700
1171910
1171048
1172042 | 1190122
1141640
1142000
1142330 | 1144547
1144848
1144954
1144954 | 1144903
1144311
1144355
1144011 | 1143348
1143143
1143325
1143249 | 1142836
1142850
1142815
1142727 | 1143315
1143318
1142915
1142848 | | | LATITUDE | 465500
465530
464357
465232 | 461259
443340
442800
442630
443340 | 435303
435510
440139
440148 | 441547
441715
441606
441450
441550 | 441519
441452
441726
441718 | 441805
441756
441726
441539 | 435544
435546
435907
440023 | | | STATION NAME AND LOCATION | PALOUSE R BL POTLATCH
PALOUSE RIVER NEAR COLFAX, WASH.
S.F. PALOUSE R. AT PULLMAN, WASH
S F PALOUSE R NR COLFAX
PALOUSE RIVER AT HOOPER, WASH. | SNAKE RIVER AT BURBANK, WASH.
CHALLIS C NR CHALLIS ID
CHALLIS C NR CHALLIS ID | SALMON RIVER AT HEAD NR OBSIDIAN ID
BEAVER CREEK NEAR STANLEY, IDAHO
CHAMPION CREEK NEAR OBSIDIAN, IDAHO
FOURTH OF JULY CREEK NEAR OBSIDIAN, IDAHO
VALLEY CREEK AT STANLEY, IDAHO | BASIN CREEK NEAR STANLEY, IDAHO
YANKEE FORK SALMON R NR CLAYTON IDAHO
SALMON RIVER BELOW YANKEE FORK, NEAR CLAYTON
WARM SPRINGS CREEK AT ROBINSON BAR NR CLAYTO
PEACH CREEK NEAR CLAYTON, IDAHO | SLATE CREEK NEAR CLAYTON, IDAHO
HOLMAN CREEK NEAR CLAYTON, IDAHO
THOMPSON C AB PAT HUGHES C NR CLAYTON, IDAHO
PAT HUGHES CREEK NEAR CLAYTON, IDAHO
THOMPSON CREEK NEAR CLAYTON IDAHO | SQUAW CREEK ABOVE BRUND CREEK NR CLAYTON, ID
BRUND CREEK NEAR CLAYTON, IDAHO
SQUAW CREEK BL BRUND CREEK NR CLAYTON ID
SQUAW CREEK NEAR CLAYTON, IDAHO
SALMON RIVER ABOVE EAST FORK NR CLAYTON, IDA | S.F. OF E.F. SALMON R AB W.F. NR CLAYTON, ID W.F. OF E.F. SALMON R AB S.F. NR CLAYTON, ID WEST PASS CREEK NEAR CLAYTON, IDAHO E.F. SALMON P. BL. BOWERY G. S. NR CLAYTON, ID | | | HYBROLOGIC
Unit
Code | 17060108
17060108
17060108
17060108 | 17060110
17060201
17060201
17060201 | 17060201
17060201
17060201
17060201 | 17060201
17060201
17060201
17060201 | 17060201
17060201
17060201
17060201 | 17060201
17060201
17060201
17060201 | 17060201
17060201
17060201
17050201 | | | AIG3M | 0000 | 00000 | 00000 | ۵۵۵۵ | ۵ | | U | |----------------------------|---|--|--
---|--|---|--| | 8013 013 | S 1 1 2 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 | | | 88888 | SSSSS | SSSSS | νννν | | NOITAZNAĐRO
3000 | S S S S S S S S S S S S S S S S S S S | uses
uses
uses
uses
uses | SGS
 SGS
 SGS
 SGS
 SGS | 200
200
200
300
300 | USES
USES
USES
USES | USFS
USFS
USFS
USFS | USFS
USFS
USFS | | SUSP DISCHARGE | ממממ | Z A Z M & | | | ככככ | ככככ | 3333 | | BSI2 TRAY TAM CIR | | | | > | | | | | 3512 TRAS 92U2 | | | ш | w | | | | | SUSP SED CONCEN | M A X Z Z | 0 G | шшшшш | | ₩ 54 C | 2 4 4 4 U W | <u> </u> | | OW END
AA3Y | 1974 | 1979 | | 1972
1979
1970 | 1975
1974
1973 | 1974
1974
1974
1975 | 1974
1976
1974
1974 | | VEAR
Ow Begin | 1971
1971
1970
1970 | 1969
1970
1970
1971
1971 | 1971
1971
1971
1971 | 1972
1973
1965
1962
1977 | 1971
1972
1972
1972
1972 | 1972
1972
1972
1972
1972 | 1972
1972
1972
1972 | | BASIN
Descriptor | | 004 | 004 | 004
024
004 | 900 | | | | DRAINAGE
AREA | 3.30 | 18.40
9.30
5.50
27.50 | 532.00 | 9.38
1800.00
91.20 | 81 | | | | 40 34YT
3TI2 | E E E E E | MS M | MS M | MS M | MS M | M M M M M M M M M M M M M M M M M M M | N N N N | | COUNTY | 037
037
037
037
037 | 037
037
037
037 | 037
037
037
037 | 037
037
037
037 | 059
059
059
059
059 | 059
059
059
059
059 | 059
059
059 | | 3TAT2 | 016
016
016
016 | 016
016
016
016 | 0 0 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 016 016 016 016 016 016 016 016 016 016 | 016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 016
016
016
016 | 0000
6666 | | LONGITUDE | 1142740
1142734
1142656
1143154 | 1142656
1143122
1143143
1142624 | 1141754
1141203
1141709
1141706 | 1141545
1141552
1141518
1141640 | 1134825
1135530
1135530
1135530 | 1135200
1135430
1135600
1140800 | 1140900
1141000
1140700
1140700 | | LATITUDE | 440221
440422
440458
440330
440336 | 440557
440747
440754
440558 | 440911
441036
441040
441115
441329 | 442118
442253
442243
443340
444131 | 443655
453330
453310
453300
452300 | 453330
453330
453230
452900
452800 | 452700
452400
445830
445730 | | STATION NAME AND LOCATION | GERMANIA CREEK NEAR CLAYTON, IDAHO
WICKIUP CREEK NEAR CLAYTON, IDAHO
E.F. SALMON R BL WICKIUP C NR CLAYTON, IDAHO
LITTLE BOULDER CREEK AB BAKER LAKE NR CLAYTO
L BOULDER C BL BO. CHAIN LK OUTLET NR CLAYTO | LITTLE BOULDER CREEK NEAR CLAYTON IDAHO BIG BOULDER CR AT LIVINGSTON MILL NR CLAYTON JIM CREEK AT LIVINGSTON MILL NR CLAYTON ID BIG BOULDER CREEK NEAR CLAYTON, IDAHO BIG LAKE CREEK NEAR CLAYTON, IDAHO | HERD CREEK NEAR CLAYTON, IDAHO
ROAD C ABOVE HORSE BASIN C NR CLAYTON, IDAHO
HORSE BASIN CREEK NEAR CLAYTON IDAHO
ROAD CREEK NEAR CLAYTON IDAHO
E FK SALMON RIVER NR CLAYTON ID | MALM GULCH NEAR CLAYTON, IDAHO
BAYHORSE CREEK NEAR CHALLIS IDAHO
SALMON RIVER NEAR CHALLIS, IDAHO
CHALLIS CR BELOW JEFFS CR NR CHALLIS IDAHO
PAHSIMERDI R NR MAY ID | MORSE CREEK AB DIV NR MAY ID
ANDERSON CREEK
ANDERSON CREEK
ANDERSON CREEK | DAHLONEGA CREEK
DAHLONEGA CREEK
DAHLONEGA CREEK
INDIAN CREEK
INDIAN CREEK | INDIAN CREEK
INDIAN CREEK
NF IRON CREEK
NF IRON CREEK | | HYDROLOGIC
Unit
Code | 17060201
17060201
17060201
17060201 | 17060201
17060201
17060201
17060201 | 17060201
17060201
17060201
17060201 | 17060201
17060201
17060201
17060201 | 17060202
17060203
17060203
17060203 | 17060203
17060203
17060203
17060203 | 17060203
17060203
17060203
17060203 | | AIG3M | | ^ | | 00000 | 0.0 | | | | |----------------------------|---|--|---|--|--|--|--|--| | MOTZ G3Z |
10.0.0.0.0 | | Ω | 00000 | 00 | 0000 | | | | MOITAZ INADRO
3000 | ISFS
ISFS
ISFS
ISFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS | | | SUSP DISCHARGE |
22222 | 22222 | 22222 | 22222 | 2222 | 22222 | 2222 | | | 3512 TRA9 TAM 038 |
 | Σ | > | | | | 4 4 | | | SIZIZ TRAS SZUZ | | | | | | | | | | 2025 SED CONCEN |
<u> </u> | 040 4
≻≻≻≻≻ | <u> </u> | 88888 | 8 8 2 5 5 5
5 4 4 7 4 4 | 80 80 80 80 × × × × × × × × × × × × × × | <u> </u> | | | OW END
YEAR | 197
197
197 | 197:
197:
197: | 197,
197,
197, | 1978
1978
1978
1978 | 1978
1978
1978
1978 | 1978
1978
1978 | 1978 | | | OW BEGIN |
1972
1972
1972
1972
1972 | 1972
1972
1972
1977
1977 | 1972
1972
1972
1976
1976 | 1975
1975
1975
1975 | 1975
1975
1972
1972
1972 | 1974
1975
1975
1975 | 1975
1974
1973
1973 | | | NIZAB
Descriptor | | | | | | | | | | DRAINAGE
AREA | | | | | | | | | | TYPE OF | N N N N N N N N N N N N N N N N N N N | M M M M M M M M M M M M M M M M M M M | ****** | X X X X X X X X X X X X X X X X X X X | ****** | ****** | N N N N N N N N N N N N N N N N N N N | | | COUNTY | 059
059
059
059 | 059
059
059
059 | 059
059
059
059 | 037
037
037
037 | 037
037
059
059
059 | 059
059
059
059 | 059
085
085
085 | | | 3TAT2 | 016
016
016
016 | 016
016
016 | 016
016
016
016 | 016
016
016
016 | 0 1 6
0 1 6
0 1 6
0 1 6 | 016
016
016
016 | 016
016
016 | | | rude | 000000 | 2100
1900
0500
2600
3400 | 80008 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 88288 | 3000
4400
4400
4330 | 5 100
5 100
4 2 2 0 | | | LONGITUDE | 140630
140430
140330
143530
142200 | 4 4 4 E | 133000
133200
133100
131130 | 151700
150830
150830
150130 | 144830
144800
143110
143130
143200 | 4444 | <u> 4 4 m</u> m | | | <u>u</u> | | 00000 | 330 | 000
030
1400
1400 | | | | | | LATITUDE |
445530
445530
445500
451800
450300 | 450230
450100
452200
451930
443700 | 443830
443830
443900
444000
450747 | 443130
444000
444030
444400
444300 | 444800
444800
445045
445100
445130 | 444950
445400
445430
445730
450500 | 450530
450606
444943
444318 | | | STATION NAME AND LOCATION | NF IRON CREEK
NF IRON CREEK
NF IRON CREEK
MF SALMON R AT MOUTH
MUSGROVE CREEK | MUSGROVE CREEK
MUSGROVE CREEK
MOOSE CREEK
SALMON R NR SHOUP ID
BIG EIGHTMILE CREEK | BIG EIGHTMILE CREEK
BIG EIGHTMILE CREEK
BIG EIGHTMILE CREEK
HAWLEY C AT NATL FOREST BOUNDARY
LEMHI R NR SALMON ID | | CAMAS CREEK
CAMAS CREEK
CAMAS CREEK | SILVER CREEK MONITORING STATION | LOWER BIG CR
LOWER POVERTY X-S
DOLLAR CR X-S | | | HYDROLOGIC
Unit
Code | 17060203
17060203
17060203
17060203 | 17060203
17060203
17060203
17060203 | 17060204
17060204
17060204
17060204 | 17060205
17060205
17060205
17060205 | 17060205
17060205
17060206
17060206 | 17060206
17060206
17060206
17060206 | 17060206
17060206
17060208
17060208 | | | AIG3M | | | | 0000 | 0 40 | ۵ | | · · · · · · · · · · · · · · · · · · · | |----------------------------|-----------------------------|---|---
--|--|---|--|--| | | 10.10 | ~~~~~~~~~ | <u> </u> | N N N N N | w w w w | w w w w w | NNNN | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | NOITASINADRO
3000 | 7 2 3 | S F S F S F S F S F S F S F S F S F S F | S | USGS
USGS
USFS
USFS | USFS
USFS
USFS
USFS | SSTS | SF | | | SUSCHARGE | 22 | <u> </u> | 2 2222 | | <u> </u> | 2222 | 2222 | | | 3512 TRA9 TAM 038 | 4 4 | বৰৰ বৰ্গত | ⋖ හහගගග | | <u>∞</u> ≻ | | | | | 3512 TAA9 92UZ | | | | | I | | | | | SUSP SED CONCEN | | 000 | | | <u> </u> | 0000 A | 0004
0004 | | | OW END
AA3Y | | | 1971 | 1975
1975
1975 | 1975 | 197
197
197
197
197 | 1972
1972
1975 | | | OW BEGIN | തത | 1973
1966
1966
1973
1976
1976 | <i></i> | 1973
1969
1974
1973
1973 | 1974
1975
1975
1977
1965 | 1972
1971
1971
1971 | 1971
1971
1971
1975 | | | NISA8
AOT4IRJ230 | | | | 124 | 400 | | | | | ORAINAGE
AREA | | | | 330.00 | 13550.00 | | | | | TYPE OF | X X | ************************************** | A A A A A A A A A A A A A A A A A A A | AS SW
SW
SW
SW | AS S A S S S S S S S S S S S S S S S S | M S M S M S M S M S M S M S M S M S M S | MS SW
SW
SW | | | YTNUOD | ດດ | യയയെ യയയയ
വവവവ വവവ | വവവവര | 085
085
049
049 | 049
049
049
049 | 003
003
003
003 | 003
003
049 | | | 3TAT2 | 16 | 000 000 | 0 | 016 | 0016 | 016 | 016 | | | LONGITUDE | 4200 | 4200
4054
4112
4112
4248
3442
3306 | 3521
4500
4333
4512 | 152010 (160710 (160950 (160950 (190950) (190950 (190950 (190950 (190950 (190950 (190950 (190950 (190950) (190950 (190950 (190950 (190950 (190950 (190950) (190950 (190 | 60800
60200
60100
61922
61923 | 2352
2901
2906
2653
2614 | 2546
2549
2541
3426 | | | 101 | 115 | 6 C C C C C C C C C C C C C C C C C C C | | ±==== | | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 116 | | | LATITUDE | 4 4 4 | 443742
443600
443430
443012
443012
450906
451130 | 444635
451244
444512
445908
450030 | 445930
445611
453825
453430
452510 | 452530
452212
452555
454504
454501 | 452102
451058
451104
451329
451501 | 451540
451540
451544
460651 | | | STATION NAME AND LOCATION | DIME CR X-S
CABIN CR X-S | SF PLUNGE X-S FISH TRAP X-S LOWER STOLLE X-S UPPER STOLLE X-S ELK CR #1 | NORTH TWIN C WEIR SF K CREEK TEAPOT #8 F SALMON R AT GAGE EF OF SOUTH FORK OF SALMON AT SF SECESH R AB LICK CR | S FK SALMON RIVER NR KRASSEL RANGER STATION E FK OF S FK SALMON RIVER NR STIBNITE ID NORTH FORK SLATE CR JOHN DAY AT GAGE ALLISON CREEK | KELLY CR
FRENCH CR
S R AT FRENCH CR
SALMON R AT WHITE BIRD ID
SALMON RIVER AT WHITEBIRD, IDAHO | RAPID RIVER AT GAGE RAPID RIVER AB LAKE CREEK LAKE CREEK PARADISE CREEK RAPID RIVER AB COPPER CREEK | CASTLE CREEK RAPID R AB CASTLE CREEK RAPID R BL CASTLE CREEK SWIFTWATER CR | | | HYDROLOGIC
Unit
Code | 17060208
17060208 | 17060208
17060208
17060208
17060208
17060208
17060208 | 17060208
17060208
17060208
17060208
17060208 | 17060208
17060208
17060209
17060209 | 17060209
17060209
17060209
17060209 | 17060210
17060210
17060210
17060210 | 17060210
17060210
17060210
17060302 | | | MEDIA | | | | | | | | | |----------------------------|--|---|---|---|--|---|--|--| | MOTZ GSZ | 00000 | ممومه | 00000 | 00000 | 00000 | 00000 | 0000 | | | ONGANIZATION
SODE | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | 10004
USFS
USFS
USFS
USFS | USGS
USGS
USGS
USFS
USFS | USFS
USFS
USFS
USFS | | | SUSP DISCHARGE | ααα | αχααχ | | 7 | ፚ ኧ ኧ ኧ | m & I & & | & & & | | | 35:2 TRAS SUZ | | | | ш | | | | | | SUSP SED CONCEN |
4 4 | | 44444 | 4444 | ⋖ | N N I | | | | OW END
YEAR | 1975
1975
1974
1974 | 1974
1974
1974
1974 | 1975
1975
1975
1975 | 1975
1975
1975
1975 | 1974
1974
1974 | 1974 | 1974
1974
1974
1974 | | | OW BEGIN | 1975
1972
1974
1974 | 1974
1974
1974
1974 | 1975
1972
1975
1975 | 1975
1974
1972
1972 | 1970
1974
1974
1974 | 1972
1974
1958
1974 | 1974
1974
1974
1974 | | | BASIN
Descriptor | | | | 004 | | 0004
0024
0004 | | | | DRAINAGE
AREA | | | | 2440.00 | | 150.00
235.00
9570.00 | | | | TYPE OF
SITE | A A A A A A A A A A A A A A A A A A A | MS MS MS NS | MS AN SW | M M M M M M M M M M M M M M M M M M M | MS M | MS M | SERE | | | YTNUGO | 049
049
049
049 | 049
049
049
049 | 049
049
049
049 | 049
049
049
035 | 035
049
027
027
027 | 069
069
069
035
035 | 035
035
035
043 | | | 3TAT2 | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 010
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
015 | | | LONGITUDE |
1153357
1151639
1153000
1153000 | 1153000
1153000
1154000
1154000 | 1152020
1152010
1152409
1152406 | 1151745
1153700
1153440
1152949
1161910 | 1161915
1154000
1163000
1163000 | 1161424
1164815
1164935
1152000 | 1153000
1152000
1151000 | | | LATITUDE | 460620
460150
462000
461000 | 462000
461000
461000
461000 | 454150
454012
453908
453903
454314 | 454452
455200
454944
455345
460316 | 463030
462000
465000
465000 | 460948
462536
462655
464000 | 464000
464000
464000
454300 | | | STATION NAME AND LOCATION | ELK CITY CR
MEADOW CREEK AT GAGE
CAMP CREEK
FOUR BIT CREEK
LUNCH CREEK | RELASCOPE CREEK
WALDE CREEK
FAN CREEK
TROUT CREEK
POLAR CREEK | SCHOONER CREEK TRAPPER CREEK AT GAGE WEST FORK RED RIVER SOUTH FORK RED RIVER WATERGATE CREEK | DITCH CREEK WEST FORK NEWSOME CR MODSE CREEK LITTLE ELK AT GAGE N FK CLEARWATER RIVER AT AHSAHKA ID | NF CLEARWATER R AT AHSAHKA MIKE WHITE CREEK BONAMI CREEK DISALTO CREEK SECUNDA CREEK | LAWYER CREEK NR NEZPERCE IDAHO
LAPWAI CREEK NR LAPWAI ID
CLEARWATER RIVER AT SPALDING IDAHO
CDUGAR CREEK
SHEEP MOUNTAIN CREEK | CAMP CREEK WOLF CREEK COOL CREEK ICE CREEK | | | HYDROLOGIC
Unit
Code | 17060302
17060302
17060303
17060303 | 17060303
17060304
17060304
17060304 | 17060305
17060305
17060305
17060305 | 17060305
17060305
17060305
17060305 | 17060306
17060306
17060306
17060306 | 17060306
17060306
17060307
17060307 | 17060307
17060307
17060307 | | | MEDIA | | | | | | | /\ C = = | | |----------------------------|--|--|--|---|---|---|---|--| | NOT2 G32 | 4 0 | 00000 | 0000 | 00000 | S S | 00000 | | | | MOITASINADRO
3000 | USGS
USBR
USBR
USGS
USGS | USGS
USBR
USBR
USBR
USBR | USBR
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USFS
USGS | USGS
USSC!
USGS
USGS
DROO! | USBR
USBR
USBR
USBR
USBR | USBR
USEPA
USEPA
USGS | | | | sn
sn
sn
sn | sn
sn
sn
sn | SO S | SO CS | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | S S S S S S S S S S S S S S S S S S S | SSSS | | | SUSP DISCHARGE | 7.7 | 7 | X 40 m | 7 2E | N ▼ N | | | | | 3512 TRAS TAM 038 | | | | | ~ | | | | | SUSP SED CONCEN | DOZZE
VOZZE | NEEEE | ■ A U □ O | # 0 ₹ 0 X | Z B B B B | EEEE | Σααα | | | 8A3Y | 7 7 9 9 9 9 | ωσσσσ | | | | 9 999 | 0444 | | | OW END | 196
197
197
196
196 | 1966
1979
1979
1979 | 1979
1968
1967
1968 | 197 | 1973
1970
1975 | 197
197
197 | 197
197
197
197 | | | RA∃Y | 9889 | - 20 20 10 10 | 80-40 | 4 00 00 00 | | ហ្វហ្វហ្វហ្វ | က်ပြောက် | | | OM BECIN | 1966
1968
1968
1960 | 196
197
197
197 | 1973
1962
1961
1964 | 1964
1958
1959
1966
1966 | 1960
1977
1963
1961
1972 | 197
197
197
197 | 197
197
197 | | | ADT9183230 | 24 | 4 | 000 | 888 | 124
024
124 | | | | | NISAB | 12. | 900 | | 8 44 | | | | | | | 114000.00 | 8 | 88 8 | 657.00 | 8 88 | | | | | DRAINAGE
AREA | 00 | 13 | 155.00
91.00
361.00 | 131. | 90
50 | | | | | DRAI | 140 | 0 | ~ ო | 91 1 | 22 | | | | | _ | 2 | | | | | | | | | TYPE OF | SW
OT
DR
SW
SW | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | A S S S S S S S S S S S S S S S S S S S | AS S AS | AS W S W S W S W S W S W S W S W S W S W | AS AS | | | YTNUOD | 035
005
005
059
039 | 039
013
071
013 | 071
059
071
071 | 071
071
059
059 | 059
059
049
049 | 680
680
680
680
680 | 039
077
077
077 | | | STATE | 016 (053 (053 (054 (055 (055 (055 (055 (055 (055 (055 | ოოოოო | ოოოოო | w w w + + | 041
041
041
028 | ოოოოო | 053
053
053
053 | | | | | 00000 | 00000 | 00000 | | 00000 | | | | LONGITUDE | 6 1700
85800
90400
91745 | 202604
175515
184100
174800
180240 | 11730
12240
11125
12315
11315 | 14059
14555
14555
11500 | 1191933
1190530
1193256
1200035
1215535 | 2445
2400
3025
3025
3213 | 12900
11604
11733
11609 | | | ONG | 6 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 2026
1755
1841
1748
1802 | 8888 | 8 8 8 8 8
4 4 4 ± ± | 9 | | 2 | | | _ | ===== | | ===== | ##### | | 5555 | 5555 | | | 30 | 30 00 00 00 00 00 00 00 00 00 00 00 00 0 | 455
715
230
700
726 | 30
52
52
53
53
53
53
53
53
53
53
53
53
53
54
54
54
54
54
54
54
54
54
54
54
54
54 | 15
15
10
11 | 11
14
02
12
30 | 30
30
30
30
30
30
30
30
30 | 45
58
50
58
558 | | | LATITUDE | 463300
460600
461000
455605 | 454455
461715
460230
461700 | 461730
455525
460455
460120
461628 | 460229
460215
460216
454300 | 455411
452714
452102
454512
453830 | 455045
454730
455906
460002
454655 | 454745
461258
460906
461258 | | | - 2 | | 44444 | 44444 | 44444 | 44444 | 44444 | 4444 | | | | A.0 | | | E G | | | | | | | UMATILLA | | | WASH.
TOUCHET
GIBBON, OREG | | | ۵ | | | | IAT | | RESCOTT
REEWATER,OREG.
LLA WALLA, WA.
PLACE, WASH | WASH.
TOUCHET
GIBBON, | | | G
G
GLENWOOD | | | | | | 9. 4.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | WASH
TOUCI
GIBB(| | | Ž | | | | Ö A | កា កា | F ER | | Z .: | ā XX | SUM | | | TON | IDAHO
K WA
CK WA
AM, NEAR | WA.
BRIDGE
BRIDGE | VAT
WA
WA | CR NR | G
Vinson
Reg.
Oreg.
Eg | SRD
AKE
LA | | | | OCATION | T A CK | 88. Z | EESC
LA
LAC | CR N | VINS
VINS
PEG
ORI | 77.8 | NT HUS | | | - | AHKA
EWICI
VEWIC | 10201 | G 2MI E PRE
MILTON-FRE
CR NR WALE
COLLEGE PE | . O & ₹ | E C C C C C C C C C C C C C C C C C C C | TRO ST | ∢ ∪30 | | | E A | AHSAHKA
(ENNEWIC
KENNEWI
IGNARY D | VEL
ROA
Y 1
AYT | ES. | SP SE | R A B B B B B B B B B B B B B B B B B B | NT .55 | GAGE
A SPR
A GLEN | | | MAM | AH;
KEN
KEN | SE T F | E E Z J J | RAI | HENDEL | A S T | | | | 8 | AB
UR K
NR
NT M | | % ₹ 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | D X X X | 11
10
12
17
17
17
17 | 2002 | JSGS G
SODA
NEAR
SODA | | | STATION NAME AND | R A
Y NE
IN P | AT S WE BE | NE AT A | AT
VEI
BL
AE | ¥ + 2 f | N X I | 3 X 3 | | | S | RAY SAI | A C C | X 4 8 X X | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | A D A N D | O H C Z Z | MON R U
R BLW
CREEK
R BLW | | | | ATER R AB AHSAHK
STEWAY NR KENNEWI
5. DRAIN NR KENNEWI
RIVER AT MCNARY
AT ALDERDALE, WA | X | I X Y Z Z | LA E | A B B B B B B B B B B B B B B B B B B B | M O N O N O N O N O N O N O N O N O N O | ညှို့ ထပ်ထ | | | | RAS IN A SIN | CREEK NEAR RODSEVELT
OUCHET R AT PVT ROAD
HET R AT U S HIWAY 12
DUCHET R 2 MI S DAYTO
HET R 1 MI BELOW DAYT | A A B B B B B B B B B B B B B B B B
B B | ALAL | 4 0000 | AK AK | SAL
FAT
ODY
AT | | | | CLEARWATER
FER WASTEWA
SHLANDS DRA
UMBIA RIVE | 2
1
1
1
1
1
1
1
1
1
1 | A A A A A | HE'A VA | ILL
ER
OW
ADE | LES
TAUC
E S | | | | | | ROCK CREEK NEAR RODSEVELT. N F TOUCHET R AT PVT ROAD TOUCHET R AT U S HIWAY 12 SF TOUCHET R 2 MI S DAYTON TOUCHET R 1 MI BELOW DAYTO | TOUCHET R BD XING 2MI E PRWALLA WALLA R AT MILTON-FRMILL CR BLW BLUE CR NR WALYELLOWHAWK CR NR COLLEGE PTOUCHET RIVER AT BOLLES, W | TOUCHET RIVER AT TOUCHET WALLA WALLA RIVER NEAR TOU WALLA WALLA R BL WARM SPR CORPORATION UMATILLA RIVER AB MEACHAM | UMATILLA R NR UMATILLA ORE
BUTTER C AB HOG HOLLOW NR
WILLOW CREEK AT HEPPNER, O
WILLOW CREEK NR ARLINGTON,
CASCADE SALMON HATCHERY OR | RATTLESNAKE C 5.5 M CNTY RD BRDG
WF MAJOR CREEK MILE 3.5
TROUT LAKE C IM E OF TROUT LAKE
WHITE SALMON R IM EAST TROUT LAKE
WHITE SALMON RIN NORTHWESTERN LK | WHITE SALMON R USGS
KLICKITAT R BLW SODA
BIG MUDDY CREEK NEAR
KLICKITAT R BLW SODA | | | | | | | | | | | | | 2190 | 17060308
17070101
17070101
17070101 | 17070101
17070102
17070102
17070102 | 17070102
17070102
17070102
17070102 | 17070102
17070102
17070103
17070103 | 17070103
17070103
17070104
17070105 | 17070105
17070105
17070105
17070105 | 17070106
17070106
17070106
17070106 | | | HYDROLOGIC
Unit
Code | 0560
070
070 | 070
070
070 | 070 | 070 | 270 | 070
070
070 | 070
070
070 | | | HA | 271 | LLLL | 7777 | 5555 | <u> </u> | FFFF | <u> </u> | | | | | | | | | | | | | LIAN T | | | | | | | | | | |----------------------------|---------------------------|--|--|---|--|--|--|--|---| | SED STOR | ٥ | 0000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | · | | ONGANIZATION | USGS | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USEPA
USFS
USFS
USFS | USFS
USFS
USFS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | MIIX | ZIZ N D | NDNAZ | ব ব ব ш | | ΣO | 0222 | | | ISIZ TRAG TAM G38 | | | | | | | | | | | 3512 TRAM 42U2 | | ш 4 ш | Am m | | <u> </u> | | Z | | | | SUSPENSED CONCEN | | MIIX | XIXUD | NDNAZ | 444mm | 0 I O O O | XXZEO | OZZZ | | | OW END
RABY | 1974 | 1967
1967
1967 | 1967
1967
1967 | 1975
1975
1974
1974 | 1973
1974
1974 | 1972
1978
1978 | 1978
1978
1978 | 1990 | | | OW BEGIN | 1973 | 1949
1962
1965
1965 | 1965
1962
1961
1961 | 1958
1974
1957
1973 | 1973
1974
1974
1951
1951 | 1971
1973
1973
1979 | 1973
1972
1973
1966
1971 | 1976
1978
1978
1979 | | | BASIN
BOT9183230 | 024 | 8 88 | 004
004
004
004 | 124 | 024 | | 014 | 014 | | | DRAINAGE
AREA | , s
, s | 1297.00
231.00
590.00
1680.00 | 121.00
2520.00
515.00
7580.00
1548.00 | 2160.00
205.00
2700.00 | 526.00
10500.00 | | 240400.00
47.90 | 5.46
8.32
3.06 | | | TYPE OF
SITE | A.S. | NS N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | MS MS MS | MS M | AS AS AS | N N N C | · | | COUNTY | | 039
023
023
023 | 059
023
023
055
029 | 013
013
013
031
031 | 065
031
065
055
011 | 051
051
051
051 | 051
051
051
051 | 051
051
051 | | | 3TAT2 | 053 | 053
041
041
041 | 041
041
041
030 | 0000
1140
1140 | 041
041
041
053 | 053
041
041
041 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0000
1440
1141 | | | LONGITURE | 1211733 | 1211232
1184300
1193220
1193730 | 1184910
1192550
1190825
1202430
1140736 | 1201500
1204354
1204740
1211332
1212340 | 1212340
1212340
1210855
1205405
1224145 | 1224012
1220300
1220300
1220200
1220000 | 1215400
1215400
1215400
1220135
1220050 | 1220136
1220205
1220340
1220313 | | | LATITUDE | | 454524
442715
442540
443115 | 450925
444850
445320
453516
482944 | 440700
440340
440650
444253
445708 | 445708
445708
445124
453720 | 453730
453000
453000
453000 | 453000
453000
453000
453645
452950 | 452826
452940
452928
452741 | | | STATION NAME AND LOCATION | ATO MIDDY OP NP OF FNWOOD | KLICKITAT R NR PITT
JOHN DAY RIVER AT PRAIRIE CITY, OREG.
SO FK JOHN DAY RIVER NR DAYVILLE,OREG.
JOHN DAY R AT PICTURE GORGE. NR DAYVILLE,ORE | CAMAS CREEK NEAR UKIAH, OREG.
N FK JOHN DAY R AT MONUMENT, OREG.
M FK JOHN DAY R AT RITTER, OREG.
JOHN DAY R AT MCDONALD FERRY,OREG.
N F FLATHEAD RIVER NEAR COLUMBIA FALLS, MT. | CROOKED RIVER AT POST, OREG.
BEAR CREEK NEAR PRINEVILLE,OREG.
CROOKED R NR PRINEVILLE, OREG.
CAMPBELL CREEK NR WARMSPRINGS,OREG.
COYOTE CREEK NEAR SIMNASHO,OREG. | BEAVER CR NR SIMNASHO,OREG.
QUARTZ CREEK NEAR SIMNASHO,OREG.
WARM SPRINGS RIVER NR KAHNEETA HOT SPRINGS,O
DESCHUTES RIVER AT MOODY, NEAR BIGGS OREG
VANCOUVER WESTSIDE PRIMARY PLANT | VANCOUVER EAST ACT SLDG PLT
COUGAR CR AT S-10 <
DEER CR AT S-10 <
NORTH FORK AT RM .1 ABV S10 | COLUMBIA RIVER AT WARRENDALE,OREG.
BULL RUN R NR MULTNOMAH FALLS, OREG. | FIR CREEK NEAR BRIGHTWOOD,OREG.
NO FK BULL RUN R NEAR MULTNOMAH FALLS,OREG.
COUGAR CREEK NEAR BULL RUN,OREG.
CAMP CREEK NEAR BULL RUN,OREG. | | | HYDROLOGIC
Unit
Code | 17070406 | 17070106
17070201
17070201 | 17070202
17070202
17070203
17070204 | 17070304
17070304
17070306
17070306 | 17070306
17070306
17070306
17070306
17080001 | 17080001
17080001
17080001
17080001 | 17080001
17080001
17080001
17080001 | 17080001
17080001
17080001 | | | AOTZ G32
AIG3M | 0000 | 00000 | 00040 | 00000 | DOOOO | 00000 | 0000 | | |----------------------------|--|--|---|--|---|---|---|--| | ORGANIZATION
3000 | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USSCS
USSCS | USGS
USGS
USGS
USGS
USGS | USER
USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR
USBR | USBR
USBR
USBR
USBR | | | SUSP DISCHARGE | 2 N | vα | `αα ∢ Ζ | Z ~ Z Z | | | | | | 3512 TRAS TAM 038 | | | | | | | | | | SUSP PART SIZE | 42 | α | | | | | | | | NED CONCEN | ZUAZŒ | NROAR | αα ∢ ωΖ | 20220 | m 00 00 00 | 000000 | <u> </u> | | | OW END
Year | 1980 | 1971 | 1975
1975
1979 | 1979
1979
1979
1979 | 1978
1974
1974
1974 | 1975
1974
1975
1974 | | | | OW BEGIN | 1978
1962
1978
1953 | 1968
1968
1950
1974
1964 | 1969
1969
1972
1977
1950 | 1949
1972
1961
1962
1972 | 1972
1972
1972
1972 | 1972
1972
1972
1972
1972 | 1972
1972
1972
1972 | | | BOTGIRDS30 | 013 | 124
124
004
124 | 014 | 00 4
00 4
00 4 | | | | | | DRAINAGE
AREA | 15.40
241000.00
731.00 | 3.29
1030.00
1400.00
1461.00
2349.00 | 317.00 | 106.00
53.10
174.00 | | | | | | TYPE OF | ************************************** | M M M M M M M M M M M M M M M M M M M | A A A A A A A A A A A A A A A A A A A | N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | | | COUNTY | 005
011
051
015 | 041
041
041
041 | 007
007
057
043
047 | 043
043
043
043
053 | 005
071
071
053
067 | 067
067
067
067
067 | 067
067
067
067 | | | 3TAT2 | 041
053
041
053 | 053
053
053
053
053 | 041
041
041
041 | 0041 | 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 | 0000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | LONGITUDE | 1220622
1224030
1224044
1224044
1225630 | 1221934
1220551
1223654
1225035 | 1233555
1233725
1165700
1230410
1220600 | 1220740
1222123
1223035
1222215
1232320 | 1222700
1230411
1232935
1232655
1231317 | 1231259
1230711
1230220
1230317
1230034 | 1225653
1225658
1224753
1224513 | | | LATITUDE | 452638
453730
453721
453211
460812 | 460717
462813
463038
462619
460844 | 460615
460655
455455
442848 | 444510
444506
442335
443055
445450 | 450600
451326
450835
445815
452643 | 453558
453823
453800
453008
4531111 | 452952
452658
452339
452420 | | | STATION NAME AND LOCATION | SOUTH FORK BULL RUN RIVER NEAR BULL RUN,OREG
COLUMBIA RIVER AT VANCOUVER,WASH.
WILLAMETTE RM 11.3,DOWNSTREAM OF DREDGE,PORT
LEWIS RIVER AT ARIEL, WASH
LONGVIEW EAST PRIMARY PLANT | DRY CREEK NEAR COUGAR, WASH.
COWLITZ RIVER NR RANDLE, WASH.
COWLITZ RIVER BELOW MAYFIELD DAM, WASH.
COWLITZ RIVER AT TOLEDO, WASH.
COWLITZ RIVER AT KELSO, WASH. | WATERWORKS CREEK NR SVENSEN OREGON SITE NO 3 WATERWORKS CREEK NR SVENSEN OREGON SITE NO 3 PALQUSE RIVER NR POTLATCH ID BUTTE C AB SODOM C NR HALSEY OR NO SANTIAM R BL BOULDER CR NR DETROIT, OREG. | BREITENBUSH R ABV CANYON CR NR DETROIT, OREG
LT ND SANTIAM R AB EVANS CR NR GATES,OREG.
SOUTH SANTIAM RIVER BELOW CASCADIA, OREG.
MIDDLE SANTIAM R NEAR CASCADIA,OREG.
RICKREALL C NR DALLAS AT GAGE | YAMHILL R AT DAYTON BOAT RP
WILLAMINA C NR WILLIAMINA
MILL CR NR WILLIAMINA AT GAGE
TUALATIN R AT CHY GR CNT RD BRDG | GALES CR BALM GR CNT RD BRDG W F DAIRY CR N BKS HWY 26 BRDG E F DAIRY CR MTNDALE CNT RD BRDG TUALATIN R CORNELIUS CNT RD BRDG DAIRY CR HILLSBORD HWY 8 BRDG | ROCK CR HILLSBORG CNT RD BRDG TUALATIN R FARMINGTN HARRIS BRDG TUALATIN R TUALATIN HWY 99W BRDG FANNO CR DURHAM CNT RD BRDG | | | HYDROLOGIC
Unit
Code | 17080001
47080001
17080001
17080002 | 17080003
17080004
17080005
17080005 | 17080006
17080006
170876AF
17090003 | 17090005
17090005
17090006
17090006 | 17090007
17090008
17090008
17090008 | 17090010
17090010
17090010
17090010 | 17090010
17090010
17090010 | | | WEDIV | | | | | | | | | |----------------------------|---|--|--|--|---|--|--|---| | NOTZ G32 | 00400 | 00000 | 00000 | 00000 | 00000 | 00000 | 0004 | | | ONGANIZATION
3003 | USBR
USGS
USFS
USGS | uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USEPA
USGS | | | SUSP DISCHARGE | 2 4 m | | | | | α | αα | | | SIZ TAA9 TAM 038 | | ··· | | ·
 | | | | | | SUS TRA 42U2 | 20 m | 44444 | 44 | 44 4 | 4 4 4 | <u> </u> | Z I W W | | | | - vo | 000000 | 00000 | 00000 | 00000 | 00000 | 520 | | | OW FUD
YEAR | 197 | 197
197
197
197 | 1980
1980
1980
1980 | 1980
1980
1980
1980 | 1980
1980
1980
1980 | 1980
1980
1980
1980 | 197 | | | OM BEGIN | 1972
1962
1967
1975 | 1978
1978
1978
1978 | 1978
1978
1978
1978 | 1978
1978
1978
1978 | 1978
1978
1978
1978 | 1978
1978
1978
1978 | 1959
1978
1971
1965 | | | BASIN
DESCRIPTOR | 124 | | | | | | 004
004
024 | | | DRAINAGE
Area | 706.00 | | | | | 86.30 | 74.10
445.00
48.00 | | | 10 19YT
3T12 | N N N N N N N N N N N N N N N N N N N | AS A | MS MS | MS MS MS | MS AN AS | M M M M M M M M M M M M M M M M M M M | MS S MS | | | YTNUOD | 005
005
051
051 | 051
051
051
051 | 051
051
051
051 | 051
051
051
051 | 051
051
051
051 | 051
051
051
051 | 031 | • | | 3TAT2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 00000 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0 0 0 0 0
1 1 1 1 1 1 1 | 041
041
053 | 053
053
053
053 | | | LONGITUDE | 1224030
1224030
1215510
1222356
1222356 | 1223942
1223935
1223918
1223927
1223938 | 1224018
1224020
1224020
1224022 | 1224022
1224047
1224047
1224047
1224055 | 1224055
1224055
1224100
1224100
1224100 | 1224105
1224105
1224105
1224115
1243332 | 1233723
124 1850
1225748
1230755 | | | LATITUDE | 452103
452103
450100
453044
453103 | 452858
452909
452923
452925
452925 | 453152
453154
453154
453156
453156 | 453156
453213
453213
453213
453218 | 453218
453218
453222
453222 | 453225
453225
453225
453233
475724 | 473546
473220
463942
463245 | | | STATION NAME AND LOCATION | TUALATIN R W LINN HWY 212 BRDG
TUALATIN RIVER AT WEST LINN,OREG.
BIG BOTTOM
KELLY CR ON KANE RD NR GRESHAM
WILLAMETTE RIVER AT PORTLAND,OREG. | WILLAMETTE RM 15.3 ,ROSS ISLAND LAGOON,PORTL WILLAMETTE RM 15.1 ,ROSS ISLAND LAGOON,PORTL WILLAMETTE RM 14.8 ,EAST CHANNEL,PORTLAND,OR WILLAMETTE RM 14.7 ,ROSS IS.LAGOON OUTL.PORT WILLAMETTE RM 14.3 ,EAST CHANNEL, PORTLAND,O | WILLAMETTE RM 11.8 ,UPSTREAM OF DREDGE,PORTL WILLAMETTE RM 11.75,UPSTREAM OF DREDGE,PORTL WILLAMETTE RM 11.75,UPSTREAM OF DREDGE,PORTL WILLAMETTE RM 11.7 ,UPSTREAM OF DREDGE,PORTL WILLAMETTE RM 11.7 ,UPSTREAM OF DREDGE,PORTL | WILLAMETTE RM 11.7 ,UPSTREAM OF DREDGE,PORTL WILLAMETTE RM 11.25,DOWNSTREAM OF DREDGE,POR | WILLAMETTE RM 11.1, DOWNSTREAM OF DREDGE, POR WILLAMETTE RM 11.1, DOWNSTREAM OF DREDGE, POR WILLAMETTE RM 11.0, DOWNSTREAM OF DREDGE, POR WILLAMETTE RM 11.0, DOWNSTREAM OF DREDGE, POR WILLAMETTE RM 11.0, DOWNSTREAM OF DREDGE, POR | WILLAMETTE RM 10.9 ,DOWNSTREAM OF DREDGE,POR
WILLAMETTE RM 10.9 ,DOWNSTREAM OF DREDGE,POR
WILLAMETTE RM 10.9 ,DOWNSTREAM OF DREDGE,POR
WILLAMETTE RM 10.7 ,DOWNSTREAM OF DREDGE,POR
DICKEY R AB COLBY CR NR LA PUSH, WASH. | N.F. QUINAULT RIVER NEAR AMANDA PARK, WASH. QUEETS RIVER NEAR CLEARWATER, WASH. CHEHALIS SECONDARY PLANT SMITH FORK CHEHALIS R AT ROISTFORT, WASH. | | | HYDROLOGIC
Unit
Code | 17090010
17090010
17090011
17090012 | 17090012
17090012
17090012
17090012 | 17090012
17090012
17090012
17090012 | 17090012
17090012
17090012
17090012 | 17090012
17090012
17090012
17090012 | 17090012
17090012
17090012
17090012 | 17100102
17100103
17100103
17100103 | | | year. | | | | · | | | | | | |----------------------------|-------------------------|---|---|---|--|--|---|---|--| | SED STOR | 000 | 200 | 00004 | 00000 | 00000 | 00000 | 00000 | 0000 | | | NOITAS INABRO
3000 | USGS | USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
OROO1 | OROO1
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 7 | Е 2 | m 44 | m 4 m m 4 | M M G M | л
2 2 п
2 2 | 2299 | こAKE | | | 3512 TRAY TAM 038 | | | | | | | | | | | SAIR TRAN NEUR | | | | w | <u> </u> | ₹ X | 44 | | | | SUSP SED CONCEN | | <u>* U m</u> | пиихв | машша | mm0m≥ | ≯ ₩₩00 | 00000 | 0 4 X m | | | OW END
YEAR | 1975 | c/61 | 1975 | 1973
1974
1974 | 1974
1974
1975
1974 | 1967
1974
1974
1967 | 1967
1967
1974
1974
1974 | 1973
1 9 71 | | | OW BEGIN | 1960 | 1975
1958
1961 |
1960
1966
1963
1965
1977 | 1973
1960
1972
1972
1972 | 1972
1972
1971
1972
1962 | 1964
1972
1972
1971
1957 | 1957
1957
1972
1972
1972 | 1966
1968
1967
1967 | | | BASIN
Descriptor | 014 | 014 | 004
014
004 | 00
4
4
4
4 | 004 | | 00
4
4 | 004
124
004 | | | DRAINAGE
AREA | 155.00 | 1294.00
64.90 | 299.00
41.30
130.00 | 667.00 | 13.40 | 334.00 | .78 | 588.00
227.00
1344.00
449.00 | | | 40 34YT
3T12 | 3 A 3 | N N N | A A A A A A A A A A A A A A A A A A A | A A A A A A A A A A A A A A A A A A A | M S A S A S A S A S A S A S A S A S A S | NS N N N N N N N N N N N N N N N N N N | A S S S S S S S S S S S S S S S S S S S | AS S AS | | | COUNTY | 041 | 027
027
027 | 027
027
049
049 | 057
057
041
041 | 0000
041
041
041 | 0000
1140
1140 | 000
041
041
041 | 039
019
019 | | | 3TAT2 | 053 | 053
053
053 | 053
053
053
053
041 | 0041
0041
0411 | 00 04 1
1 4 0
1 4 0
1 4 0 | 041
041
041
041 | 041
041
041
041 | 004
041
041
140 | | | LONGITIJDE | 1225638 | 1225347
1231845
1232311 | 1232937
1233620
1234400
1233910
1235530 | 1234515
1234320
1235643
1235845
1235310 | 1235420
1240330
1235015
1235101
1235200 | 1235200
1240410
1240040
1234950
1235120 | 1235105
1235235
1235742
1240325
1235705 | 1235255
1224340
1232440
1225650 | | | LATITUDE | 463713 | 465617
465617
470017 | 472305
472305
465140
463900
455711 | 454215
452835
450125
445500 | 444650
444205
443929
443620 | 443200
443350
443036
442310
443035 | 443220
443205
442744
441755
440913 | 440345
432100
431620
425550 | | | STATION NAME AND LOCATION | SKOOKUMCHUCK RIVER NEAL | HANAFUKU CK NK BUCUDA, WASH
CHEHALIS RIVER AT PORTER, WASH.
CLOQUALLUM RIVER AT ELMA, WASH. | SATSOP RIVER NEAR SATSOP, WASH.
WYNDOCHEE RIVER NEAR GRISDALE, WASH.
NORTH RIVER ABOVE JOE CR, NR RAYMOND, WASH.
WILLAPA RIVER NEAR WILLAPA, WASH. | NEHALEM RIVER NEAR FOSS, OREG.
WILSON RIVER NEAR TILLAMOOK, OREG.
SALMON RIVER NEAR OTIS, OREG.
DRIFT CREEK NEAR CUTLER CITY, OREG.
SILETZ RIVER AT SILETZ, OREG. | EUCHRE CREEK NEAR SILETZ,OREG. MOLOCK CREEK NEAR BEVERLY BEACH,OREG. YAQUINA RIVER NEAR CHITWOOD,OREG. ELK CREEK NEAR ELK CITY,OREG. | DEER C VI
THEIL CREEK NEAR SOUTH BEACH,OREG.
BEAVER CREEK NEAR ONA,OREG.
ALSEA RIVER NEAR TIDEWATER, OREG.
NEEDLE BRANCH NEAR SALADO,OREG. | FLYNN CREEK NEAR SALADO,OREG. DEER CREEK NEAR SALADO,OREG. DRIFT CREEK NEAR WALDPORT,OREG. YACHATS RIVER NEAR YACHATS,OREG. | SIUSLAW R NR MAPLETON, OREG.
STEAMBOAT CREEK NEAR GLIDE,OREG.
NORTH UMPQUA R. AT WINCHESTER, OREG.
SOUTH UMPQUA RIVER AT TILLER, OREG. | | | HYDROLOGIC
Unit
Code | 17 100 103 | 17 100 103
17 100 103
17 100 104 | 17100104
17100104
17100105
17100106
17100201 | 17100202
17100203
17100204
17100204 | 17 100204
17 100204
17 100204
17 100205 | 17100205
17100205
17100205
17100205 | 17100205
17100205
17100205
17100205 | 17100206
17100301
17100301
17100302 | | | | | | · | | | | | |----------------------------|--|--|--|---|--|--|--| | SOTZ G32
AIG3M | ٥٥٥ | | 00000 | 00004 | 000 | 0000 | ۵ ۵۵ | | ORGANIZATION
GODE | USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USFS
USFS
USFS
USBR | USGS
USSCS
USGS
USGS
USGS | USGS
USGS
USGS
USSCS
USSCS | uses
usscs
usscs
usscs | | SUSP DISCHARGE | 444 | | 00000 | ¥ | Z«I | ∀ ш | | | BED MAT FART SIZE | | | | | | | | | 3SIS TRAS 42US | | ν | 44 | ⋖ | Σ | Σm | 2 2 2 | | SUSP SED CONCEN | 444 | | 00000 | X m m m > | EDZ4 | 4440m | ∢ 000 | | OM END | 96 96 | 1973
1973
1973
1975 | 1979
1979
1979
1979 | 1979
1975
1975
1975 | 1976
1976
1976 | 1976
1976
1976 | 1976 | | OW BEGIN | 1967 | 1968
1967
1969
1965
1967
1966 | 1967
1967
1972
1969
1972 | 1972
1971
1971
1973
1973 | 1959
1977
1976
1976
1975 | 1976
1976
1976
1977
1959 | 1976
1976
1977
1977 | | BASIN
DESCRIPTOR | 000
4 4 6 | | 004
124
014
004 | 124 | 124 | 014 | | | DRAINAGE
AREA | | 210.00
1670.00
3683.00
104.00
116.00
86.10 | 379.00
246.00
697.00
245.00
133.00 | 1215.00 | 3939.00 | 3093.00 | | | TYPE OF | A A S | E E E E E E E E E E E E E E E E E E E | A S A S A S A S A S A S A S A S A S A S | AS S A S S A S S A S A S A S A S A S A | M S M S M S M S M S M S M S M S M S M S | MS SW
SW
SW
SW | X X X X | | YTNUOD | 019 | 010
010
010
010
010
010 | 029
029
029
029
029 | 029
029
029
029 | 015
057
073
073
073 | 073
073
073
057 | 057
057
061 | | 3TAT2 | 0041 | 0000000 | 0000
111111 | 0000
111111 | 041
053
053
053
053 | 053
053
053
053
053 | 053
053
053 | | LONGITUDE | 123 1040
1232540 | 1232150
1232150
1232145
1233150
1242900
1242920 | 1223055
1223020
1224130
1224125 | 1225030
1224240
1224249
1224256
1232100 | 1240330
1222025
1215706
1215658
1215639 | 1215733
1221354
1221354
1213400
1222025 | 1220954
1214611
1220045
1215705 | | LATITUDE | 424930
425525 | 430410
430410
432410
433510
424905 | 424350
424245
423935
423905
423950 | 423130
420908
420904
421000 | 423450
482640
485042
485158
485306 | 485315
484721
484721
482515
483045 | 483235
483128
481605
480610 | | STATION NAME AND LOCATION | COW CREEK NEAR AZALEA, DREG.
COW CREEK NEAR RIDDLE, DREG. | UCKINGGLASS CREEK AT BROCKWAY, DREG. SOUTH UMPQUA RIVER NEAR BROCKWAY, OREG. CALAPOOYA CREEK NEAR DAKLAND, OREG. UMPQUA RIVER NEAR ELKTON, OREG. SIXES RIVER AT SIXES, OREG. ELK RIVER NEAR SIXES, OREG. | ROGUE RIVER BL PROSPECT, OREG.
S FK ROGUE R SOUTH OF PROSPECT, OREG.
ROGUE RIVER AT MCLEOD,OREG.
BIG BUTTE CREEK NEAR MCLEOD,OREG.
ELK CREEK NEAR TRAIL, OREG. | ROGUE R AT DODGE BR NR EAGLE POINT,OREG.
LOWER EAST FORK ASHLAND CREEK
LOWER WEST FORK ASHLAND CREEK
ASHLAND CREEK FILTER PLANT
UUMP OFF JOE C NR MERLIN OR | RDGUE RIVER NEAR AGNESS, OREG.
SKAGIT R NR MT VERNON WA
GALLOP CR NR GLACIER, WASH
GALLOP CR ABV MOUTH NR GLACIER WASH
GALLOP CR NR MOUTH AT GLACIER, WASH | CORNELL CREEK AT GLACIER WASH VAN ZANDT PORTAL NR VAN ZANDT, WASH STREAM ABV VAN ZANDT MINE NR VAN ZANDT, WASH SAUK R NR SAUK WA SKAGIT RIVER NEAR MOUNT VERNON, WASH. | COKEDALE MINE NR SEDRO WOOLLEY, WASH
SKAGIT R NR CONCRFTE WA
NF STILLAGUAMISH R NR ARLINGTON
SF STILLAGUAMISH R NR GRANITE FALS | | HYDROLOGIC
Unit
CODE | 17100302
17100302 | 17100302
17100303
17100303
17100303
17100306
17100306 | 17 100307
17 100307
17 100307
17 100307 | 17100307
17100308
17100308
17100310 | 17100310
17110002
17110004
17110004 | 17110004
17110004
17110006
17110006 | 17110007
17110007
17110008
17110009 | | VIQ3W | | | | | | | | | |----------------------------|---|---|---|---|--|---|--|--| | NOTE G32 | ٥٥٥٥ | <u>0000</u> | NNNNN | 0005 | 00000 | 0 0 4 O | Q Q Q | | | MOITAZINADRO
BEIGO | uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USSCS | USSCS
USSCS
USSCS
USSCS | WAOO6
WAOO6
WAOO6
WAO11
USFS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USSCS | USEPA
WAO11
USGS
USGS | | | SUSP DISCHARGE | 704 H 4 | Z×xx | | | ₹0000 | 9 | ω | | | 3512 TAA9 92U2 | | | ***** | | w o | <u> </u> | <u> </u> | | | 2024 ZED
CONCEN | A E E A | Z×xxo | 00000 | 0
22220 | ₹0000 | U O Z D M | m z m z | | | OW END
PA3Y | 1976 | | | 1973 | 1975
1970 | 1975 | 1966 | | | OW BEGIN | 1965
1974
1976
1976 | 1978
1978
1978
1978 | 1977
1977
1977
1977 | 1969
1969
1970
1972 | 1951
1951
1953
1953 | 1953
1977
1977
1977 | 1965
1972
1974
1976 | | | MASSIN
Notairosea | 004
123
123 | 023 | | | 124
123
124
004 | 124 | | | | DRAINAGE
AREA | 834.00
603.00
1537.00 | 2.82
7.57
.70
.70 | | | 399.00
440.00
172.00
375.00 | 401.00 | 269.00 | | | 10 39YT
3TI2 | E E E E E | A A A A A A A A A A A A A A A A A A A | MS MS MS NA | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | X X X X X X X X X X X X X X X X X X X | N N N N N | SW
SW
SW | | | COUNTY | 061
033
061
061 | 033
033
033
033 | 033
033
033
033 | 033
033
033
033 | 053
053
053
053 | 033
053
053
035 | 04 1
033
009
025 | | | 3TAT2 | 053
053
053
053 | 053
053
053
053
053 | 053
053
053
053 | 053
053
053
053 | 053
053
053
053 | 053
053
053
053 | 005
053
053
041 | | | LONGITUDE | 1215729
1215527
1220550
1220630 | 1220553
1220855
1221041
1221200
1221357 | 1221648
1221635
1221242
1221200
1221630 | 122 1300
122 1500
122 1700
122 2029
12 12 200 | 1220018
1221025
1221450
1221224
1215132 | 1215655
1222025
1221933
1221930
1224700 | 0910930
1222007
1233455
1191035 | | | LATITUDE | 475108
473958
475495
475445 | 472953
473102
473048
473148 | 474507
474511
474228
473150
474145 | 472900
474500
474100
473448
471200 | 471012
471805
472755
470222
470849 | 470905
471252
471231
471230
473900 | 335955
473536
480318
434255 | | | STATION NAME AND LOCATION | SKYKOMISH RIVER AT MONROE, WA.
SNOQUALMIE RIVER NEAR CARNATION, WASH.
SNOHOMISH RIVER NEAR MONROE, WASH.
SNOHOMISH R AT SNOHOMISH
SNOHOMISH R AT US HWY 2 AT EVERETT, WASH. | MAY CREEK NEAR ISSAQUAH WASH
MAY CREEK AT RENTON WASH
HONEY CREEK NEAR RENTON WASH.
MAY CREEK AT MOUTH, NEAR RENTON, WASH. | MC ALEER C AT LK FOREST PARK WA
LYON C AT LAKE FOREST PARK WA
JUANITA C AT KIRKLAND WA
MAY C AT MOUTH NR RENTON WA
THORNTON C NR SEATTLE WA | CEDAR RIVER
SAMMAMISH RIVER
THORNTON CREEK
LANDER ST REGULATOR
UPPER GREEN RIVER II | WHITE RIVER FLUME NR BUCKLEY WASH
GREEN RIVER NEAR AUBURN, WASH.
GREEN RIVER AT TUKWILA, WASH.
PUYALLUP RIVER NEAR ORTING, WASH.
WHITE R BL CLEARWATER R NR BUCKLEY WASH | WHITE RIVER NEAR BUCKLEY, WASH. PUYALLUP RIVER AT PUYALLUP, WASH. FY76 REESTABLISH OWDC 51937 PUYALLUP R AT PUYALLUP BIG BEEF C FISH RESEARCH STATION | WHITE RIVER NEAR BENZIA
CONNECTICUT ST REGULATOR
ELWHA RIVER AT MCDONALD BR NR PRT ANGELES, W
SILVIES R NR BURNS OR | | | HYDROLOGIC
UNIT
COOE | 17110009
17110010
17110011
17110011 | 17110012
17110012
17110012
17110012 | 17110012
17110012
17110012
17110012 | 17110012
17110012
17110012
17110013 | 17110013
17110013
17110014
17110014 | 17110014
17110014
17110014
17110014 | 17110019
17110019
17110020
17120002 | | | | | | - | |----------------------------|--------------------------------------|--|--| | AIGEN STOR | ۵ | | | | | | | | | NOITASINADRO | USGS | | | | | | | | | SUSP DISCHARGE | w | | | | 3512 TRAY TAM 038 | **** | | · · · · · · · · · · · · · · · · · · · | | 3512 TRAM MEUS | ш | | | | ZOZE ZED CONCEN | w | | | | OW END
RABY | | | | | | | | | | MBEGIN
8A3Y | 1974 | | | | DESCRIPTOR | | | ······································ | | MISAB | | | | | | 8 | | | | 35 | 200.00 | | | | DRAINAGE
AREA | 500 | | | | DR/L | | | | | | | | | | TYPE OF | MS | | | | | | | | | COUNTY | 025 | | | | 3TAT2 | 04 1 | | | | 36 | | | | | LONGITUDE | 1185200 | | | | NO. | 8 | | | | _ | - | | | | <u> </u> | 8 | | | |) DE | 7.2 | | | | LATITUDE | 424728 | | | | | | | | | | FRENCHGLEN, DREG. | | | | | 9 | | | | | Z | | | | | 371 | | | | | Š | | | | 2 | Z
Z | | | | 1 25 | π | | | | 26 | <u>~</u> | | | | 9 | 2 · | | | | ¥ | Ę. | | | | IM I | , iž | | | | STATION NAME AND LOCATION | 7 | | | | E | 132 | | | | 15 | 11 | | | | | 8 | | | | | ₽ | | | | 1 | Š | | | | | <u>e</u> . | | | | | ¥ | | | | | ٥٥ | | | | | 17120003 DONNER UND BLITZEN RIVER NR | | | | HYDROLOGIC
Unit
Code | 8 | | | | ROL | 50 | | | | 1 2 | i I | | | | £ | 2 | | | | MEDIA | | | | | | | | | | |----------------------------|------------|--|--|--|--|--|--|---|--| | SED STOR | | 0000 | $\sigma\sigma\sigma\sigma\sigma$ | <u> </u> | 40000 | 00000 | 00400 | 0000 | | | 3000 | | 8 8 8 8 8 | 11111 | 12222 | 112
35
35
35
35 | 888888 | USGS
CA 1 12
CA 1 12
USGS
USGS | 2222 | | | MOITASINADRO | | USGS
USGS
USGS
USGS
USGS | CA01
CA01
CA01
CA01 | CA01
CA01
CA01
CA113 | CA11;
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | CA
CA
USC
USC | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | ⋖ | | | 00 X | 44404 | PONNE | 4000 | | | 3512 TRAG TAM G38 | | XZZZZ | | 44 | 400 A | 4 4 24 4 | Z | 4484 | | | 3512 TRAS 92UZ | | 4 % % % % | | | ΣΣ< | ৰ ৰমৰ | 44 | ч чп ч | | | SUSPER SED CONCEN | | 4 E O O E | | <u>u u u</u> | DOAX | AAAIA | м ОА | 4000 | | | OW END
YEAR | | 1975 | 1974
1975
1975
1975 | 1975
1975
1975 | 1975 | 1975
1975
1975
1975 | 1975 | 1974 | | | OM BEGIN | | 1952
1977
1977
1977
1977 | 1974
1974
1974
1974 | 1974
1974
1974
1976
1976 | 1976
1977
1951
1970
1974 | 1974
1974
1974
1973
1974 | 1974
1977
1977
1957
1964 | 1971
1972
1957
1957 | | | MISA8
ROTAIRD230 | | | 0000
44000
4444 | 00000
444444 | 000
4 4 4 4 | 00000
444444 | 0000
4 4 4 4 4 | 004
004
014
004 | | | | ∞ | | | | 88.49 | 80
10
10
10
10 | 8 88 | 8485 | | | DRAINAGE
AREA | Z | | | | 291.
609.
6. | 10.
16.
28.
35. | 37.
143.
351. | 393.
40.
485. | | | TYPE OF
SITE | _6 | AS SW
SW
SW
SW | MS AS | MS AS | AS SW
SW
SW
SW | A & & & & & & & & & & & & & & & & & & & | A A A A A A A A A A A A A A A A A A A | MS MS | | | COUNTY | <u> </u> | 087
053
083
023
015 | 015
015
015
015 | 015
015
015
015 | 015
015
015
015 | 015
015
015
015 | 015
023
023
105
023 | 023
023
023
023 | | | 3TAT2 | E | 900
900
900
900
900
900 | 900 | 900
000
000
000
000 | 006
006
006
006 | 90000 | 99000 | 006
006
006 | | | LONGITUDE | ~ | | 1234540
1234440
1234400
1235520 | 1234820
1234542
1234450
1240320
1240325 | 1240400
1240130
1240314
1240543
1240604 | 240616
1240520
1240541
1240606
1240554 | 240501
235832
235830
233035
235320 | 35854
35626
40335
34851 | | | רסאנ | <u> </u> | | 1234
1234
1235
1235 | 1234
1234
1234
1240 | 1240
1240
1240
1240
1240 | 1240
1240
1240
1240 | 1235
1235
1235
1235 | 1235
1235
1240
1234 | | | J. D. E. | Z | | 5525
5725
5550
5045
5140 | 5305
5545
5650
3730 | 3705
4730
4722
4205 | 4351
4351
4356
4432
4628 | 114729
111300
111305
102730 | 405047
405311
405435
405422 | | | LATITUDE | | | 4 4 4 4 4
C C C C C | 4 4 4 4 4
10 11 11 11 11 11 11 11 11 11 11 11 11 1 | 4 4 4 4 4
E 4 4 4 4 | 44444 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 04 4 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | STATION NAME AND LOCATION | CALIFORNIA | FY76 CHANGE OPERATION DWDC51450 TO FY76 CHANGE OPERATION DWDC61627 TO FY76 CHANGE OPERATION DWDC69825 TO FY76 CHANGE OPERATION DWDC51658 TO FY76 CHANGE OPERATION DWDC51680 TO | GRIFFIN CREEK 1
GRIFFIN CREEK 2
M F SMITH R AT KNOPTI CR
MIDDLE FORK SMITH RIVER 1
M F SMITH RIVER 2 | M F SMITH RIVER 3
UNNAMED CR 1 EMPTYING INTO GRIFFIN C
UNNAMED CR 2 EMPTYING INTO GRIFFIN C
HIGH PRAIRE CR STATION 3
HIGH PRAIRIE CR STATION 4 | HIGH PRAIRIE CR STATION 5
SF SMITH R NR CRESCENT CITY CALIF
SMITH RIVER NEAR CRESCENT CITY, CALIF.
WB MILL C NR CRESCENT CITY, CALIF.
WB MILL C BL R A CMPGRND NR CRESCENT CITY CA | WB MILL C AT BR NR CRESCENT CITY CALIF
EF MILL C NR CRESCENT CITY CALIF
EF MILL C AT BR NR CRESCENT CITY CALIF
MILL C NR CRESCENT CITY CALIF
MILL C AT BR NR CRESCENT CITY CALIF | MILL C AT MO NR CRESCENT CITY CALIF
WIER CR ARCATA REDWOOD
WIER CR ARCATA REDWOOD
MAD R NR FOREST GLEN CALIF
MAD
RIVER NEAR KNEELAND CALIF | MAD R NR BLUE LAKE CALIF
NF MAD R NR KORBEL CALIF
MAD RIVER NR ARCATA CALIF
REDWOOD C NR BLUE LAKE CALIF | | | HYDROLOGIC
Unit
Code | - | 18 71 L
18007100
18007100
18007200 | 18010101
18010101
18010101 | 18010101
18010101
18010101
18010101 | 18010101
18010101
18010101 | 18010101
18010101
18010101
18010101 | 18010101
18010102
18010102
18010102 | 18010102
18010102
18010102 | | | ROTZ G32
AIG3M | 0000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | |----------------------------|---|---|---|--|--|--|---|--| | ONDENIZATION
GODE | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | COKXZ | \mathbf{Z} \mathbf{w} \mathbf{w} \mathbf{A} \mathbf{w} | m 4 m m | 44XX 0 | XZZmm | момех | 0 141 | | | 3XIZ TAA4 TAM 038 | 4 4 m | пппап | шАпп | | யய | யயயி | шш | | | 3XI2 TAA9 92U2 |
44844 | X W W A W | шишши∢ | Ζαααα | K K A E E | m Z m A Ø | αmm4 | | | SUSP SED CONCEN | XOXXZ | Xmmxm | пкпп | XXXXX | XXZmm | M O M A X | ROAA | | | OW END
RABY | 1975
1975
1975
1975 | 1975 | 1975 | 1975
1975
1975
1975 | 1975 | 1975
1975
1975 | 1975
1975
1975 | | | DW BEGIN | 1973
1974
1973
1973 | 1973
1970
1973
1973 | 1973
1973
1972
1973
1976 | 1973
1974
1975
1975 | 1975
1973
1973
1973 | 1974
1973
1974
1973
1973 | 1974
1955
1974
1974 | | | BASIN
DESCRIPTOR | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00000
4 4 4 4 4 4 | 88888
44444 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00000
4 4 4 4 4 | 88888
444444 | 0004 | | | DRAINAGE
AREA | 95.90
17.00
150.00
2.78 | 1.16
185.00
11.60
202.00
2.96 | 6.86
3.09
.67
1.36
218.00 | 1.37
1.14
. 69
. 52
2.49 | 3.73
3.73
19
3.97 | . 44
1.87
3.46
3.64
0.08 | .40 | | | 1477
3712 | AS AS AS | MS AS | AS SW
SW
SW
SW | A A A A A A A A A A A A A A A A A A A | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | SEE | | | YTNUOD | 023
023
023
023 | 023
023
023
023
023 | 023
023
023
023
023 | 023
023
023
023
023 | 023
023
023
023
023 | 023
023
023
023
023 | 023
023
023
023 | | | 3TAT2 | 90000 | 900 | 900
900
900
900 | 900
000
000
000 | 006
006
006
006
006 | 900
900
900
900
900 | 006
006
006
006 | | | LONGITUDE | 1235020
1235157
1235423
1235651
1235553 | 1235649
1235655
1235852
1235930
1235932 | 1240053
1240044
1235930
1240036
1240038 | 1240114
1240037
1240030
1240049
1240129 | 1240132
1240142
1240149
1240136
1235915 | 1235952
1240046
1240110
1240129
1240153 | 1240217
1240327
1235737
1235724 | | | LATITUDE | 405748
410339
410521
410725
410858 | 411019
411132
411150
411153 | 411216
411315
411354
411346 | 411402
411442
411523
411546
411549 | 411630
411631
411653
411724
411906 | 411920
411946
411920
411942
411936 | 411859
411718
411001
411007 | | | STATION NAME AND LOCATION | REDWOOD C AT R V BR NR BLUE LK CALIF
LACKS C NR ORICK CALIF
REDWOOD C AB PANTHR C NR ORICK CALIF
HIGH-SLOPE SCHIST C NR ORICK CALIF
COPPER C NR ORICK CALIF | SLIDE C NR DRICK CALIF
REDWOOD C AT SPB NR ORICK CALIF
BRIDGE C NR DRICK CALIF
REDWOOD C AB HRY WR C NR ORICK CALIF
HARRY WIER CK NR ORICK CA | TOM MC DONALD C NR ORICK CALIF
FORTYFOUR C NR DRICK CALIF
MILLER C NR ORICK CALIF
MILLER C AT MOUTH NR ORICK CALIF
REDWOOD CREEK NEAR ORICK CALIF | BOND C NR DRICK, CA
CLOQUFT C NR DRICK, CA
OSCAR LARSON C NR ORICK CALIF
GANS SOUTH C NR ORICK CALIF
ELAM C NR ORICK, CA | GANS WEST C NR DRICK CALIF
MC ARTHUR C NR ORICK CALIF
LDW-SLOPE SCHIST C NR ORICK CALIF
HAYES C NR DRICK CALIF
LOST MAN C NR DRICK CALIF | LOST MAN C TR NR ORICK CALIF
LARRY DAMM C NR ORICK CALIF
LITTLE LOST MAN C AT SITE NO 2 NR ORICK CALI
LITTLE LOST MAN C NR ORICK CALIF
GENEVA C NR ORICK CALIF | BERRY GLENN C NR DRICK CA
REDWODD CREEK AT DRICK CALIF
REDWODD C TR AB M75 RD CULVERT 21 NR DRICK C
REDWODD C TR AT M75 RD CULVERT 21 NR DRICK C | | | HYBROLOGIC
Unit
Code | 18010102
18010102
18010102
18010102 | | MEDIA | | | | | | | | | | |----------------------------|-------------|--|---|---|--|--|---|---|-------------| | ROTZ G32
AIG3M | | 00000 | 00040 | 00040 | 00040 | 00000 | | 0.0.0.0 | | | 3000 | | ស្ត្រស្ត្ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | α | S S S S S | 68
68
68
68 | 22222 | 2222 | | | NOITASINADRO | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USSCS
USSCS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | | 44444 | 4444 | | | SUSP DISCHARDE | | <u> </u> | 000 0 | 00I Z | X 4 K 4 | M 0 0 2 2 | | NN | | | ISI2 TAA9 TAM 038 | | ···· | шш | | <u> </u> | A M A M | 44444 | 44 | | | SUSP PART SIZE | | 444m4 | m 4 m 4 | *Z 4 4 4 | 424 4 | ~Z~Zw | | | | | ZOZE ZED CONCEN | | AAAmu | 00000 | ZZINN | X U K Z U | ииоош | | | | | OW END
YEAR | | 1975
1975
1975 | 1970 | 1969
1964
1970 | 1973
1966
1964 | 1975 | | | | | OW BEGIN | | 1974
1974
1974
1962
1960 | 1958
1960
1977
1977 | 1963
1960
1961
1961
1961 | 1963
1956
1956
1961 | 1971
1959
1971
1951 | 1976
1976
1976
1976 | 1976
1976
1977
1977 | | | MIZA8
Rutqirj230 | | | 124
004
124
004 | 0000
444444 | 004
124
004
004 | 004
124
004
124
024 | 88888
44444 | 000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | DRAINAGE
AREA | | 290.00 | 528.00
161.00
705.00
204.00 | 162.00
367.00
30.40
15.20
95.60 | 84.10
745.00
1484.00
25.90
248.00 | 22.60
2107.00
61.40
3113.00
222.00 | | | | | TYPE OF | | A A A A A A A A A A A A A A A A A A A | MS M | MS MS MS NS | M M M M M M M M M M M M M M M M M M M | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | M S M S | | | CDUNTY | | 023
023
023
033
045 | 045
045
045
033
045 | 045
045
045
045
045 | 045
045
045
045
045 | 023
023
023
023
023 | 045
045
045
045
045 | 045
045
045
045 | | | 3TAT2 | | 900
900
900
900 | 9000 | 9000 | 9000 | 900 | 900 | 900 | | | LONGITUDE | | 1235710
1235734
1235725
1225813
1230738 | 1232025
1232120
1232130
1225600
1230411 | 1230450
1230530
1230825
1231056
1231048 | 1230712
1231927
1232215
1231455
1232036 | 1233310
1233753
1233805
1240555
1235323 | 1235005
1234957
1234955
1234955 | 1234852
1234850
1234850
1235005 | | | LATITUDE | | 411014
411014
411021
392429
392142 | 393730
393705
394120
392010 | 394915
394935
394930
394950 | 393857
394223
394415
395450
395618 | 400214
401306
401414
402930
402850 | 395600
395622
395633
395655
395705 | 395715
395730
395720
395455 | | | STATION NAME AND LOCATION | | REDWOOD C TR BL M75 RD CULVERT 21 NR ORICK C REDWOOD C TR AT M75 RD CULVERT 20 NR ORICK C REDWOOD C TR BL M75 RD CULVERT 20 NR ORICK C EEL R BL SCOTT DAM NR POTTER VALLEY POTTER VALLEY | EEL R NR DOS RIOS CALIF
OUTLET CREEK NR LONGVALE, CA.
EEL R ABOVE DOS RIOS CALIF
FORBES CR NR LAKEPORT CA
MF EEL R AB
BLACK BUTTE R NR COVELO CALIF | BLACK BUTTE R NR COVELO CALIF
MF EEL R BL BLACK BUTTE R NR COVELO CALIF
WILLIAMS C NR COVELO CALIF
SHORT C NR COVELO CALIF
MILL CREEK NEAR COVELO, CALIF. | ELK CREEK NEAR HEARST CALIF
MIDDLE FORK EEL R NR DOS RIOS CALIF
EEL R BL DOS RIOS CALIF
HULLS C NR COVELO CALIF
NORTH FORK EEL RIVER NR MINA; CALIF. | CHAMISE CREEK NEAR ISLAND MOUNTAIN, CALIF.
EEL R AT FORT SEWARD CALIF
DOBBYN CREEK NEAR FORT SEWARD, CALIF.
EEL RIVER AT SCOTIA CALIF
VAN DUZEN RIVER NR BRIDGEVILLE CALIF | STANDLEY CR STATION 1 STANDLEY CR STATION 2 STANDLEY CR STATION 3 STANDLEY CR STATION 4 STANDLEY CR STATION 5 | STANDLEY CR STATION 6 STANDLEY CR STATION 7 GEORGIA PACIFIC STANDLEY CR 6 GEORGIA PACIFIC STANDLEY CR 1 | - | | HYDROLOGIC
Unit
Code | | 18010102
18010102
18010102
18010103
18010103 | 18010103
18010103
18010103
18010103 | 18010104
18010104
18010104
18010104 | 18010104
18010105
18010105
18010105 | 18010105
18010105
18010105
18010105 | 18010106
18010106
18010106
18010106 | 18010106
18010106
18010106
18010106 | | | MEDIA | | | | | | | | | |----------------------------|---|---|---|--|--|---|--|---| | AOTZ G32 | 00000 | 00000 | 00000 | | 40000 | 00000 | 0000 | | | 3000 | 44444 | S S S S S | 011 | 44444 | 112
65
65
65
65
65 | S S S S S | 0 0 0
4 0 0
4 0 0 0 | | | HOITASINADRO | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | USGS
USGS
USGS
USGS
USGS | CAO1 | A A A A A | CA112
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
CAO1 | | | SUSP DISCHARGE | 77777 | 00 DE | | | 0000 | 0000 | Z | | | 3512 TRAY TAM 038 | | m ∢ | | ৰৰৰৰৰ | ⋖ | | | | | SUSP SED CONCEN | | ∢ | <u> </u> | | ⋖ шш ⋖ | α ∢ m m m | ⋖ шш | | | | | 8
00₹0¤ | ព្រល្ពេ | | 888 | 0000 | Ζωω ι. | | | ON3 WO
RA3Y | - | 1978 | 197
197
197 | | 1972 | 1968 | 197: | | | DW BEGIN | 1977
1977
1977
1977 | 1957
1966
1951
1974
1973 | 1974
1974
1974
1974
1953 | 1976
1976
1976
1976 | 1976
1963
1951
1952
1962 | 1977
1965
1965
1963
1951 | 1962
1958
1957
1974 | | | MIZA8
Rotqirdz30 | 0000
44400 | 0000
4444
4444 | 000
000
000
127 | 90000
444444 | 000
000
000
000
000 | 00000
444444 | 000
000
000
000
000 | | | | | 06.
08.
06.
06. | | | 8888 | 8 6 4 0 0
0 0 0 0 | 0.00 | | | DRAINAGE
AREA | | 43.
6.
537.
28. | | | 100.
92.
105.
503. | 2.89
82.30
43.40
162.00
1338.00 | 15.
793. | | | 40 3 4 YT
3TI2 | N N N N N N N N N N N N N N N N N N N | 3 3 3 3 3 3 S | N N N N O | N N N N N N N N N N N N N N N N N N N | X X X X X X X X X X X X X X X X X X X | 3 3 3 3 3 S | 3 3 3 3° | | | COUNTY | 0045
0045
0045
0045
0045
0045
0045
0045 | 045
045
023
023
023 | 045
045
045
045 | 097
097
097
097 | 097
045
045
045 | 097
097
097
097 | 097
093
093 | | | ∃TAT & | 900 | 90000 | 900
000
000
000
000 | 900 | 006
006
006
006 | 90000 | 900
000
000
000
000 | | | TUDE | 34955
34953
34953
34950
34950 | 1233906
1233834
1234630
1240010 | 230140
230500
230320
230338 | 230400
230400
230350
230330
230230 | 230200
1231155
1230745
1231111
1230309 | 4443
5907
4545
5725
5536 | 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | LONGITUDE | 34
34
34
34
34
34
34
34 | 333
338
346
100
106 | 301
307
303 | 304
303
303 | 302
311
307
311 | 22444
225907
22454
22572
225536 | 225845
231352
223540
20030 | | | 2 | 9 9 9 9 9 | 22222 | 22222 | 22222 | 22222 | 22222 | 4445 | | | <u></u> | 30
330
335
10 | 00
74
75
75
73
73 | 110
8825
8810
530 | 98989 | 00
07
48
46
46 | 35524 | 22 2 2 4 4 | | | LATITUDE | 395630
395635
395700
395710 | 394309
394347
401055
402105 | 3854
3858
3858
3858
3955 | 384010
384000
383950
383900
383830 | 383800
391207
391448
391151
385246 | 384549
384921
383825
384155
383031 | 382054
415114
415114
413333 | | | STATION NAME AND LOCATION | GEORGIA PACIFIC STANDLEY CR 2
GEORGIA PACIFIC STANDLEY CR 3
GEORGIA PACIFIC STANDLEY CR 4
GEORGIA PACIFIC STANDLEY CR 5
GEORGIA PACIFIC STANDLEY CR 5 | SOUTH FORK EEL RIVER NR BRANSCOMB CALIF
ELDER CREEK NEAR BRANSCOMB CALIF
SF EEL RIVER NR MIRANDA CALIF
BULL CREEK NEAR WEOTT, CALIF.
HONEYDEW C AT HONEYDEW CALIF | ASH CREEK
DOOLEY CREEK
FELIZ CREEK
PIETA CREEK
POTTER VALLEY POWERHOUSE TAILRCE NR POTTER V | REDWOOD LOG CR STATION 1A REDWOOD LOG CR STATION 1B REDWOOD LOG CR STATION 2 REDWOOD LOG CR STATION 3 REDWOOD LOG CR STATION 3 | REDWOOD LOG CR STATION 5
RUSSIAN RIVER NEAR UKIAH, CALIF.
EAST FORK RUSSIAN RIVER NEAR CALPELLA CALIF
EAST FORK RUSSIAN RIVER NEAR UKIAH CALIF
RUSSIAN RIVER NEAR CLOVERDALE, CALIF. | BIG SULPHUR C NR MIDDLETOWN CA
BIG SULPHUR CREEK NR CLOVERDALE CALIF
MAACAMA CREEK NEAR KELLOGG, CALIF.
DRY CREEK NR GEYSERVILLE CALIF
RUSSIAN RIVER NR GUERNEVILLE CALIF | SALMON CREEK AT BODEGA CALIF
KLAMATH RIVER NR SEIAD VALLEY CALIF
SHASTA RIVER NR YREKA CALIF
HUNTER CREEK 2 | | | HYDROLDGIC
Unit
Code | 18010106
18010106
18010106
18010106 | 18010106
18010106
18010106
18010106 | 18010110
18010110
18010110
18010110 | 18010110
18010110
18010110
18010110 | 18010110
18010110
18010110
18010110 | 18010110
18010110
18010110
18010110 | 18010111
18010206
18010207
13010203 | , | | WEDIA | | | | | | | | *************************************** | |----------------------------|--|---|--|---|--|---|---|---| | SED STOR | | | ٥٥،٥٥ | 004 0 | 00000 | 4000 | 0000 | | | NOITAXINADRO
3000 | 1000 | CA112
CA112
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
CAO11
USFS
USFS | USSCS
USSCS
USSCS
USSCS | USSCS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
CAOO1 | | | SUSP OISCHARGE | | O m | 0 020 | X D 0 | 7 | шш3 | X 3 | | | 3512 TRAY TAM 038 | А | 4 4 | | | | ⋖ | > | | | SEIS TRAT SEUZ | | ∢m∑m | A mm44 | Z Y | <u>α</u> | m 44 | ⋖ ≻ Ш | | | SUSPENS SED CONCEN | L. L. L. | 0 m Z m | 0 4 0 2 6 | XOLM4 | <u> </u> | @ w w ≥ w | X3>m | | | OW END
RABY | 1976
1976
1976 | 1969 | 1967
1969
1970 | 1977 | | 1961 | 1966 | | | OW BEGIN | 1974
1974
1974 | 1976
1976
1950
1951
1955 | 1957
1956
1974
1962
1961 | 1960
1950
1975
1969
1964 | 1957
1977
1977
1977 | 1977
1951
1964
1960
1956 | 1961
1969
1977
1958 | | | NIZA8
ROTGIRDZ30 | 004
004
004 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 000
44
400
400 | 124
004
004 | 900 | 000
000
000
000
000 | 004
014
024 | | | DRAINAGE
AREA | | 8475.00
12100.00
751.00
48.40 | 115.00
719.00
30.80
48.40
151.00 | 1439.00
2853.00
764.00 | 898.00 | 1431.00
135.00
425.00
356.00 | 357.00
8900.00
217.00 | | | \$11£
211£ | 3 S S S S S S S S S S S S S S S S S S S | X X X X X X X X X X X X X X X X X X X | N N N N N | N N N N N | N N N N N | 33333
88888 | N N N N | | | COUNTY | 015
015
015 | 015
023
015
093
105 | 089
105
105
105 | 105
023
105
105
105 | 105
037
037
037 | 037
049
093
089
103 | 089
103
103 | | | 3TAT2 | | 900 | 006
006
006
006 | 006
006
006
006 | 006
041
041
041 | 04
1
006
006
006
006 | 900 | | | LONGITUDE | 1240323
1240400
1240310 | 1240320
1240332
1233200
1235957
1232835
1225631 | 1223808
1224809
1224946
1225630
1230738 | 1232620
1234015
1231940
1230810
1232935 | 1233400
1203300
1202400
1202300
1202700 | 1202700
1205536
1221838
1221356
1220805 | 1220843
1221108
1221108
1222652 | | | LATITUDE | 4 13309
4 134 10
4 133 15 | | 404142
404310
404035
404015
404655 | 404720
410300
402235
404030
403900 | 405030
421900
421800
421800 | 421800
412422
411600
403019 | 402354
401719
401719
401859 | | | STATION NAME AND LOCATION | HUNTER CREEK 1
HIGH PRAIRIE CREEK
MYNOT CREEK
HIGH PRAIRIE CR STATION | HIGH PRAIRE CR STATION 2 HIGH PRAIRIE CR STATION 6 KLAMATH RIVER AT ORLEANS CALIF KLAMATH RIVER NEAR KLAMATH CALIF SALMON RIVER AT SOMES BAR CALIF WEAVER C NR DOUGLAS CTY CA | CLEAR CREEK AT FRENCH GULCH, CALIF. TRINITY RIVER AT LEWISTON CALIF GRASS VALLEY CREEK AT FAWN LODGE NR LEWISTON WEAVER C NR DOUGLAS CITY CALIF NORTH FORK TRINITY RIVER AT HELENA CALIF | TRINITY RIVER NEAR BURNT RANCH CALIF
TRINITY R AT HOOPA CALIF
SOUTH FORK TRINITY RIVER
ICE CREAM C AB BIG C NR HAYFORK
S F TRINITY RIVER BL HYAMPOM, CALIF. | SF TRINITY R NR SALYER CALIF
THOMAS C AB HUNTERS SPG NR LAKEVW
BAUERS CREEK NR LAKEVIEW
COX CREEK NR LAKEVIEW OR
CAMP CREEK NR LAKEVIEW OR | AUGER CREEK NR LAKEVIEW OR
PIT RIVER NEAR CANBY CALIF
SACRAMENTO RIVER NR MT SHASTA CALIF
COW CREEK NEAR MILLVILLE CALIF
BATTLE C NR COTTONWOOD CALIF | BATTLE CR BL COLEMAN FISH HATCHERY NR COTTON SACRAMENTO RIVER AB BEND BRIDGE NR RED BLUFF FY77CHANGE OPERATION OWDC 69834 TO SF COTTONWOOD C NR COTTONWOOD CA | | | HYDROLOGIC
Unit
Code | 18010209
18010209
18010209 | 18010209
18010209
18010209
18010210 | 18010211
18010211
18010211
18010211 | 18010211
18010211
18010212
18010212 | 18010212
18020001
18020001
18020001 | 18020001
18020002
18020005
18020101 | 18020101
18020101
18020101
18020102 | | | MEDIA | | | | | | | | | | |----------------------------|---|--|---|---|--|--|--|---|--| | 9012 G32 | | 00000 | 0000 | 00000 | 0000 | 00400 | 00000 | 7 0 0 0 | | | MOITASINADRO
3000 | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USBR
USCE | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USSCS
USGS
CA001
CA001 | | | SUSP DISCHARGE | | 0 4 ≥ 1 | 3 3 | NUNZN | × 303 | ×× w | 30373 | 0 | | | BED MAT PART SIZE | | <u>α ∢ ω</u> | α α α | | <u> </u> | 60 | | | | | SUSP PRAT SIZE | | AA MA | 33022
Omma | 0444 | × ≻ ≥ W ≥ | 6 M | A 4 4 | ₩ 01 C C | | | | | (143/4 | 6 | 75
65
69
70
70 | 8 | 8 4
8 | | 8400 | | | OW END
RABY | | | 196 | 196
196
196
196
197 | 197 | 197 | 197
197
196
197 | 197 | | | NIDBE WO
RABY | | 1962
1976
1970
1977
1960 | 1878
1951
1977
1964
1965 | 1955
1959
1956
1963 | 1960
1977
1977
1958 | 1977
1951
1977
1957
1965 | 1955
1971
1958
1965
1965 | 1977
1970
1951
1964 | | | MISA8
Rotairdead | | 003
024
004 | 000
000
000 | 014
124
124
004 | 90
4
00 | 124
014
004 | 014
0024
014 | 004
014
014 | | | DRAINAGE
AREA | | 244.00
88.70
395.00
217.00 | 371.00
927.00
109.00 | 8900.00
9020.00
9080.00
109.00 | 136.00
133.00
194.00 | 210.00
738.00
38.20 | 12090.00
38.20
14535.00 | 3624.00
3676.00 | | | TYPF OF | | A A A A A A A A A A A A A A A A A A A | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | A A A A | | | COUNTY | | 089
089
089
103 | 103
103
103
103 | 103
103
103
103 | 103
103
103
103 | 103
021
007
103
011 | 0111 | 113
007
007 | | | 3TAT2 | | 000
000
000
000
000 | 900 | 900 | 900 | 900
900
900
900
900 | 900 | 900 | | | LONGITUDE | | 1223419
1223257
1222831
1222831 | 1222640
1221415
1221415
1221420
1222000 | 1221319
1221050
1221347
1221418
1223031 | 1220953
1220953
1220539
1223141
1221328 | 1220048
1215940
1215940
1221926
1221800 | 1215935
1215938
1215957
1221800
1214255 | 1215430
1214154
1213248
1213846 | | | LATITUDE | | 402203
402632
402306
402306
401859 | 401934
402310
402314
400820
394901 | 401551
401355
401041
400822
400129 | 400305
400305
400244
395316
395832 | 395812
394506
394506
394907
391718 | 392728
391412
391251
391718 | 384745
393454
393113
392200 | | | STATION NAME AND LOCATION | • | MIDDLE FLORK COTTONWOOD CREEK NEAR ONO CALIF
NF COTTONWOOD C NR IGO CALIF
COTTONWOOD CREEK NR OLINDA CALIF
FY77 CHANGE OPERATION OWDC76224 TO
SOUTH FORK COTTONWOOD CREEK NR COTTONWOOD CA | SF COTTONWOOD CREEK NR OLINDA CA
COTTONWOOD CREEK NR COTTONWOOD CALIF
COTTONWOOD C NR COTTONWOOD CA
RED BANK C AT RAWSON ROAD BRIDGE NR RED BLUF
STONY C BL BLACK BUTTE DAM | SACRAMENTO R AT BEND BRIDGE, NR RED BLUFF, C
SACRAMENTO RIVER NR RED BLUFF, CALIF.
SACRAMENTO RIVER AT RED BLUFF, CALIF.
RED BANK C AT RAWSON RD BR NR RED BLUFF CALIF.
ELDER CREEK NEAR PASKENTA CALIF | ELDER CREEK AT GERBER CA
FY77 REESTABLISH OWDC 51560
MILL CREEK AT SHERWOOD BRIDGE NR LOS MOLINOS
THOMES C AT PASKENTA CALIF
THOMES C AT RAWSON ROAD BRIDGE NR RICHFIELD | DEER CREEK AT RED BRIDGE NEAR VINA CA
SACRAMENTO RIVER NEAR HAMILTON CITY CALIF
FY77 CHANGE OPERATION OWDC51564 TO
STONY CREEK BL BLACK BUTTE DAM NR ORLAND CAL
STONE CORRAL C NR SITES CA | SACRAMENTO RIVER AT BUTTE CITY CALIF
COLUSA WEIR SPILL TO BUTTE BASIN NR COLUSA C
SACRAMENTO R AT COLUSA CALIF
STONE CORRAL CREEK NR SITES CALIF
SACRAMENTO RIVER AT KNIGHTS LANDING, CALIF. | ZAMORA CR NR ZAMORA CA
CHEROKEE CANAL NR NELSON CALIF
FEATHER R AT OROVILLE CA
FEATHER R NR GRIDLEY CA | | | HYDROLOGIC
UNIT
CODE | | 18020102
18020102
18020102
18020102 | 18020102
18020102
18020102
18020103 | 18020103
18020103
18020103
18020103 | 18020103
18020103
18020103
18020103 | 18020103
18020103
18020103
18020103 | 18020104
18020104
18020104
18020104 | 18020104
18020105
18020106
18020106 | | | MEDIA | | | | | | | | | |----------------------------|---|---|---|--|--|---|---|--| | SED STOR | 0000 | 0000 | 00000 | S S C C C C C C C C C C C C C C C C C C | 00000 | 00000 | 0000 | | | ONGANIZATION
3003 | CAOO
USGS
USGS
USGS | USBR
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USSCS
USSCS
USSCS | CAOO
CAOO
CAOO
CAOO | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 200 | O M 6 | ო | ፍ አ ጠ | Ο α | 0 Z O M | 4 X X m | | | 3512 TRAY TAM 038 | | | Σ | | | | | | | 3SIS TRAN NEUZ | | α Σ Χ | 44422 | α ∢ π | ₹ A ⊞ A | m A A K A | 4 m m m | | | SUSP SED CONCEN | 3 a | 8 O ₹ O B | roro
X ∢ X Σ ω | т
х х в в п | Z O m m G Z | 0 X Q 4 | 044
0XXm | | | ON FUD
RA3Y |
1976 | 197 | 1979
1979
1979 | 197 | 1972
1972
1967
1966 | 196
196
197 | 197
197
197 | | | OM BEGIN | 1964
1951
1963
1963 | 1971
1951
1960
1975
1957 | 1973
1973
1973
1977
1959 | 1975
1951
1977
1977 | 1967
1967
1960
1960
1965 | 1964
1957
1977
1977 | 1969
1970
1970
1956 | | | BASIN
Descriptor | 014 | 024
014
014 | 014 | 014
014
003 | 0004
014
0004 | 014
004
024 | 0004
0004
024 | | | DRAINAGE
AREA | 3974.00
3624.00
3676.00
3974.00 | 23508.00
23508.00
1139.00 | 964.00 | 964.00
1044.00
5.02 | 156.00
156.00
100.00
955.00
11.90 | 14.20
197.00
100.00
.83
.113.00 | 37.80
7.42
7.06
739.00 | | | 40 34YT
3T12 | X | NS S S S S S S S S S S S S S S S S S S | S C S S S | X X X X X X X X X X X X X X X X X X X | SERE | SEEEE | N S N S N S N S N S N S N S N S N S N S | | | COUNTY | 115
007
007
115 | 113
067
067
067
113 | 067
067
095
113
011 | 113
113
113
113
067 | 021
021
011
113
033 | 033
033
011
033
033 | 033
055
055
063 | | | 1TAT2 | 900
900
900
900 | 900
900
900
900 | 900
900
900
900 | 900 | 900 | 900 | 900
000
000
000
000 | | | LONGITUDE | 1213617
1213248
1213846
1215615 | 1214700
1213016
1213007
1213007
1214822 | 1214017
1214017
1214136
1213835
1221413 | 1221414
1220615
1220320
1215630
1212340 | 1223151
1223151
1222042
1221614
1225511 | 1225403
1223404
1222042
1224117
1223059 | 1222426
1221744
1221731
1205536 | | | LATITUDE | 390820
393113
392200
390820 | 383125
383512
382720
382720
384331 | 381507
381508
381627
384040
385325 | 385326
384344
384520
384340
383609 | 394038
394038
385642
385447 | 385654
390109
385642
384425
384644 | 384618
384217
384242
400442 | | | STATION NAME AND LOCATION | FEATHER R AT YUBA CITY CA
FEATHER R NR OROVILLE CA
FEATHER RIVER NEAR GRIDLEY CALIF
FEATHER RIVER AT YUBA CITY CALIF
ORY CREEK NEAR WINTERS CALIF | U C OUTFALL DRAIN NR DAVIS CALIF
SACRAMENTO RIVER AT SACRAMENTO CALIF
SACRAMENTO RIVER AT FREEPORT CALIF
SACRAMENTO RIVER AT FREEPORT CALIF
CACHE CREEK AT YOLO, CALIF. | YOLO BYPASS AT LIBERTY ISLAND CA EAST
YOLO BYPASS AT LIBERTY ISLAND CA COMBINED
YOLO BYPASS AT LIBERTY ISLAND CA WEST
YOLO BYPASS NR WOODLAND CA
CACHE CREEK AT RUMSEY CA | CACHE CREEK AT RUMSEY CALIF
CACHE CREEK NEAR CAPAY, CALIF
GOODNOW SLOUGH NR CAPAY CA
UNNAMED TRIB IN HUNGRY HOL NR CAP
STRONG RANCH SLOUGH AT SACRAMENTO CALIF | GRINDSTONE C NR ELK CREEK CA
GRINDSTONE CREEK NR ELK CREEK CALIF
BEAR C NR RUMSEY CA
CACHE C AB RUMSEY CA
HIGHLAND CREEK ABOVE HIGHLAND CREEK DAM, CAL | HIGHLAND CREEK BELOW HIGHLAND CREEK DAM
NORTH FORK CACHE CREEK NEAR LOWER LAKE, CALI
BEAR CREEK NEAR RUMSEY CALIF
DRY C AB APPLETREE C NR MIDDLETOWN CA
PUTAH CREEK NR GUENOC CALIF | HUNTING CREEK NR KNDXVILLE CALIF
ADAMS CREEK NR KNDXVILLE CALIF
NEVADA CREEK NEAR KNOXVILLE, CALIF.
INDIAN CREEK NR CRESCENT MILLS CALIF | | | HYDROLOGIC
Unit
Code | 18020106
18020106
18020106
18020106 | 18020109
18020109
18020109
18020109 | 18020109
18020109
18020109
18020109 | 18020110
18020110
18020110
18020110 | 18020115
18020115
18020116
18020116 | 18020116
18020116
18020116
18020117 | 18020117
18020117
18020117
18020122 | | | MEDIA | | | 0000 | | | | | | | |----------------------------|-----|---|---|--|--|---|--|--|--| | NOTE 032 | | 2000 | | 00000 | مممم | 00 | 00000 | 0000 | | | NOITASINAOMO
3000 | | CAOO
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USGS | USGS
USFS
USFS
USFS | | | 3DBAHDSIG 42U2 | | 20 | <u> </u> | <u>α 220</u> | 000 | | ш | ⋖ | | | BSIZ TRAS SZUZ | | 4 44 | ⋖ | m 80 | мамп | | ш | | | | SUSP SED CONCEN | | EEEKO | m m Z m Z | Z M Z Z O | 000 4 8 | 0000000 | 8 8 8 8 B B | 4 M M M | | | OW FND
YEAR | | 1962
1962
1966
1966 | 1973
1973
1962 | 1969 | 1967 | | | 1971 | | | OW BEGIN | (| 1957
1957
1957
1957 | 1970
1970
1956
1961 | 1964
1971
1971
1967 | 1972
1962
1956
1956 | 1960
1961
1977
1977 | 1977
1977
1977
1977 | 1968
1977
1977
1977 | | | BASIN
0ESCRIPTOR | | 0000
4 4 4 4 | 014
004
024
014 | 124
024
024
014 | 014
124
014
014 | | 004 | 8 | | | DRAINAGE
AREA | | 81.10
81.10
84.00
586.00 | 597.00
813.00
819.00
1062.00 | 162.00
250.00
351.00
308.00 | 84.60
140.00
614.00
673.00 | . 23 | 1009.00 | 1.58 | | | 40 34YT
3TI2 | | N A A A | X X X X X X X X X X X X X X X X X X X | ************************************** | N N N N N | ****** | X X X X X X X X X X X X X X X X X X X | N A A A | | | YTNUOD | | 003
003
003
003 | 063
063
063
007
057 | 057
091
091
115
057 | 057
057
061
017 | 107
107
107
107 | 107
107
107
107
029 | 107
107
107
107 | | | 3TAT2 | | 80000 | 000
000
000
000
000 | 900
900
900
900
900 | 000
000
000
000
000 | 900
000
000
000
000
000 | 900 | 006
006
006
006 | | | LONGITUDE | | 1202637
12021117
1202832
1202626 | 1202942
1204400
1204615
1211610
1205026 | 1210450
1203652
1205613
1210526 | 1211603
1210621
1210051
1205645
1182305 | 1182330
1182345
1183125
1183105 | 1182918
1183045
1182920
1182624
1182512 | 1181618
1181308
1181310 | | | LATITUBE | · · | 395336
394907
395336
395302
394313 | 394807
395158
395200
394230
391844 | 392335
393408
393130
393129 | 391328
390100
385505
384907
355405 | 355415
355415
361600
361415 | 361305
361250
361135
363524
354534 | 362655
360400
360400
355720 | | | STATION NAME AND LOCATION | | L LASI CHANCE C BL FRENCHMAN DAM NK CHILCOUT MF FEATHER R NR PORTOLA CA L LASI CHANCE CREEK BL FRENCHMAN DAM NR CHIL BIG GRIZZLY C AT GRIZZLY VY DAM NR PORTOLA C MF FEATHER R NR PORTOLA CALIF | MF FEATHER R AT DELLEKER CALIF
MF FEATHER R BL LONG VALLEY C AT SLOAT CAL
MF FEATHER R BL SLOAT CALIF
MF FEATHER R NR MERRIMAC CALIF
NF DEER C NR WHITE CLOUD | MID YUBA R AB OREGON CR NR NORTH SAN JUAN, C
N YUBA R AB HAYPRESS C NR SIERR CY
NORTH YUBA RIVER BELOW GODDYEARS BAR, CALIF.
NORTH YUBA RIVER ABOVE SLATE CREEK NEAR STRA
SOUTH YUBA RIVER AT JONES BAR NR GRASS VALLE | DEER CREEK NEAR SMARTVILLE, CALIF.
BEAR R NR AUBURN CALIF
MIDDLE FORK AMERICAN RIVER NEAR AUBURN CALIF
SF AMERICAN R NR LOTUS CALIF
SALMON C TR B CA | SALMON C TR C CA
SALMON C TR E CA
SODA SPRINGS NR MOUTH
ALPINE C NR MOUTH
MOUNTINEER C NR MOUTH | L KERN NR GREY MEADOW
CLICKS C NR MOUTH
FISH C NR MOUTH
FY77 CHANGE OPERATION OWDC73807 TO
KERN RIVER AT KERNVILLE CALIF | CRUNIGEN CREEK BL MINERAL KING HWY NR HAMMON
JACKASS C NR MOUTH
FISH C NR TROY MEADOW
FISH C NP MOUTH | | | HYDROLOGIC
Unit
Code | | 18020123
18020123
18020123
18020123 | 18020123
18020123
18020123
18020123 | 18020125
18020125
18020125
18020125 | 18020125
18020126
18020128
18020129
18030001 | 18030001
18030001
18030001
18030001 | 18030001
18030001
18030001
18030001 | 18030001
18030002
18030002
19030002 | | | NOTZ 032 | 0000 | | | υυυυ | 00000 | 00000 | ۵۵۵۵ | | |----------------------------|---|---|---|---|--|--
--|--| | MOITAZINADAO
3000 | USFS
USFS
USFS
USFS
CAO66 | USES
USES
USES
USES
USES | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | ZOZŁ DIZCHYBOE | | | | | ш | ∡ wwwI | ZZYO | | | 3512 TAA9 TAM 038 | | | ω | œ | | | ···· | | | SIS THAN 92U2 | | | <u> </u> | 00 | | | | | | ZOZE ZED CONCEN | | 88668 | 80080 | 8 8 8 9 9 9 | თ <u>თ თ თ</u> თ | + 0 0 0 +
T m m m M | ZZYO | | | OW END
AA3Y | | | | | 1970 | 197
197
197
197 | 197
197 | | | OW BEGIN | 1977
1977
1977
1977 | 197 1
197 1
197 1
197 1 | 1971
1971
1971
1971 | 1971
1977
1977
1977 | 1977
1977
1977
1977
1968 | 1968
1968
1968
1967 | 1968
1968
1968
1967 | | | MISAB
AOTAIRDS30 | 024 | | | | 904 | 00000
444444 | 000
000
4 | | | DRAINAGE
AREA | 85.80 | | 16.00 | | 9.92 | 1.89
12.10
16.00
23.70 | .66
1.38
5.80
85.80 | | | TYPE OF | ***** | A A A A A A A A A A A A A A A A A A A | AS SW
SW
SW
SW
SW | N N N N N N N N N N N N N N N N N N N | N A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | A S S S S S S S S S S S S S S S S S S S | | | YTWU00 | 107
107
107
029 | 107
107
107
107 | 107
107
107
107 | 107
107
107
107 | 107
107
107
107 | 107
107
107
107 | 107
107
107
107 | | | 3TAT2 | 900
900
900 | 900 | 900 | 900 | 9000 | 9999 | 900 | | | LONGITUDE | 1182000
1182030
1181005
1184715 | 1183658
1183452
1183505
1183550 | 1183700
1183524
1183538
1183540 | 1183537
1183452
1183505
1183532 | 1183620
1183658
1183537
1183545
1183538 | 1183540
1183537
1183556
1183704
1183911 | 1184030
1184210
1184600
1184715 | | | LATITUDE | 355900
355900
355900
35530
350515 | 362704
362539
362559
3625640 | 362700
362624
362644
362701 | 362709
362539
362559
362644
362705 | 362708
362704
362709
362710
362644 | 362701
362709
362709
362705 | 362757
362714
362636
362705 | | | STATION NAME AND LOCATION | SHERMAN PASS SKI 2 UNNAMED CREEK
SHERMAN PASS SKI 1 UNNAMED CREEK
TROUT C NR MOUTH
ANTELOPE CR NR TEHACHAPI CA
EF KAWEAH R NR THREE RIVERS CA | MOSQUITO C NR MOUTH FRANKLIN C NR MOUTH WHITE CHIEF C NR MOUTH SPRING C NR MOUTH MONARCH C NR MOUTH | MOSQUITO C NR MOUTH EF KAWEAH R BL EAGLE C NR HAMMOND EF KAWEAH R BL EAGLE C NR HAMMOND EF KAWEAH R AB MONARCH C NR HAMMND EF KAWEAH R AB MONARCH C NR HAMMND | MONARCH C NR HAMMOND CA
FY77 CHANGE OPERATION OWDC73812 TO
FY77 CHANGE OPERATION OWDC73813 TO
FY77 CHANGE OPERATION OWDC73814 TO
FY77 CHANGE OPERATION OWDC73811 TO | FY77 CHANGE OPERATION OWDC73810 TO FY77 CHANGE OPERATION OWDC73816 TO FY77 CHANGE OPERATION OWDC73809 TO FY77 CHANGE OPERATION OWDC73815 TO EY77 CHANGE OPERATION OWDC73815 TO | EF KAWEAH R AB MONARCH CREEK NR HAMMOND CALI
MONARCH C NR HAMMOND CA
EF KAWEAH R BL MONARCH C NR HAMMOND CALIF
EF KAWEAH RIVER BL MOSQUITO C NR HAMMOND CAL
EF KAWEAH R AT SEO NATL P BNDRY NR HAMMOND C | ATWELL CREEK AB MINERAL KING HWY NR HAMMOND REDWOOD CREEK AB MINERAL KING HWY NR HAMMOND SQUIRREL CREEK BL MINERAL KING HWY NR HAMMON EAST FORK KAWEAH RIVER NEAR THREE RIVERS CAL | | | HYDROLOGIC
Unit
Code | 18030002
18030002
18030002
18030003 | 18030007
18030007
18030007
18030007 | 18030007
18030007
18030007
18030007 | 18030007
18030007
18030007
18030007 | 18030007
18030007
18030007
18030007 | 18030007
18030007
18030007
18030007 | 18030007
18030007
18030007 | | | A103M | | | ···· | | | | | | |----------------------------|--|---|---|--|--|---|--|-----| | MOTZ 032 | N N
T T | 0000 | 00 | N N D D | 0 0 0 0 0 | S POO | 0000 | | | DRGANIZATION
GOOD | USSCS
USSCS
USFS
USFS | USES
USGS
USGS
USGS
USGS | USGS
USGE
USCE
USCE
USCE | USGS
USSCS
USSCS
USGS
USGS | USSCS
USSCS
USSCS
USSCS
USSCS | USGS
USGS
USGS
USSCS
USSCS | USGS
USGS
USGS
USGS | | | SUSPENSION NO. | | Z | | α ∢ | | 74 A | R M Z M | | | 3512 TRAS 92U2 | | z | | ∑ | < Z | α ₹ | шХш | | | 2026 SED CONCEN | m m 0 0 0 | | >> = = = = | <u> </u> | 4 8 8 8 0 | U A Z W K | A M S M | | | OW END
YEAR | 1970 | 1970
1975
1975 | 1975 | 1959 | 1965
 | 1966 | 1967 | | | OW BEGIN | 1977
1977
1969
1969 | 1969
1955
1974
1974 | 1974
1974
1962
1962
1954 | 1956
1977
1977
1974 | 1963
1977
1977
1977 | 1958
1970
1977
1977 | 1952
1951
1960
1964 | | | BASIN
DESCRIPTOR | | 014 | | 024
024
004 | 004 | 004
004
124 | 124
004
004
004 | · 4 | | DRA INAGE
Aĥea | | 1342.00 | | 904.00 | 13536.00 | 42.60 | 1273.00
661.00
724.00
181.00 | | | 10 39YT
3TI2 | A S A S A S A S A S A S A S A S A S A S | | 33333 | N N N N N N N N N N N N N N N N N N N | NNNNN | N C C C C C C C C C C C C C C C C C C C | SER | | | CONNILA | 701
010
010 | 22555 | 019
019
107
107
019 | 083
107
019
019
019 | 047
019
039
039 | 077
013
001
077
047 | 047
077
067
043 | | | 3TAT2 | 900000000000000000000000000000000000000 | | 900 | 900 | 900 | 000
000
000
000
000 | 006
006
006
005 | | | LONGITUDE | 1190440
1191635
1191500
1191500 | 1191800
1190827
1183452
1183822 | 1183701
1183721
1185522
1190042 | 1201643
1185930
1192230
1194211
1204022 | 1205405
1204022
1200330
1200415
1211551 | 1213503
1214334
1213500
1210210
1201953 | 1205546
1211809
1212034
1193329 | | | LATITUDE | 363730
363945
365500
365500
376500 | 7 9 9 9 9 | 364454
364659
360323
362451
364950 | 350042
360835
364435
365953
363708 | 370100
363708
370340
370120 | 374749
375224
374700
380100
373118 | 372215
380931
382129
374354 | | | STATION NAME AND LOCATION | ANTELOPE CREEK NR WODDLAKE CA
WOOTEN CR NR ORANGE COVE CA
BIG CREEK AT BRIDGE
DITRIB TO GREEK AT BRIDGE | RUSH CREEK BELOW PETERSON
KINGS RIVER BL NF NR TRIMM
ROARING R AT RANGER STA NR
SUGARLOAF C TR AT MOUTH NR
FERGUSON C AT MOUTH NR CED | ROARING R AB SUGARLOAF C NR CEDAR
ROARING R AT ROARING R FALLS NR CE
TULE R BL SUCCESS DAM CA
KAWEAH R BL TERMINUS DAM CA
KINGS R BELOW PINE FLAT DAM | CUYAMA R NR SANTA MARIA CALIF PERAZIER CR NR STRATHMORE CA WATOKE CR NR ORANGE COVE CA FRIANT-KERN CANAL AT FRIANT CALIF PANOCHE C BL SILVER C NR PANOCHE CA | LOS BANDS C NR LOS BANDS CALIF
PANOCHE C BL SILVER C NR PANOCHE C
DRY CREEK NR MADERA CA
SCHMIT CREEK NR MADERA CA
SAM JOAQUIN RIVER NEAR VERNALIS CALIF | DELTA-MENDOTA CANAL BL TRACY PUMP PLT NR TRA
MARSH CREEK NEAR BYRON, CALIF.
DELTA MENDOTA CA AT HEAD CA
POTTER C TRIB NR PETERS CA
MERCED RIVER BELOW MERCED FALLS DAM NEAR SNE | MERCED RIVER NEAR STEVINSON, CALIF. MOKELUMNE RIVER AT WOODBRIDGE CALIF COSUMNES RIVER AT MCCONNELL CALIF MERCED R AT HAPPY ISLES BRIDGE MR YOSEMITE C | | | HYDROLOGIC
Unit
Code | 18030007
18030007
18030010
18030010 | 18030010
18030010
18030010
18030010 | 18030010
18030012
18030012
18030012 | 18030012
18030012
18030012
18040001 | 18040001
18040001
18040001
18040001 | 18040003
18040003
18040004
18040005 | 18040005
18040005
18040005 | | | MEDIA | | 00000 | | | | | | | | |----------------------------|------------------|--|---|--|---|---|---|--|--| | MOTZ GAZ | | 0000 | 000 4 | 0000 | 00000 | 00000 | 44400
000 | ოოოო | | | ONGANIZATION
CODE | | 8 8 8 8 8 |
USGS
USGS
USGS
USBR
USBR | USGS
CA080
CA080
CA080
CA080 | CA080
CA080
CA080
CA080
CA080 | 4000 | 555:: | | | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | SSSSS | SASS | 2 2 2 2 2 2
2 2 2 2 2 2 | 44444 | 88888 | 4444 | | | 2026 DIZCHYBUE | | ∞ ••••• | 200 | η | | | · | | | | 3512 TRA9 92U2 | | ш | αα α | <u> </u> | 000000 | 88888 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4400 | | | ZOZE ZED CONCEN | | Z 4 O M M | α00ωΣ
πα α | - 2 | | | | ···· | | | 8A3Y | | 4 0 0 | | · · · · · · · · · · · · · · · · · · · | | 44444 | 4 4 4 | | | | OW END | | 197
197 | 1973
1960 | | | 196,
196,
196,
196, | 196
196
196 | | | | OW BEGIN | | 1972
1975
1973
1973 | 1960
1972
1972
1971 | 1952
1973
1973
1970
1973 | 1973
1973
1973
1973 | 1960
1960
1960
1960 | 1960
1960
1960
1971 | 1971
1971
1967
1967 | | | NISA8
ROTAIRDS30 | | 024
024
004 | 014
004
004
124 | 004 | | | | | | | | | 88888 | 88888 | 8 | | | | | | | DRAINAGE
AREA | | 287.
345.
393.
241.
691. | 627.
118.
85.
8.
436. | 5
9
9
9 | | | | | | | 70 39YT
3TI2 | | 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | A S S S S S S S S S S S S S S S S S S S | S S S S K | ES ES | ESS SS S | ES S S S ES | ES
ES
ES | | | COUNTY | | 0043
0043
0043
0043 | 077
009
009
017
005 | 067
095
095
013 | 095
095
095
095 | 013
095
013
013 | 0013 | 013
013
013 | | | 3TAT2 | | 900 | 900 | 900 | 900 | 900 | 900 | 9000 | | | 30 | | | | | | | | | | | LONGITUDE | | 3750
4245
4825
5304
5556 | 200219
203946
204154
203138
205145 | 12 10239
1220942
12 15320
12 15806
12 15806 | 220655
220543
220113
215837
215607 | 221332
12207 10
1220448
1220305
1220045 | 5654
5245
5125
5106
510 | 215108
1215031
220522
220533 | | | NO 1 | | 00000 | 00000 | 2222 | 2222 | 888888 | 22222 | 2222 | | | LATITUDE | | 374327 1
374318 1
374010 1
373905 1 | 381314
380840
381317
383340
383221 | 383001 1
380231 1
380233 1
380142 1 | 380217 1
380247 1
380350 1
380306 1 | 380335 1
380236 1
380310 1
380345 1 | 380308 1
380215 1
380152 1
380149 1 | 380149 1
380134 1
380258 1
380257 1 | | | STATION NAME AND LOCATION | . · ² | MERCED RIVER AT EL CAPITAN BRIDGE NR YOSEMIT 33 MERCED R AT BIG DAK FLAT NR EL PORTAL CAA 31 MERCED RIVER AT RANCHERIA FLAT NR EL PORTAL 33 SOUTH FORK MERCED RIVER NEAR EL PORTAL, CALI 33 MERCED RIVER NEAR EL PORTAL, CALI 33 | MOKELUMNE RIVER BL CAMANCHE DAM CALIF SOUTH FORK CALAVERAS RIVER NEAR SAN ANDREAS, 38 NORTH FORK CALAVERAS RIVER NEAR SAN ANDREAS, 38 SOPIAGO C NR DMD RANCH CALIF COSUMNES R NR PLYMOUTH CALIF | COSUMNES RIVER AT MICHIGAN BAR CALIF SUSUN BAY CARQUINEZ ST MARTINEZ SUISUN SLOUGH | CARQUINEZ STRAIT SUISUN BAY SUISUN BAY NR ROE ISL HONKER BAY HONKER BAY NR CHIPPS ISL | CARQUINEZ STRAIT CARQUINEZ STRAIT SUISUN BAY NR PT EDITH SUISUN BAY NR PRESTON PT SUISUN BAY NR ROE ISL | HONKER BAY NEW YORK SLOUGH NEW YORK SLOUGH SEW YORK SLOUGH NEW YORK SLOUGH 38 | NEW YORK SLOUGH NEW YORK SLOUGH SUISUN BAY SUISUN BAY 36 | | | HYDROLOGIC
Unit
Code | | 18040008
18040008
18040008
18040008 | 18040010
18040011
18040011
18040013 | 18040013
18050001
18050001
18050001 | 18050001
18050001
18050001
18050001 | 18050001
18050001
18050001
18050001 | 18050001
18050001
18050001
18050001 | 18050001
18050001
18050001 | | | MEDIA | | | | | | | | | | |----------------------------|-------------|--|--|--|--|--|---|---|-------------| | 9012 G32 | | ოოოოო | ოოოოო | | <u> </u> | 0000 | 00000 | 0000 | | | SODS CODE | | | | 110000 | 113
113
0E
0E | 55
55
55
55
58
58
58 | CA082
CA082
CA082
CA082
CA082 | CA 104
CA 104
CA 104
CA 104 | | | MOITASIMADEO | | 22222 | 44444 | 4444 | CA11
CA11
USCE
USCE
USGE | USGS
USGS
USGS
USGS
CAOR | O O O O O | 4 4 4 4
0 0 0 0 | | | SUSP OISCHARGE | | | | | ⋖ | ⋖ | | | | | 3512 TAA9 TAM 038 | | 8 8 8 8 8 8 | 80 80 80 80 | 8 8 8 8 8 8 | 0000 | ω | 000000 | 80 80 80 | | | 3512 TAA9 92U2 | | | | | Α | ⋖ | | | | | 2026 ZED CONCEN | | | | | O + | 4444 | | | | | OW END
RABY | | | | | 1970 | | | 1964
1964
1964
1964 | | | NIB38 WD
Ra3y | | 1967
1970
1969
1969 | 1969
1968
1968
1968 | 1968
1970
1970
1970 | 1971
1971
1979
1979
1970 | 1970
1978
1978
1978 | 1968
1968
1968
1968 | 1960
1960
1960
1960 | | | BASIN
Descriptor | | | | | 004 | 123 | | | | | DRAINAGE
AREA | | | | | 15.10 | 85.20 | | | | | TYPE OF | | E S S S S | ES S S S ES | ESSSS | S S S S S | E E E S S K | ES S S S E | ES S S | | | COUNTY | | 013
013
013 | 013
095
095
095
095 | 095
013
013
013 | 013
013
013
013 | 013
095
095
095
075 | 001
041
075
075 | 075
075
075
075 | | | 3TAT2 | | 9000 | 9000 | 9000 | 9000 | 9000 | 99000 | 9000 | | | 300 | | | | | | | 518
500
515
515 | 514
514
830
437 | | | LONGITUDE | | 220512
215132
215132
221333
221306 | 13(
07(
07(| 070
072
072
074 | 20538
20548
21211
20112 | 025
103
233 | 222
225
225
225
225
4 | 222
225
228
228
224 | | | 10.1 | | 122
121
122
122 | 122 1305
1220703
1220707
1220707
1220707 | 1220707
1220742
1220757
1220744
1220746 | 22222 | 1220255
1215242
1221024
1220206
1222323 | 22222 | 122
122
122
122 | | | | | | | | + 4 0 0 C | | | | | | LATITUDE | |)25
)15
)14
)32 | 331
331
331 | 31
31
31
31
31 |)25
)24
)34
)34 | 35
35
35
35
35 | 5050
5105
75130
75215 | 4800
4918
4948
5112 | | | LATI | | 380258
380154
380148
380327
380327 | 380327
380318
380318
380318
380318 | 380318
380157
380150
380157
380155 | 380251
380244
380319
380346
380012 | 375643
380300
380300
380354
375005 | 375
375
375
375 | 377 | | | STATION NAME AND LOCATION | | SUISUN BAY
NEW YORK SLOUGH
NEW YORK SLOUGH
CARQUINEZ ST
CARQUINEZ ST | CARQUINEZ ST
CARQUINEZ STRAIT
CARQUINEZ STRAIT
CARQUINEZ STRAIT | CARQUINEZ STRAIT CARQUINEZ ST CARQUINEZ ST CARQUINEZ ST CARQUINEZ ST | SUISUN BAY
SUISUN BAY
CARQUINEZ STR AT ECKLEY
SUISUN BAY AT PORT CHICAGO
ARROYO DEL HAMBRE AT MARTINEZ, CALIF. | WALNUT CREEK AT CONCORD, CALIF. SAN FRANCISCO BAY AT PITTSBURG CALIF SAN FRANCISCO BAY AT BENICIA CALIF SAN FRANCISCO BAY AT ROE ISLAND CALIF R-2 BUDY | BERKELEY PIER
PT BLUNT
QUARRY PT
PT SIMPTON
SOUTH HAMPTON SHOUL | CENTRAL SF BAY
CENTRAL SF BAY-NR ALCATRAZ
SF BAY NR GOLDEN GATE BR
SF BAY NR ANGEL ISL | | | HYDROLOGIC
Unit
CODE | | 18050001
18050001
18050001
18050001
18050001 | 18050001
18050001
18050001
18050001
18050001 | 18050001
18050001
18050001
18050001
18050001 | 18050001
18050001
18050001
18050001 | 18050001
18050001
18050001
18050001 | 18050002
18050002
18050002
18050002
18050002 | 18050002
18050002
18050002
18050002 | | | VIO3W | | | | | | | | | |----------------------------|---|--|---|---|--|---|--|---------------------------------------| | #O12 G32 | 4 4 4 4 4 | <u> </u> | <u> </u> | ოოოოო | ოოოოო | ოოოო | <u>_</u> | | | MOITASINADRO
3000 | 55555 | 0 0 0 0 0
4 4 4 4 4 | 401
401
103
133 | | | | CA11(
CA11(
USCE
USGS | | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 4 4 4 | CA
CA
US | | | SUSP DISCHARGE | | | | | | | 0 | | | SIS TAAS TAM 038 |
80 80 80 80 | | യയയ≥≥ | ≥ ∞ ∞ ∞ ∞ | <u> </u> | ∞ ⋖ ⋖ ∞ ∞ | ∞ ∞ ⋖ | | | SUSP SED CONCEN |
 | | | | | | 00 | | | |
4444 | 4444 | 4 4 4 | | | | | | | OW END
RA3Y |
196
196
196
196
196 | 196,
196,
196,
196, | 196
196
196 | | | | | | | LEVR
OW BECIN | 1960
1960
1960
1960 | 1960
1960
1960
1960 | 1960
1960
1960
1969 | 1969
1971
1971
1971 | 1971
1971
1971
1971 | 1972
1971
1971
1969
1969 | 1969
1969
1977
1976 | | | BASIN
DESCRIPTOR | | | | | | | 013 | | | DRAINAGE
AREA |
 | | | | | 7.79 | | | TYPE OF |
SSSSS | E E S S S S | E E E S E E | E E E E S | E E E S E | EESES | SSES | | | CDUNTY |
0013 | 013
041
041
013
041 | 013
013
013 | 5 5 5 5 5 | 0013 | 097
013
013
013 | 013
013
055
013 | | | STATE | 0 0 0 0 0 | 90000 | 000000000000000000000000000000000000000 | 900 | 000000000000000000000000000000000000000 | 900 | 9000 | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | LONGITUDE | 1222624
1222356
1222700
1222505 | 1222659
1222630
1222645
1222500
1222300 | 1222218
1222200
1221610
1221525 | 1221544
1222317
1222407
1222425
1222425 | 1222317
1222352
1222311
1222301 | 1222606
1221613
1221555
1222406
1222344 | 1222352
1222405
1221808
1222014 | | | LATITUDE | 375230
375426
374900
375600
375615 | 375721
380455
375945
375856
380315 | 380150
380500
380245
380300 | 380243
375711
375747
375803
375806 | 375711
375430
375428
375420 | 381451
380234
380229
375828
375806 | 375817
375808
382206
375712 | | | STATION NAME AND LOCATION | RACOON STRAIT
N SAN FRANCISCO BAY NR RICHMOND
SF BAY NR TIBURON
SF BAY NR RICHMOND
SF BAY NR CORTE MADERA C | SF BAY NR PT SAN PABLO
SAN PABLO BAY
SAN PABLO NR PT SAN PEDRO
SAN PABLO BAY
SAN PABLO BAY | SAN PABLO BAY
SAN PABLO BAY
SAN PABLO BAY
SAN PABLO BAY
SAN PABLO BAY | SAN PABLO BAY
SF BAY NR PT SAN PABLO
SF BAY NR PT SAN PABLO
SAN PABLO BAY
SAN PABLO BAY | SF BAY NR PT SAN PABLO
SAN FRANCISCO BAY
RICHMOND HARBOR
SAN FRANCISCO BAY
SAN PABLO BAY | SCHELL SLOUGH NR SP BAY
SAN PABLO BAY
SAN PABLO BAY
SAN PABLO BAY
SAN PABLO BAY | SAN PABLO BAY
SAN PABLO BAY
NAPA R NR NAPA CALIF
WILDCAT C AT VALE ROAD AT RICHMOND CALIF | | | HYDROLOGIC
Unit
Code | 18050002
18050002
18050002
18050002 | 18050002
18050002
18050002
18050002 | 18050002
18050002
18050002
18050002 | 18050002
18050002
18050002
18050002 | 18050002
18050002
18050002
18050002 | 18050002
18050002
18050002
18050002 | 18050002
18050002
18050002 | | | AIO3M | | | | | | | | | | |----------------------------|--------------|--|--|---|---|--|---|--|-------| | 90T2 032
AIG3M | | 000 | 0000 | 00004 | <u> </u> | 0000 | 00000 | 0000 | | | ONGANIZATION
3000 | | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
CA104 | CA 104
CA 104
CA 104
CA 104
CA 113 | CA 113
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | NOX 4 | 44440 | | | 444 | E 2 | 404 | | | SSIS TRAN TAM 038 | | 4 O | 0 | | 88888 | S A | ш >ш | ш« | ····· | | 2026 SED CONCEN | | NOXOA
BEMAM | 44442 | 4444 | | 444 | R 2 | A 2 A A A A A A A A A A A A A A A A A A | | | OW FND
AA3Y | | 1971
1962
1975 | 1975
1975
1975
1975 | 1964 | 1964
1964
1964
1964 | 1970 | 1975
1975
1973 | 1972
1973
1973 | | | OW BEGIN | | 1953
1970
1957
1957 | 1971
1972
1972
1971 | 1978
1978
1978
1978 | 1960
1960
1960
1960 | 1964
1970
1972
1972 | 1971
1973
1973
1973 | 1972
1971
1972
1972 | | | BASIN
AOT9IA3230 | | \$ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 0000
0000
0000
0000 | | | 003
013
124
003 | 888 | 8888 | | | DRAINAGE
AREA | | 218.00
218.00
9.81
58.40
19 | 1.24
. 11
. 16
. 69
. 69 | | | 7.26
7.64
9.22
9.22 | .02 | 1.43 | | | 3712 | | ************************************** | X | N N N N N | ທທທທ ທ | N N N N N N N N N N N N N N N N N N N | 3 3 3 3 3 S | 3333 | | | TYPE OF | | 4 7 55 55 | <u> </u> | шшшшш | | บบบบบ | นกบบบบ | 0 0 0 0 0
0 0 0 0 0 | | | COUNTY | | 00000 | <u>\$ \$ 9 9 9</u> | 075 | 88888 | 8888 | 80000 | 8888 | | | 3TAT2 | | 9999 | 9000 | 90000 | 900 | 900 | 900 | 9990 | | | LDNGITUDE | | 1222537
1221808
1222035
1222936
1223258 | 1223207
1223029
1223024
1223050 | 1222818
1222536
1222612
1221842
1220445 | 1220300
1220115
1215940
1215828
1220313 | 1220314
1220804
1215308
1220218
1220331 | 1220336
1220331
1220327
1220318 | 1220304
1220314
1220234
1220234 | | | LATITUDE | | 382952
382206
381904
381924
375904 | 375822
375928
375856
375856 | 374906
375254
375812
380306
372845 | 372732
372745
372754
372738
373033 | 373029
372518
371548
371516
371603 | 37 1609
37 1603
37 1600
37 1554
37 1554 | 37 1600
37 1709
37 1738
37 1738 | | | STATION NAME AND LOCATION | | NAPA KIVEK NEAK SI. HELENA CALIF
NAPA RIVER NEAR NAPA CALIF
REDWOOD CREEK NEAR NAPA, CALIFORNIA
SONOMA C AT AGUA CALIENTE CALIF
SAN RAFAFL C AT SIRARD LANE AT SAN | SAN RAFAEL CREEK AT SAN RAFAEL, CALIFIRWIN C TR AT SAN RAFAEL CALIFIRWIN C TR NO 2 AT SAN RAFAEL CALIFIRWIN CREEK AT SAN RAFAEL CALIFICORTE MADERA CREEK AT ROSS, CALIF. | SAN FRANCISCO BAY AT GOLDEN GATE BRIDGE CALI
SAN FRANCISCO BAY AT TIBURON CALIF
SAN FRANCISCO BAY AT POINT SAN PABLO CALIF
SAN FRANCISCO BAY AT HERCULES CALIF
SF BAY NR COYOTE C | SF BAY NR COYOTE C
COYOTE C
COYOTE C
COYOTE C
NEWARK SLOUGH | NEWARK SLOUGH
MATADERO C AT PALO ALTO CALIF
ROSS C BL JARVIS ROAD NEAR SAN JOSE, CALIF.
SARATOGA CREEK AT SARATDGA, CA.
CALABAZAS C AT MT EDEN RD NR SARATOGA CA | CALABAZAS C TRIB AT MT EDEN ROAD NR SARATOGA
CALABAZAS C AT MTERD NR SARTOGA CALIF
CALABAZAS C TR 2 AT MT EDEN RD NR S
CALABAZAS C TR4 AT MTERD NR SARATOGA CALIF
CALABAZAS C TR5 AT PRC RD NR SARATOGA CALIF | CALABAZAS C AT VREGNA NR SARATOGA CALIF
PROSPECT C AT SARATOGA GOLF COURSE NR SARATO
PROSPECT C AT MRA LA NR SARATOGA CALIF
PROSPECT C TO MP SAPATOGA CALIF | | | HYDROLOGIC
Unit
Code | | 18050002
18050002
18050002
18050002 | 18050002
18050002
18050002
18050002 | 18050002
18050002
18050002
18050002 | 18050003
18050003
18050003
18050003 | 18050003
18050003
18050003
18050003 | 18050003
18050003
18050003
18050003 | 18050003
18050003
18050003 | | | MEDIA | ···· | | | | | | | | | |----------------------------|------|---|---|--|--|--|--|---|---| | AUGIM | | 00000 | | | <u> </u> | m m m == == | ~~~~ | | | | 300 0 | | USGS
USGS
USGS
CA104
CA104 | <u> </u> | 0 0 0 0 0
4 0 0 0 0 | 104
104
113
113 | 111111111111111111111111111111111111111 | 113 | 113 | | | MOITASIMADRO | | US
US
CA
CA | 8 8 8 8 C | 4 4 4 4 V | 4444 | 4 4 4 4 4
0 0 0 0 0 | A A A A A | 8 8 8 8
0 0 0 0 | | | SUSP DISCHARGE | | 0.0 | | | | | | | | | ISIS TAA9 TAM 038 | | ш 66 | 8 8 8 8 8 8 | 8 8 8 8 8 8 | BB004 | ববববব | ∢ 0000 | 0444 | | | SUSP SED CONCEN | | шК | | | | | | | | | | | 4 4
0 0 4 | 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4444 | 64 | | | | | | OW END
YEAR | | 196 | 196
196
196
196 | 1964
1964
1964
1964
1964 | 196 | | | | | | NIBBE WO
RABY | | 1972
1963
1978
1960
1960 | 1960
1960
1960
1960 | 1960
1960
1960
1960 | 1960
1960
1972
1972
1969 | 1969
1969
1969
1969 | 1969
1974
1974
1974 | 1974
1975
1975
1975 | | | NISAB
BOT9183230 | | 003 | | | | | | | | | ,,, | | 86. | | | | | | | | | ORAINAGE
AREA | | 3
109 | | | | | | | | | 0RA
A | 294 | | | | | | | | | | TYPE OF | | S R R R R R R R R R R R R R R R R R R R | ESS ESS | 2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 2 | 2 | S S S S S S | E S S S | , | | COUNTY | | 085
085
001
001
075 | 001
075
081
081 | 08 08 1
1 1 00 08 1 | 081
081
081 | 08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
081
081
081
081 | 081
081
081
081 | | | 3TAT2 | | 900 | 900
900
000
000 | 900 | 900 | 900 | 900 | 900 | | | E E | | 332
4 4 8 8 6 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | 45
007
07
27
27 | 18
17
17
20
21 | 15
06
20
17
35 | 51
42
43 | | | LONGITUDE | | 2013
1293
203
218 | 22113
22212
20006
11846 | 2 1900
2 1506
2 2 1033
2 1033 | 2116
2070
2155
2155
2155 | <u> </u> | 10 to to 10 to | 8555 | | | 67 | | 121
122
122
122
122 | 122
122
122
122
122 | 122
122
122
122
122 | 22222 | 122
122
122
122
122 | 122
122
122
122
122 | 122
122
122
122 | | | <u></u> | | 03
40
18
30 | 4 0 0 0 0
0 0 0 0 0
0 0 0 0 0 | 00
07
06
27
35 | 26
26
27
29
39 | 552
53
54
54 | 084-80
443
822 | 8 7 8 4
7 8 4
8 6 | | | LATITUDE | | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 0 4 0 4
0 0 4 0 0 | 3500
3507
5106
3227
3335 | 3450
3026
3147
3157
3509 | 44444 | 4 6 6 6 6 6 6 | m m m m | | | Α. | | 37
37
37
37 | 37
37
37
37 | 37
37
37
37
37 | 37
37
37
37 | 37
37
37
37 | 37
37
37
37 | 37 37 37 | | | STATION NAME AND LOCATION | | CALABAZAS C AT RNBO DRI NR CUPERTINO CALIF
COYOTE CREEK NR GILROY CALIF
SAN FRANCISCO BAY AT CALAVERAS POINT CALIF
S SAN FRANCISCO BAY
SF BAY NR ISLAIS C | SF BAY NR TREASURE S F BAY NR OYSTER PT SO SF BAY NR CANDLESTICK PT CENTRAL SOUTH SF BAY SO SF BAY NR SAN LEANDRO CHANNEL | COYOTE PT
SF BAY NR SAN MATEO BR
SF BAY NR BERKELEY PIER
SO SAN FRANCISCO BAY
COYOTE HILLS | CENT SO SAN FRANCISCO BAY
SAN FRANCISCO BAY NR DUMBARTON BR
BELMONT SLOUGH
BELMONT SLOUGH
SF BAY NR SAN MATEO BR | SF BAY NR SAN MATEO BR
SF BAY NR SAN MATEO BR | SF BAY NR SAN MATEO BR
FOSTER CITY LAGOON
FOSTER CITY LAGOON
FOSTER CITY MARINA
FOSTER CITY LAGOON | FOSTER CITY LAGOON
SF BAY CENTRAL SO BAY
SF BAY CENTRAL SO BAY
SF BAY CENTRAL SO BAY | | | HYDROLOGIC
Unit
Code | | 18050003
18050003
18050004
18050004 | 18050004
18050004
18050004
18050004 | 18050004
18050004
18050004
18050004 | 18050004
18050004
18050004
18050004 | 18050004
18050004
18050004
18050004 | 18050004
18050004
18050004
18050004 | 18050004
18050004
18050004 | | | AIG3M | ****************************** | | | | | | | |----------------------------|---|--|---|--|--|---|--| | AOTZ G32 | п п п п п | | 00000 | 00000 | 0000 | | <u> </u> | | ORGANIZATION
GOOD | CA111 | CA111
CA111
CA111
USCE | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
CA11 | CA11
CA11
USGS
USGS
USGS | USGS
USGS
USGS
CA 100 | | SUSP DISCHARGE | | 00003 | 0 4 4 0 | 20mg | 2220 | ZXO | 244 | | 3512 TRAY TAM 038 | 444000 | 8 8 8 8 8 | | | 89 | m m | 0 | | 3512 TRAS 92UZ | | 80 | Zdddd | ч шш ч | S | NNAAA | বৰৰ | | SUSP SED CONCEN | | 80 | 0 N A A D | 22 m R ★ | বৰবৰ | Z Z W | 2 < < | | OW END
YEAR | | | 1969
1971
1971 | 1973 | | 1969
1969
1970 | 1972
1973
1976 | | OM BECIN | 1975
1975
1975
1971 | 1971
1971
1971
1971 | 1964
1964
1970
1970 | 1959
1952
1971
1972
1978 | 1978
1978
1978
1978 | 1959
1959
1967
1967 | 1970
1964
1974
1974 | | BPSIN
DESCRIPTOR | | | 003
024
003
014
004 | 124
124
003 | | 004
004
124 | 0004
124
024 | | ORAINAGE
AREA | | | 10.80
.70
1.82
142.00 | 147.00
633.00
5.51
1.67 | | .70
.46
7.83 | 37.10
45.90
18.30 | | TYPE OF
SITE | ш ш ш ш ш
х х х х х х | ES S S S S S S S S S S S S S S S S S S | N N N N N N N N N N N N N N N N N N N | E S E E E | ES
ES
OC | N N N N N N N N N N N N N N N N N N N | NONN | | YTNUOD | 08
1 1 8 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 081
081
081
081 | 088 | 98008 | 081
081
081
075
081 | 081
041
041 | 041
081
053 | | 3TAT2 | 900000000000000000000000000000000000000 | 900 | 900 | 900 | 900 | 900
900
900
900
900 | 9000 | | LONGITUDE | 1221245
1221245
1221248
122143 | 1222142
1222141
1222147
1222146
1221158 | 1222531
1222515
1221357
1215220
1214058 | 1214528
1215735
1220446
1221306
1220806 | 1221130
1221730
1222018
1222212 | 1222700
1222700
1224009
1224051
1224131 | 1225135
1221940
1222156
1214704 | | LATITUDE | 373346
373346
373346
373937 | 373951
373950
373950
373949
374720 | 373914
373846
372658
374126 | 373724
373514
374048
374659
373106 | 373318
373706
374200
374800 | 372824
372822
375509
375547
375507 | 38 1235
37 1539
37 1401
3648 15 | | STATION NAME AND LOCATION | SF BAY CENTRAL SO BAY SF BAY CENTRAL SO BAY SF BAY CENTRAL SO BAY OVSTER PT SF BAY NR OYSTER PT | OVSTER PT OVSTER PT OVSTER PT OVSTER PT OVSTER PT OVSTER PT OMETHARBOR | COLMA CREEK AT SOUTH SAN FRANCISCO CALIF
SPRUCE BRANCH AT SOUTH SAN FRANCISCO CALIF
REDWOOD CREEK AT REDWOOD CITY, CALIF.
ARROYO MOCHO NEAR PLEASANTON, CALIF.
ARROYO VALLE BL LANG CN NR LIVERMORE CALIF | ARROYO VALLE NEAR LIVERMORE CALIF
ALAMEDA CREEK NR NILES CALIF
CASTRO VALLEY CREEK AT HAYWARD, CALIF.
PERALTA C AT D&KLAND, CALIF.
SAN FRANCISCO BAY AT RAVENSWOOD POINT CALIF | SAN FRANCISCO BAY AT REDWOOD POINT CALIF
SAN FRANCISCO BAY AT COYOTE POINT CALIF
SAN FRANCISCO BAY AT CANDLESTICK POINT CALIF
SAN FRANCISCO BAY AT BAY BRIDGE CALIF
PACIFIC OCEAN NR HALF MOON BAY | PACIFIC DCEAN NR HALF MODN BAY
PACIFIC OCEAN NR HALF MOON BAY
MORSES C AT BOLINAS CALIF
AUDUBON C NR BOLINAS CALIF
PINE CR AT BOLINAS CALIF | WALKER CREEK NEAR TOMALES, CALIFORNIA
PESCADERO CREEK NEAR PESCADERO CALIF
BUTANO CREEK NEAR PESCADERO, CALIF.
MONTEREY BAY | | HYBROLOGIC
Unit
Code | 18050004
18050004
18050004
18050004 | 18050004
18050004
18050004
18050004 | 18050004
18050004
18050004
18050004 | 18050004
18050004
18050004
18050004 | 18050004
18050004
18050004
18050004 | 18050005
18050005
18050005
18050005 | 18050005
18050006
18050006
18060001 | | MEDIA
MEDIA | | Δ. | | | | | | | | |---|--|---|---|---|--|--|--|---|-------------| | BOTZ GRZ | <u>, </u> | 64444 | 4444 | 4444 | 44444 | 4444 | 4 4 4 4 4 | 4444 | | | MOITAS INADRO
3000 | | 4- 4- 4- 4- 4- | 44444 | 44444 | 44444 | 4 | 4444 | 4444 | | | *************************************** | | 0 0 0 0 0
4 4 4 4 4 | 44444 | 44444 | 44444 | 44444 | 4 4 4 4 4
0 0 0 0 0 | 4 4 4 4
0 0 0 0 | | | BED MAT PART SIZE | | INNAA | বৰবৰৰ | NNAAA | 44444 | वंववंब | 44444 | 4444 | | | SSIZ TRAS SZUZ | | | | 0.0/2.22 | | | | | | | ZOZE ZED CONCEN | | | | | | | | | | | OW END
RABY | | 1976 | | | | | | | | | OW BEGIN | | 1974
1973
1973
1973 | 1973
1973
1976
1976 | 1971
1971
1976
1976 | 1976
1976
1976
1976 | 1976
1976
1976
1953 | 1953
1953
1953
1953 | 1974
1974
1974
1974 | | | MIZA8
Rotqiroz30 | | | | | | | | | | | DRAINAGE
AREA | | | | | | | | | | | 17PE OF
3112 | | ES
ES
OC | OC
OC
ES
ES | ES ES | ES ES | ES ES | ES ES | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | COUNTY | | 053
053
053
083
083 | 083
083
053
053
053 | 053
053
053
053
053 | 053
053
053
053
053 | 053
053
053
087
087 | 087
087
087
087
087 | 087
087
087
087 | | | 31AT2 | | 900000000000000000000000000000000000000 | 90000 | 900 | 99998 | 900 | 99999 | 90000 | | | LONGITUDE | | 9000 | 32
37
37
39 | 548
545
219
215 | 223
225
147
150 | 1215110
1215122
1215103
1220225
1220220 | 00000- | 940
938
902
910 | | | LONG | | 121472
121472
121472
119395 | 119394
119393
121485
121485 | 1215
1215
1215
1215 | 1215
1215
1215
1215 | 1215
1215
1220
1220 | 122022
122023
122023
122021
121493 | 4 1 2 1
4 1 2 1
4 1 2 1 | | | LATITUDE | | 364742
364809
364810
342445 |
342445
342440
364206
364203
364150 | 363201
363213
363624
363628
363628 | 363620
363624
363641
363644
363704 | 363709
363659
363716
365650 | 365647
365647
365653
365646
365646 | 365103
365110
365057
365051 | | | STATION NAME AND LOCATION | | MOSS LANDING VICINITY MONTEREY BAY MONTEREY BAY S OF SANTA BARBARA S OF SANTA BARBARA | S OF SANTA BARBARA S OF SANTA BARBARA MONTEREY BAY MONTEREY BAY | CARMEL BAY CARMEL BAY MONTEREY BAY MONTEREY BAY | MONTEREY BAY MONTEREY BAY MONTEREY BAY MONTEREY BAY MONTEREY BAY | MONTEREY BAY MONTEREY BAY MONTEREY BAY MONTEREY BAY MONTEREY BAY | MONTEREY BAY MONTEREY BAY MONTEREY BAY MONTEREY BAY MONTEREY BAY | MONTEREY BAY MONTEREY BAY MONTEREY BAY MONTEREY BAY | | | HYBROLOGIC
Unit
CODE | | 18060001
18060001
18060001
18060001 | | MEDIA | | | | | ··· | | | |----------------------------|---|--|--|--|--|---|---| | SED STOR | 00 | 00000 | <u> </u> | 0 004 | 40000 | 40004 | 000 | | ONGENIZATION
CODE | CA114
CA114
CA114
USGS | USGS
USGS
USGS
USGS
USGS | USGS
CA114
USCE
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
CA114 | | SUSP DISCHARGE | | 2 A | 2 0 | 0 ₹ | 0000 | 900 | 070 | | 3512 TAA9 92U2 | ************************************** | m Z m m m | A Q | ш ш Е | 80 4 | Z W | 4 | | ZOZE ZED CONCEN | E R | m Z Z A m | 0 0 0 0 A H R | 2 E II O | 2222
A E E A | E 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0 2 O | | ON WO
AA3Y | 1977 | 1975 | 1971 | 1971 | 1971
1973
1978 | 951
965
978
966 | 978 | | OW BEGIN | 1974
1974
1975
1975 | 1973
1973
1973
1973 | 1952
1973
1977
1970 | 1964
1970
1952
1975 | 1973
1966
1966
1959
1970 | 1908
1959
1964
1960
1958 | 1961
1965
1974 | | MASSIN
Motqiadebo | 004 | 004
024
024
124
024 | 124
004
004 | 124
004
124
024 | 024
004
004 | 004
004
024
124 | 0 0 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | DHAINAGE
AREA | 10.20 | 6.17
22.90
11.30
4.94 | 106.00 | 21.00
7.40
1186.00
27.80 | 2.95
18.20
140.00
156.00 | 343.00
211.00
223.00
284.00
2535.00 | 113.00
4042.00
4156.00 | | TYPE OF | S S S S S S S S S S S S S S S S S S S | ****** | SSES | N N N N N N N N N N N N N N N N N N N | SEN | M S A A S A S A S A S A S A S A S A S A | OKKE | | TINUOD | 087
087
053
087
087 | 087
087
087
087
087 | 087
053
087
085
085 | 085
085
087
087
069 | 079
079
079
053
079 | 079
053
053
053
053 | 053
053
079 | | 3TAT2 | 900
900
900
900
900 | 000
000
000
000
000 | 900 | 9000 | 90000 | 99999 | 900 | | LONGITUDE | 1214942
1215004
1215020
12151717 | 1220838
1220758
1220718
1220442 | 1220417
1214754
1213548
1211935
1214602 | 1214302
1213958
1213548
1214610
1213548 | 1205049
1205047
1204554
1210650 | 1204724
1210750
1210514
1205930
1205204 | 1212850
1213250
1214017
1203816 | | ! ATITUBE | 365200
365157
370006
365929 | 37 1224
370831
370736
370333
370510 | 370240
364756
365401
370300
370854 | 370534
370015
365401
365622
365401 | 352114
353203
353126
354806
354719 | 354700
355445
355348
355155
355549 | 361415
363314
363752
350203 | | STATION NAME AND LOCATION | MONTEREY BAY
MONTEREY BAY
MONTEREY BAY
APTOS CREEK NEAR APTOS, CALIF.
SOQUEL CR AT SOQUEL CALIF | SAN LORENZO RIVER NEAR BOULDER CREEK, CALIF. SAN LORENZO R AT BOULDER CREEK CALIF BOULDER C AT BOULDER CREEK CALIF FALL C AT FELTON CALIF ZAYANTE CREEK AT ZAYANTE CALIF | SAN LORENZO R AT BIG TREES CALIF
MONTEREY BAY
PAJARO R AT CHITTENDEN CA
CEDAR CREEK NEAR BELL STATION, CALIF.
LLAGAS C AB CHESBRO RES NR MORGAN HILL CALIF | UVAS C AB UVAS RES NEAR MORGAN HILL CA
BODFISH CREEK NEAR GILROY, CALIF.
PAJARO R AT CHITTENDEN, CA.
CORRALITOS CR AT FREEDOM CA.
FY76 CHANGE OPERATION OWDC70071 TO | MORRO BAY SANTA RITA C TR NR TEMPLETON CAL SANTA RITA C NR TEMPLETON CALIF NACIMIENTO R NR BRYSON CALIF NACIMIENTO R BEL SAPAQUE C NR BRYSON CALIF | NACIMIENTO R NR SAN MIGUEL CALIF
SAN ANTONIO R AT SAM JNS BR NR LOCKWOOD CA
SAN ANTONIO RIVER NEAR LOCKWOOD CALIF
SAN ANTONIO R AT PLEYTO CALIF
SALINAS RIVER NEAR BRADLEY, CA. | ARROYD SECD NR GREENFIELD CALIF SALINAS R NR CHUALAR CALIF SALINAS RIVER NR SPRECKELS CALIF S OF DCEANO | | HYDROLOGIC
Unit
Code | 18060001
18060001
18060001
18060001 | 18060001
18060001
18060001
18060001 | 18060001
18060002
18060002
18060002 | 18060002
18060002
18060002
18060002 | 18060005
18060005
18060005
18060005 | 18060005
18060005
18060005
18060005 | 18060005
18060005
18060005
18060006 | | AIO3M | | | | | Δ. | 0000 | 00 | | | |----------------------------|-----|---|--|---|---|---|---|---|--| | | | 4 4 4 4 | 4 4 4 4 4 | 4 4 4 4 4 | 4 4 4 4 A | | | 4444 | | | NOITAZINADRO
3000 | | 2 4 4 4 4 | CALLE | COCAL | CA1
CA1
CA1
CA1 | USCI
USCI
USCI
USCI
USCI | USGS
USGS
CA 105
CA 105
CA 114 | CA1 | | | SUSP DISCHARGE | | 30000 | 00000 | 00000 | 00005 | <u> </u> | 77000 | 0000 | | | 3512 TRAS TAM 038 | • | 4444 | ααααν | SSSSS | SAAAB | 8888 | m II4 | 4444 | | | SELE TRAS SEUE | | | | | | < < | ш∢ | | | | 2029 SED CONCEN | | | | | | ш | 00 | | | | OW END
RABY | | | | | | | 1969 | | | | OW BEGIN | t d | 1974
1974
1974
1974 | 1974
1971
1971
1971
1976 | 1976
1976
1976
1976
1976 | 1976
1974
1974
1974 | 1973
1973
1973
1973
1966 | 1966
1967
1975
1975
1975 | 1976
1976
1976
1976 | | | MIZAB
AOT91A3230 | | | | | | %
4 | 024
124 | | | | DRAINAGE
AREA | | | | | | 13.50 | 21.60 | | | | TYPE OF | | 88888 | 22222 | 88888 | 900
900
900
800 | S E E E E E E E E E E E E E E E E E E E | O S S S S S S S S S S S S S S S S S S S | 8888 | | | COUNTY | | 079
079
079
079 | 079
079
079
079
079 | 079
079
079
079 | 079
079
079
079 | 079
079
079
079 | 079
083
083
083 | 083
083
083 | | | STATE | | 88888 | 900 | 900 | 900 | 900 | 900 | 006
006
006
006 | | | LONGITUDE | | 1203822
1203822
1203822
1203810 | 1203829
1210849
1210852
1210854
1203851 | 1203845
1203858
1203858
1203845
1203844 | 1203857
1203847
1203847
1203920
1205151 | 1205130
1205133
1205124
1205105 | 1202822
1203415
1205148
1205056
1193102 | 1193126
1193126
1193132
1193105 | | | LATITUDE | | 350158
350208
350208
350256 | 350256
353638
353637
353647
350558 | 350548
350548
350609
350611
350453 | 350453
350620
350806
350621
352201 | 352218
352219
352211
352137
351103 | 351348
345835
342408
342408 | 342314
342316
342319
342307 | | | STATION NAME AND LOCATION | | S OF OCEANO S OF OCEANO S OF OCEANO S OF OCEANO | S OF OCEANO N OF POINT ESTERO N OF POINT ESTERO N OF POINT ESTERO OCEANO | OCEANO
OCEANO
OCEANO
OCEANO | OCEAND
PISMO BEACH
PISMO BEACH
OCEANO
MORRO BAY | MORRO BAY
MORRO BAY
MORRO BAY
MORRO BAY
ARROYO GRANDE AB PHOENIX C NR ARROYO GRANDE | LOPEZ C NR ARROYO GRANDE CALIF
SANTA MARIA R AT GUADALUPE CA
SEEP STATION
CONTROL STATION
CARPINTERIA | CARPINTERIA
CARPINTERIA
CARPINTERIA | | | HYDROLOGIC
Unit
Code | | 18060006
18060006
18060006
18060006 | 18060006
18060006
18060006
18060006 | 18060006
18060006
18060006
18060006 | 18060006
18060006
18060006
18060006 | 18060006
18060006
18060006
18060006 | 18060006
18060009
18060009
18060009 | 18060009
18060009
18060009 | | | MEDIA |
 | | 00 | | | | | | |----------------------------|--|---|--
--|---|---|---|-------------| | | 4 4 4 4 4 | 44444 | | 403
103
103
103
103 | 4444 | <u> </u> | <u> កំ កំ កំ</u> | | | MOITASINADRO
3000 | O C A A A A A A A A A A A A A A A A A A | CA11 | CA 114
CA 114
CA 114
USGS | CA 10
CA 10
CA 10
CA 10 | CAT | CA C | CATI | | | 3DNVHOSIO JSDS | 00000 | 00000 | 00033
Z | <u> </u> | 00000 | 00000 | 0000 | | | BED MAT FAM CBB |
SSSSS | BNAAA | 4448 | 0011 | 44404 | 8 8 8 8 8 8 | 88888 | | | 3512 TAA9 92U2 | | | 6 m | Ш | | | | | | SUSP SED CONCEN | | | 0 Z | Ш | | | | | | OW END | | | 1975
1968 | 1976
1976
1976
1976 | | 1971 | | | | DW BEGIN | 1972
1972
1972
1972
1972 | 1972
1972
1971
1971 | 1971
1971
1971
1967 | 1965
1974
1974
1974 | 1972
1972
1972
1972 | 1968
1968
1968
1968 | 1968
1968
1968
1968 | | | BASIN
BOTGIRDS30 | | | 014 | 024 | | | | | | | | | 8 | 5 | | | | | | DRAINAGE
AREA | | | 668.00 | 47. | | | | | | TYPE OF | 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00
00
00
00
00 | N K C C C | M M M M M M M M M M M M M M M M M M M | 000000000000000000000000000000000000000 | ES S S S | ES ES | | | COUNTY | 083
083
083
083 | 083
083
083
083 | 083
083
083
083 | 083
053
053
053
053 | 083
083
083
083 | ** ** ** ** **
** ** ** ** ** | | | | 3TAT2 | 900 | 900 | 006
006
006
006 | 900 | 900 | 900 | 900 | | | 300 | | 106
824
915
923 | | 709
709
703
434
630 | | | = N = M | | | LONGITUDE | 194000
194000
194111
193941 | 94 10 9 3 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1194939
1195005
1195040
1202550
1201453 | 2024
2147
2147
2144
2146 | 93030
93032
93035
94126
94931 | 91054
90904
91138
91141 | 91044
91047
91054 | | | = | | * * * * * | | | | **** | | | | LATITUDE | 12350
12427
12323
12438
12335 | 12404
12453
12404
12403
12403 | 12402
12400
12355
13830
13638 | 43519
64805
64824
64940
64812 | 12305
12306
12306
12417
12403 | 340721
340636
340821
340817
340810 | 340748
340745
340739
340729 | | | 91 | W W W W W W | W W W W W | 34
34
34
34
CA
CA
CALIF. | <u> </u> | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | <u> </u> | <u> </u> | | | STATION NAME AND LOCATION | WATER COLUMN SEDIMENTS & BIOTA SEDIMENTS & BIOTA SEDIMENTS & BIOTA SEDIMENTS & BIOTA SURF STATIONS | SURF STATIONS SEDIMENTS & BIOTA GOLETA PT GOLETA PT. GOLETA PT. | GOLETA PT.
GOLETA PT.
GOLETA PT.
SANTA CLARA R AT DIV NR SATICOY
SANTA YNEZ RIVER NEAR BUELLTON, | SALSIPUEDES CR NR LOMPOC
MONTEREY BAY
MONTEREY BAY
KIRBY PARK
VIERRA | CARPINTERIA
CARPINTERIA
CARPINTERIA
SURF STATIONS OFF PT. CASTILLO | PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN | PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN | | | HYDROLOGIC
Unit
Code | 18060009
18060009
18060009
18060009 | 18060009
18060009
18060009
18060009 | 18060009
18060009
18060010
18060010 | 18060010
18060011
18060011
18060011 | 18060013
18060013
18060013
18060013 | 18070001
18070001
18070001
18070001 | 18070001
18070001
18070001 | | | WEDIY | T | | | | | | | | - | |----------------------------|----------|---|---|---|---|---|--|--|---| | NOTE G32 | | ឧបឧបឧ | വവവവ | വവവവ | က္တတ္တက | 00000 | 99999 | വവവാ | | | NOITAXINADRO
3000 | | CALI | CALL | CA11 | CA115
CA066
CA066
CA066
CA066 | CA066
CA066
CA066
CA066
CA066 | CAO66
CAO66
CAO66
CAO66 | CA06
CA11!
CA11!
CA11! | | | SUSP DISCHARGE | | | | | | | | | | | 312 1944 14M 03E | | 80 80 80 80 | 80 80 80 80 | 80 80 80 80 | 20 4 4 4 4 | 44444 | 44444 | <000 | | | SSIS TRAS SEUZ | | | | | | | | | | | SUSP SED CONCEN | | | | | 0000 | 00000 | 00000 | 0 | | | OW END
PABY | | | 197 1
197 1
197 1 | 1971
1971
1971
1971 | 1971 | | | 1975 | | | MABY WO | | 1968
1968
1968
1968 | 1968
1968
1969
1969 | 1969
1969
1968
1968 | 1969
1974
1974
1974 | 1974
1974
1974
1974 | 1974
1974
1974
1974 | 1974
1973
1973
1973 | | | MIZA8
RUT4IR3230 | | T | | | | | | | | | DRAINAGE
AREA | | | | | | | | | | | TYPE OF | | E E E S S S S S S S S S S S S S S S S S | ES S S S | ESSSS | ESS SS S | ES S S S | ESSSS | ES S | | | YTNUOD | | | | ===== | 111
037
037
037
037 | 037
037
037
037 | 037
037
037
037 | 037
037
037
037 | | | 3TAT2 | | 9000 | 900
900
900
900
900 | 900
900
900
900
900 | 900 | 900 | 900
900
900
900
900 | 900
000
000
000 | | | LONGITUDE | | 1191021
1191103
1190954
1191005 | 1190901
1190911
1191138
1191141 | 1191021
1191054
1191103
1190958 | 1190911
1182348
1182357
1182352 | 1182344
1182342
1182400
1182352 | 1182337
1182340
1182338
1182336 | 1181435
1181636
1181456 | | | LATITUDE | | 340727
340713
340712
340710
340702 | 340639
340629
340821
340817 | 340727
340721
340713
340710
340702 | 340629
335042
335045
335047 | 335051
335045
335050
335058
335032 | 335028
335029
335033
335033 | 335038
334144
334302
334439 | | | STATION NAME AND LOCATION | | PACIFIC DCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN | PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN | PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN | PACIFIC OCEAN
KING HARBOR
KING HARBOR
KING HARBOR
KING HARBOR | KING HARBOR
KING HARBOR
KING HARBOR
KING HARBOR
KING HARBOR | KING HARBOR
KING HARBOR
KING HARBOR
KING HARBOR | KING HARBOR
LOS ANGELES-LONG BEACH HARBOR
LOS ANGELES LONG BEACH HARBORS
LOS ANGELES-LONG BEACH HARBORS | | | HYDROLOGIC
UNIT
CODE | | 18070001
18070001
18070001
18070001 | 18070001
18070001
18070001
18070001 | 18070001
18070001
18070001
18070001 | 18070001
18070003
18070003
18070003 | 18070003
18070003
18070003
18070003 | 18070003
18070003
18070003
18070003 | 18070003
18070003
18070003 | | | AIGEM | | | | | | | | | |----------------------------|---|---
---|---|--|--|--|---------------------------------------| | 1013 022 |
വവവവവ | വവവസവ | വവവവവ | വവവാവ | ឧប្សាណ្ឌ | ល្យល្យល | 0000 | | | NOITAZINADRO
CODE | CA 11 | CA11 | A A A A A A A A A A A A A A A A A A A | 4 4 4 4 4
1 1 1 1 1 1 | 4 | 44444 | A 120
A 120
A 120
A 120 | | | SUSP DISCHARGE | 00000 | 00000 | 44444 | 2 2 2 2 2 2
2 2 2 2 2 2 | 44444 | 00000
00000 | 0000 | · | | SED MAT PART SIZE | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | SUS TRAS SEUS | | | | | | | | | | SUSPER SED CONCEN | | 7 7 | L | 5777 | ນເນເນເນ | വവവവ | | | | OW3 WD
RA3Y | | 197
197 | 197
197
197
197 | 197
197
197 | 197
197
197
197 | 197
197
197
197 | | | | YEAR | 973
973
973
973 | 973
973
973
974 | 4444 | 44466 | 733 | 33333 | 4444 | | | DM BECIN | <u> </u> | <u> </u> | <u> </u> | <u> </u> | 00000 | 00000 | 0 0 0 0 | · · · · · · · · · · · · · · · · · · · | | BASIN
BESCHIPTOR |
 | | | | | | | | | DRAINAGE
AREA | | | | | | | | | | TYPE OF | ES ES | ES S S S S | ES S S S S S S S S S S S S S S S S S S | E S S S S S S S S S S S S S S S S S S S | E S S S S S S S S S S S S S S S S S S S | ES S ES | និត្ត | | | COUNTY | 037
037
037
037 | | 3TAT2 | 900000000000000000000000000000000000000 | 99999 | 900 | 9000 | 900 | 900 | 9000 | | | 300 |
369 | 621
235
349
308
304 | 446
417
415
15 | 4007- | 0.010.00 | 20
20
36
45
45 | 1354 | | | LONGITUDE | 8 8 8 8 8 4 4 8 8 8 9 9 9 8 8 9 9 9 9 9 | 8 8 8 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 8 8 13
8 12 2
8 13 10 | 8131
8131
8131
8160
8162 | 8 130
8 131
8 123
8 135
8 104 | 8 1 2 2 8 1 2 2 1 2 2 1 3 4 2 2 1 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 | 4004 | | | 01 | | # # # # # # # # # # # # # # # # # # # | # # # # # # # # # # # # # # # # # # # | # # # # # # # # # # # # # # # # # # # | | 211 21 21 21 21 21 21 21 21 21 21 21 21 | <u>*************************************</u> | | | 36 | 332
249
308
411
313 | 27
17
15
44
36 | 05
32
16
02 | 58
54
51
27 | 39
39
39 | 31
31
38
38 | 15054
15105
15112
15200 | | | LATITUDE | 33343
33443
33443
3443
3443 | 3344
3344
3344
3345 | 3346
3346
3346
3346 | 3345
3345
3345
3345
3344 | 3344
3344
3346
3346
3346 | 3343
3344
3344
3344
3344 | 3351
3351
3351
3352 | | | STATION NAME AND LOCATION | LOS ANGELES-LONG BEACH HARBORS
LOS ANGELES-LONG BEACH HARBORS
LOS ANGELES-LONG BEACH HARBOR
LOS ANGELES-LONG BEACH HARBORS
LOS ANGELES LONG BEACH HARBORS | LOS ANGELES-LONG BEACH HARBORS
LONG BEACH HARBOR
LOS ANGELES LONG BEACH HARBORS
LONG BEACH HARBOR
LONG BEACH HARBOR | LONG BEACH HARBOR | LONG BEACH HARBOR
LONG BEACH HARBOR
LONG BEACH HARBOR
LOS ANGELES LONG BEACH HARBORS
LOS ANGELES LONG BEACH HARBORS | LOS ANGELES LONG BEACH HARBORS | LOS ANGELES LONG BEACH HARBORS | KING HARBOR-INTERTIDAL UNSTA SUBST
KING HARBOR-INTERTIDAL UNSTA SUBST
KING HARBOR-INTERTIDAL UNSTA SUBST
KING HARBOR INTERTIDAL UNSTA SUBST | | | HYDROLOGIC
Unit
Code | 18070003
18070003
18070003
18070003
18070003 | 18070003
18070003
18070003
18070003 | 18070003
18070003
18070003
18070003 | 18070003
18070003
18070003
18070003
18070003 | 18070003
18070003
18070003
18070003
18070003 | 18070003
18070003
18070003
18070003
18070003 | 18070003
18070003
18070003
18070003 | | | MEDIA | | | | | | | · · · · · · · · · · · · · · · · · · · | | | |----------------------------|---|--|--|--|--|--|---|--|---------------------------------------| | AOT2 032 | | 1200s
1200s
1200s | ឧស្សាល | മമവവവ | 80 80 80 80 | 88888 | 88888 | 00 00 00 00 | | | NOITASINADRO
BEODE | | | 1 1 1 1 1 1 1 | 44444 | 4 4 4 4 4 | 1 1 1 1 1 1 | 4 | 1144 | | | | | 8 8 8 8 8
8 8 8 8 8 | 44444 | 44444 | 44444 | 44444 | 44444 | 0 0 0 0
4 4 4 4 | · · · · · · · · · · · · · · · · · · · | | BED MAT PART SIZE | | 00000 | 00000 | 00044 | ∢0000 | 44000 | 00000 | 0000 | | | 3512 TAA9 92UZ | | | | | | | | | | | 2026 CONCEN | | | | | | | | | | | ON FUD
AA3Y | | 1975 | 1975
1975
1975
1975 | 1975
1975
1975 | | | | | | | OW BEGIN | | 1974
1974
1974
1974 | 1973
1973
1973
1973 | 1973
1973
1974
1974 | 1969
1969
1969
1969 | 1974
1974
1969
1969 | 1969
1969
1969
1969 | 1969
1969
1969
1969 | | | BASIN
Descriptor | | | | | | | | | | | DRAINAGE
AREA | | | | | | | | | , | | 3712
3712 | | ES ES | ES
ES
ES | ES
ES
ES | ES
ES
ES | ES ES | ES ES | ES
ES | | | CDUNTY | | 037
037
037
037 | 037
037
037
037 | 037
037
059
059 | 059
059
059
059 | 059
059
059
059 | 059
059
059
059 | 059
059
059
059 | | | 3TAT2 | | 90000 | 900 | 900 | 900 | 900 | 900 | 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | LONGITUDE | | 1182424
1182324
1182325
1182324
1181047 | 1181049
1180940
1180740
1180813 | 1180604
1180642
1180604
1175953 | 1175853
1180300
1180348
1180203 | 1175851
1175838
1180031
1180203 | 1180007
1175817
1180025
1180036 | 1180126
1180100
1180016
1175940 | | | LATITUDE | (| 335228
335014
334944
334914
334405 | 334500
334445
334427
334358
334354 | 334335
334408
334335
333841
333823 | 333822
333506
333625
333548 |
333821
333814
333433
333437
333454 | 333550
333538
333449
333417 | 333446
333515
333520
333456 | | | STATION NAME AND LOCATION | | KING HARBOR INTERTIDAL UNSTA SUBST
KING HARBOR-INTERTIDAL UNSTA SUBST
KING HARBOR-INTERTIDAL UNSTA SUBST
KING HARBOR-INTERTIDAL UNSTA SUBST
LOS ANGELES-LONG BEACH HARBORS | LOS ANGELES-LONG BEACH HARBORS | LOS ANGELES LONG BEACH HARBORS LOS ANGELES LONG BEACH HARBORS LOS ANGELES LONG BEACH HARBORS PAC OC S HUNTINGTON BEACH PIER PAC OC N SANTA ANA RIVER | PAC OC N SANTA ANA RIVER PAC OC E NEWPORT BAY | PAC OC N SANTA ANA RIVER
PAC OC N SANTA ANA RIVER
PAC OC E NEWPORT BAY | PAC OC E NEWPORT BAY PAC OCE E NEWPORT BAY PAC OC E NEWPORT BAY PAC OCE E NEWPORT BAY PAC OCE E NEWPORT BAY | PAC OC E NEWPORT BAY PAC OC E NEWPORT BAY PAC OC E NEWPORT BAY PAC OCE E NEWPORT BAY | | | HYDROLOGIC
Unit
Code | | 18070003
18070003
18070003
18070005 | 18070005
18070005
18070005
18070005 | 18070005
18070005
18070005
18070005 | 18070005
18070005
18070005
18070005 | 18070007
18070007
18070007
18070007 | 18070007
18070007
18070007
18070007 | 18070007
18070007
18070007
18070007 | | | AIGBM | | | | | | | | | | |----------------------------|---|---|---|--|---|--|--|--|--| | 8012 032 | | დ თ თ თ თ | တ တ ဆ ဆ တ | 00000 | 00000 | 00000 | თთთთთ | თთთთ | | | ONGANIZATION
CODE | | CA 1 18
CAO59
CAO59
CAO59
CAO59 | CA05
CA05
CA11
CA11 | CAAC | CALLE | CALLE | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | CATT | | | SUSP DISCHARGE | | | | | | | | | | | 3SIS TRAY TAM G3B | | O | 001 | IIIII | IIIII | IIII | IIIOO | 0000 | | | 3512 TAA9 92U2 | | | | | | | | | | | SUSP SED CONCEN | | ΣΣΣΣ | ΣΣ | | | | | φ | | | OW END
FABY | | | | | | | | 1976 | | | OM BECIN | | 1969
1971
1971
1971 | 1971
1971
1969
1969 | 1964
1964
1964
1964 | 1964
1964
1964
1964 | 1964
1964
1964
1964 | 1964
1964
1964
1974 | 1974
1974
1974
1976 | | | NIZA8
AOT9IAJ230 | | | | | | | | | | | DRAINAGE
AREA | | | | | | | | | | | TYPE OF | | ES
00
00
00
00 | 00
ES | 88888 | 88888 | 88888 | 88888 | 8888 | | | COUNTY | | 059
059
059
059 | 059
059
059
059
073 | 073
073
073
073
073 | 073
073
073
073
073 | 073
073
073
073
073 | 073
073
073
073
073 | 073
073
073
059 | | | 3TAT2 | | 000
000
000
000 | 000
000
000
000
000 | 90000 | 900 | 9000 | 900 | 006
006
006 | | | LONGITUDE | , | 1175935
1174012
1174025
1174033 | 1174053
1174106
1175858
1175800 | 1173314
1173254
1173234
1173314 | 1173400
1173421
1173300
1173206
1173326 | 1173246
1173246
1173507
1173353 | 1173434
1173419
1173339
1173429 | 1173346
1172922
1172908
1174130 | | | LATITUDE | | 333420
332706
332712
332720 | 332730
332730
333412
333358
332204 | 332149
332139
332127
332119
332151 | 33211
33211
332130
332050
332130 | 332210
332110
332221
332134
332124 | 332154
332135
332115
332208
332145 | 332143
331816
331755
332558 | | | STATION NAME AND LOCATION | | PAC OCE E NEWPORT BAY DOHNEY BEACH OFFSHORE DOHNEY BEACH OFFSHORE DOHNEY BEACH OFFSHORE DOHNEY BEACH OFFSHORE | DOHNEY BEACH OFFSHORE
DOHNEY BEACH OFFSHORE
PAC OCE E NEWPORT BAY
PAC OC E NEWPORT BEACH | | | | | PACIFIC DCEAN | | | HYDROLOGIC
Unit
CDDE | | 18070007
18070008
18070008
18070008 | 18070008
18070008
18070008
18070008 | 18070008
18070008
18070008
18070008 | 18070008
18070008
18070008
18070008 | 18070008
18070008
18070008
18070008 | 18070008
18070008
18070008
18070008 | 18070008
18070008
18070008 | | | AIG3M | | | ····· | | | | | | |----------------------------|---|---|---|---|---|---|--|--| | ··· | 00000 | <u> </u> | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0 | | | MOITAZINAONO
3000 | AAAAA | CAL | CAAAA | AAAAA | A A A A A A A A A A A A A A A A A A A | 44444 | CA118
CA119
CA119
CA070 | | | SUSP DISCHARGE | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | 3512 TAA9 TAM G38 |
0 80 80 80 | 80 < < < < | 4444 | बबबबब | ∀ ∾ ∾ Ծ Ծ | გაააა | v v a ≻ | | | 3512 TAA9 92U2 | | | | | | | | | | 202F SED CONCEN |
φφφφφ | 10 | | *************** | | | | | | OW FND
RABY | 197
197
197
197
197 | 1976 | | | | | 197 | | | OW BECIN | 1976
1976
1976
1976 | 1976
1974
1974
1974 | 1974
1974
1957
1957 | 1957
1957
1957
1957 | 1957
1977
1977
1977 | 1977
1974
1974
1974 | 1974
1974
1974
1976 | | | NIZA8
Rotqird230 | | | | | | | | | | DRAINAGE
AREA | | | | | | | | | | TYPE OF | 20000 | 88888 | 22222 | 88888 | 00
00
00
E | 80000000000000000000000000000000000000 | 90
90
80
FS | | | YTNUO3 | 059
059
059
059 | 059
059
059
059 | 059
059
059
059 | 059
059
059
059 | 059
073
073
073 | 073
073
073
073 | 073
073
073
073 | | | 3TAT2 |
900000 | 900000000000000000000000000000000000000 | 9000 | 900 | 900 | 900 | 9000 | | | ğ | | | 0007-2 | | | 336
328
328 | | | | LONGITUDE | 174142
174204
174152
174147
174052 | 174239
173801
173752
173757
173806 | 17375
17384
17473
17472
17472 | 174724
174726
174722
174730 | 174724
172046
172139
172058
172105 | 1720
1723
1723
1723
1723 | 1172329
1172250
1172417
1170800 | | | | | 23755 | | | | | 0 6 9 5 | | | LATITUDE | 332541
332551
332607
332554
332554 | 332628
332548
33253
33253
33253 | 332540
332614
333207
333205
333159 | 333209
333203
333215
333214
333212 | 333205
330624
330800
330622
330639 | 330947
330956
331005
330956 | 330959
330919
331026
32344 | | | STATION NAME AND LOCATION | PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN | PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN | PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN | PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN | PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN | PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN | PACIFIC OCEAN PACIFIC OCEAN PACIFIC OCEAN IMPERIAL BEACH | | | HYDROLOGIC
Unit
Code | 18070008
18070008
18070008
18070008 | 18070008
18070008
18070008
18070008 | 18070008
18070008
18070008
18070008 | 18070008
18070008
18070008
18070008 | 18070008
18070010
18070010
18070010 | 18070010
18070010
18070010
18070010 | 18070010
18070010
18070011 | | | MEDIA | <u> </u> | | | | | | | | | |----------------------------|----------|---|---|--|--|---|---|--|--| | ROTZ G32
AIG3M | | | | 000 | 00000 | 00000 | 00400 | 0 | | | NOITAZINADRO
3000 | | CA119
CA119
CA119
CA119
CA119 | CA119
CA119
CA119
CA119
USCE | USCE
USCE
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
CAO66
CAO66
CAO66 | | | SUSP DISCHARGE | | | | 0 0 | 44204 | ∢ mm0 | 0 00 | 0 | | | 3XIZ TAA4 42UZ | | 00000 | 80008 | <u> </u> | | <u> </u> | <u> </u> | 444 | | | SUSP SED CONCEN | | | | 0 B O | A A Z O A | Amm≯W
mmm W | 3000
00A
00A | 0000 | | | RA∃Y | | 7 | | | 9 4 9 | 99 | 8 0 O | | | | OM END | | 197 | | 197 | <u> </u> | 6 | 197 | | | | OW BEGIN | | 1977
1977
1977
1977 | 1957
1957
1977
1977 | 1971
1971
1976
1977 | 1965
1965
1965
1951 | 1965
1965
1965
1969 | 1956
1965
1969
1966 | 1967
1974
1974
1974 | | | MISA8
NOT91H3230 | | | | 0 14 | 00
4 4 4 | 90 00
4 4 4 | 004
024
124 | | | |
DRAINAGE
AREA | | | | 51.20 | 27.20
64.20
625.00 | 308.00
372.00
23.60 | 49.50
251.00
1595.00
1594.00
70.60 | 248.00 | | | TYPF OF | | ES
ES
ES | ES
GC
GC
ES | E S S S S S S S S S S S S S S S S S S S | A S S S S S S S S S S S S S S S S S S S | ************************************** | M S A S A S A S A S A S A S A S A S A S | S S S S | | | YTNUO3 | | 073
073
073
073
073 | 073
073
073
073 | 073
073
111
111 | 037
037
111 | 037 | | 111
037
037
037 | | | 31AT2 | | 900 | 900 | 900 | 900 | 900 | 900 | 900
000
000
000 | | | LONGITUBE | | 1171627
1171816
1171823
1171820 | 1171901
1171630
1171649
1171752 | 1171525
1171515
1191813
1191813 | 1183410
1183943
1183946
1184214
1184922 | 1184701
1184442
1184521
1184932 | 1191525
1185530
1190811
1191121 | 1190220
1182356
1182326
1182356 | | | LATITUDE | | 324602
330027
330025
330015 | 330200
323954
324601
325836
324526 | 324523
324525
342249
342249
342108 | 343340
343609
343551
342359
343957 | 344044
343743
343140
342403
342403 | 343440
342703
341629
341431
341641 | 341046
335057
335030
335052 | | | STATION NAME AND LOCATION | | FY77 DISCONTINUE DWDC P1134 PAC OC NR SAN ELIJO LAGDON | PAC OC NR SAN ELIJO LAGOON
PACIFIC OCEAN
PACIFIC OCEAN
PAC OC NR SAN ELIJO LAGOON
MISSION BAY | MISSION BAY
MISSION BAY
SAN ANTONIO CREEK AT CASITAS SPRINGS CALIF
SAN ANTONIO C AT CASITAS SPRINGS
VENTURA RIVER NR VENTURA CALIF | ELIZABETH LAKE CN C AB CASTAIC CAL
FISH C AB CASTAIC C NR CASTAIC CA
CASTAIC C AB GORDON RANCH HOUSE NR CASTAIC C
SANTA CLARA R AT LOS ANGELES-VENTURA CO LINE
PIRU C BL BUCK CREEK CA | CANADA DE LOS ALAMOS BL APPLE CANYON CA
PIRU CR AB FRENCHMANS FLAT CA
PIRU CREEK ABOVE LAKE PIRU CALIF
HOPPER CREEK NR PIRU CALIF
HOPPER C NR PIRU CA | SESPE CREEK NR WHEELER SPRINGS CALIF
SESPE CREEK NR FILLMORE CALIF
SANTA CLARA R AT SATICOY CALIF
SANTA CLARA RIVER AT MONTALVO CALIF
ARROYO SIMI NR SIMI CALIF | CALLEGUAS CREEK AT CAMARILLO CALIF
KING HARBOR
KING HARBOR | | | HYDROLOGIC
Unit
Code | | 18070011
18070011
18070011
18070011 | 18070011
18070011
18070011
18070011 | 18070011
18070011
18070101
18070101 | 18070102
18070102
18070102
18070102 | 18070102
18070102
18070102
18070102 | 18070102
18070102
18070102
18070103 | 18070103
18070104
18070104
13373131 | | | MEDIA | | | | | | | | | |----------------------------|--|--|--|--|--|--|--|--| | AOT2 GB2 | 10.10.10.10.10 | 10 10 10 10 10 | 10 10 10 10 1 | <u> </u> | 0 | 00 00 | 0000 | | | NOITASINABRO
3003 | CA 115
CA 115
CA 115
CA 115
CA 115 | CA115
CA115
CA115
CA115
CA115 | CA115
CA115
CA115
CA115
CA115 | CA115
CA120
USGS
USGS
CA059 | CA118
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | | | ш | 0 | 00 0 0 | 0004 | | | BEID MAT TAM G38 | 00000 | 00000 | 00000 | 00 E | | | Ú | | | SAIR TAAR REUZ | | | | π Σ | | ш | ZUKK | | | SUSPER SED CONCEN | 2 | 10.10 | 10 10 10 10 10 | ₩ ∑ 3 | 00000 | 0000 | A 0 0 4 | | | OW END
PA3Y | 1975 | 1975
1975
1975 | 1975
1975
1975
1975 | 1975 | 1975
1970
1975
1975 | 1977 | 1977
1980
1975 | | | OW BEGIN | 1973
1973
1974
1974 | 1973
1973
1973
1973 | 1973
1973
1973
1973 | 1973
1974
1973
1977
1977 | 1969
1969
1969
1969 | 1976
1971
1969
1966
1976 | 1971
1975
1973
1974 | | | BASIN
Descriptor | | | | 003 | 000
000
124 | 024
013
004
123 | 124
004
014 | | | DRAINAGE
AREA | | | | 831.00 | .48
13.30
93.30
359.00 | 118.00
1010.00
10.60
1490.00 | 1544.00
1587.00
1593.00 | | | TYPE OF
STTE | ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш | ES S ES | ES ES | E S K K S | SEES | A S S S S S S S S S S S S S S S S S S S | MS N N N N N N N N N N N N N N N N N N N | | | COUNTY | 037
037
037
037
037 | 037
037
037
037 | 037
037
037
037
037 | 037
037
037
037
059 | 059
065
065
065
071 | 071
065
065
065
065 | 059
059
059
059 | | | 3TAT2 | 006
006
006
006 | 900 | 900 | 900 | 900 | 900 | 900
000
000 | | | LONGITUDE | 1181551
1181551
1181557
1181300
118141 | 1181505
1181438
1181634
1181613 | 1181710
1181615
1181555
1181539 | 1181139
1182326
1181215
1180522
1175654 | 1180045
1171435
1171434
1171219
1171219 | 1173544
1173544
1171608
1173840 | 1174723
1175217
1175239
1175302 | | | I ATITUDE | 3343
334356
33445
33456
33456
33436 | 334551
334630
334419
334455
334516 | 334515
334555
334545
334545
334546 | 334524
335024
334816
334814
334420 | 333950
335749
335502
334804
340414 | 340159
335542
335437
335300
335300 | 335123
334900
334808
334613 | | | STATION NAME AND LOCATION | LOS ANGELES-LONG BEACH HARBORS
LOS ANGELES-LONG BEACH HARBORS
LONG BEACH HARBOR
LONG BEACH HARBOR
LOS ANGELES LONG BEACH HARBORS | LOS ANGELES LONG BEACH HARBORS
LOS ANGELES LONG BEACH HARBORS
LOS ANGELES LONG BEACH HARBORS
LOS ANGELES LONG BEACH HARBORS
LOS ANGELES LONG BEACH HARBORS | LOS ANGELES LONG BEACH HARBORS
LOS ANGELES LONG BEACH HARBORS
LOS ANGELES LONG BEACH HARBORS
LOS ANGELES LONG BEACH HARBORS
LOS ANGELES LONG BEACH HARBORS | LOS ANGELES-LONG BEACH HARBORS
KING HARBOR-INTERTIDAL UNSTA SUBST
LA RIV A WILLOW ST BR A LONG BEACH
SAN GABRIEL R AT WILLOW ST
SEAL BEACH | PAC OC N HUNTINGTON BEACH
EAST FORK PIGEON PASS CREEK AT HEACOCK STREE
SUNNYMEAD CHANNEL AT ALLESANDRO BLVD NR SUNN
PERRIS VALLEY STORM DR AT NUEVO RD NR PERRIS
SANTA ANA RIVER NR SAN BERNARDINO CALIF | SAN TIMOTEO C NR REDLANDS
SANTA ANA RIVER AT PRADO
PERRIS VALLEY STORM DRAIN
SANTA ANA RIVER BELOW PRA
SANTA ANA RIVER BELOW PRA | SANTA ANA R AT IMP HWY NR ANAHEIM CA
SANTA ANA R AT BALL RD AT ANAHEIM CA
SANTA ANA R NR KATLA AV ORANGE CA
SANTIAGO CREEK AT SANTA ANA CALIF | | | HYDROLOGIC
Unit
Code | 18070104
18070104
18070104
18070104 | 18070104
18070104
18070104
18070104 | 18070104
18070104
18070104
18070104 | 18070104
18070104
18070105
18070106 | 18070201
18070202
18070202
18070202 | 18070203
18070203
18070203
18070203 | 18070203
18070203
18070203 | | | | | | | | · | | | | |----------------------------|--|---|---|--|--|---|---|-------| | SED STOR | 0000 | | 0 040 | ں ۵ | O A O | 00040 | 0000 | | | ORGANIZATION
BODD | USGS
USGS
USGS | CA119
USGS
USGS
USGS
USGS | USGS
CA119
USGS
USCE
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | x000 | 0 0 0 0 | 0 0 0 | 4 | 0 | ፈ ጠዪ ኧ | ат <i>и</i> | | | 35:2 TAA4 42U2 | | ⋖ | <u> </u> | | Σ | | | | | ZOZE ZED CONCEN | ▼ 4 4 4 4 6 | | 0 0 0 | ∡ ₽₽₽₽ | 0 0 0 ₹ 0 | A M M M M | ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ | ***** | | AA3Y | 0 0 | | 60 | വവ വവ | ស | | | | | OW END | * | 6 6 | 197 | 197
197
197
197 | 197 | 1967 | 196 | | | OW BEGIN | 1966
1972
1972
1973 | 1974
1965
1969
1965 |
1967
1977
1967
1971
1968 | 1972
1969
1969
1969 | 1969
1969
1969
1977 | 1952
1974
1965
1977
1965 | 1965
1969
1975
1966 | | | MIZA8
Descriptor | | 003 | 124
124 | 000
4 4 4 4 4 | 000
000
014 | 014
124
004
004 | 004 | | | | 888 | 8865 | 8 8 8 | 92
13
93
43 | 4 4 0 0 | 88 | 50 | | | DRAINAGE
AREA | 1700.
1701.
40. | 106.
117.
35. | 740.
558. | . 88 . 2 | 31.
1695. | 184. | . 53 | | | TYPE OF
SITE | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | S C C S C S S C S S C S S C S C S C S C | A A A A A A A A A A A A A A A A A A A | 33333 | M M M M M M M M M M M M M M M M M M M | M M M M M M M M M M M M M M M M M M M | | | YTNUO3 | 059
059 | 059
059
059
059 | 073
073
073
073
073 | 073
073
073
073
073 | 073
073
073
073
073 | 035
027
071
029
071 | 071
025
025
065 | | | 3TAT2 | 9000 | 900000000000000000000000000000000000000 | 006
006
006
006 | 006
006
006
006 | 006
006
006
006
006 | 900 | 9000 | | | LONGITUDE | 1175430
1175642
1174710 | 4 4 4 4 4 | 1172314
1171813
1172233
1171453 | 1170317
1170050
1170256
1170338 | 1170348
1170357
1170408
1170230 | 1204015
1181333
1174510
1182450
1171840 | 1171840
1153008
1153307
1163824 | | | { ATITUDE | 334456
334019
334020 | 332503
332930
332930
333136
332954 | 331413
330639
331248
324532 | 324929
325713
325707
325702
325825 | 325707
325623
325658
325024
323306 | 402503
370315
345520
350500 | 341825
323957
325927
335648 | | | STATION NAME AND LOCATION | SANTA ANA R AT SANTA ANA CALIF
SANTA ANA R ADMS NR COSTA MESA CA
SAN DIEGO CREEK AT JEFFERY RD NR IRVINE CA
EL MODINA-IRVINE CH A MYFORD RD NR TUSTIN | PACIFIC OCEAN SAN JUAN CREEK NEAR SAN JUAN CAPISTRANG, CAL SAN JUAN CREEK AT SAN JUAN CAPISTRANG, CAL SAN JUAN CREEK AT SAN JUAN CAPISTRANG CA ARROYO TRABUCO NR SAN JUAN CAPISTRANG CA | SANTA MARGARITA R AT YSIDORA
PAC OC NR SAN ELIJO LAGOON
SAN LUIS REY RIVER AT OCEANSIDE CALIF
MISSION BAY
SAN DIEGO RIVER NR SANTEE CALIF | FY76 CHANGE OPERATION OWDC66782 TO
POWAY CREEK NEAR POWAY CALIF
RATTLESNAKE CREEK AT POWAY CALIF
POWAY CREEK TRIBUTARY AT OAK KNOLL ROAD NEAR
POMERADO CREEK AT GLENOAK ROAD NEAR POWAY CA | POMERADO CREEK AT POWAY ROAD NR POWAY CALIF
BEELER CREEK AT POMERADO ROAD NEAR POWAY CAL
LOS PENASQUITOS CR BL POWAY CREEK NR POWAY C
SAN DIEGO R AT OLD MISSION DAM
TIJUANA RIVER NR NESTOR CALIF | SUSAN R AT SUSANVILLE CALIF
OWENS R BL TINEMAHA RE NR BIG PINE CA.
W. F. MOHAVE R AB CEDAR SPRINGS CA
BLACKBURN CR NR TEHACHAPI CA
EF OF WF MOJAVE R AB CEDAR SPRINGS CA. | W. F. MOJAVE R BL CEDAR SPRINGS CA
NEW R AT INTERNAT BDY CALEXICO CA
NEW R AT DROP 4 AT BRAWLEY CA
WHITEWATER RIVER AT WHITEWATER CA | | | HYDROLOGIC
Unit
Code | 18070203
18070203
18070204 | 18070301
18070301
18070301
18070301 | 18070303
18070303
18070303
18070304 | 18070304
18070304
18070304
18070304 | 18070304
18070304
18070304
18070304 | 18080003
18090102
18090206
18090206 | 18090208
18100200
18100200
18100200 | | | AIG3M | | 00444 | 0000 | 4444 | 4444 | 4444 | 0000 | <u> </u> | |----------------------------|----------|--|---|---|---|---|---|---| | | | | | | | | | νννν | | MOIT A SINABRO | | USGS
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | SUSP DISCHARGE | ······ | | 22322 | 2222 | 2222 | כככככ | בכבככ | 3333 | | SEED MAT FART SIZE | | | | | | | | | | SUSP PART SIZE | | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | OW END
RA3Y | | | | | | | | | | OW BEGIN | | 1978
1978
1977
1977 | 1977
1978
1978
1977
1978 | 1978
1978
1978
1977
1978 | 1978
1978
1978
1977 | 1978
1978
1978
1978 | 1977
1978
1978
1978 | 1977
1977
1977 | | BASIN
DESCRIPTOR | | | | | | | | | | DRAINAGE
AREA | 6 | | | | | | | | | AD 39YT
3712 | 7 | MS MS MS | MS MS | AS AS AS | M M M M M M M M M M M M M M M M M M M | M N N N N N N N N N N N N N N N N N N N | A A A A A A A A A A A A A A A A A A A | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | | YTNUOO | ō | | | | | | | | | 3TAT2 | <u> </u> | 002
002
002
002 | 002
002
002
002 | 005
002
002
003
003 | 002
002
002
002 | 0002
0002
0002
0002 | 002
002
002
002 | 0002 | | LONGITUBE | Ш | | | | | | | | | 101 | Œ | | | | | | | | | LATITUDE | X | | | | | | | | | STATION NAME AND LOCATION | ALASK | FORTYMILE R AT STEEL CREEK FORTYMILE R AT STEEL CREEK COLEEN R NR OLD RAMPART ENDICOTT R NR GUSTAVUS | PELICAN C NR PELICAN
LITTLE NELCHINA R NR EUREKA
MOOSE C AT GLENALLEN
TIEKEL R NR TIEKEL | SELDDVIA R NR SELDDVIA
TYONE R NR GLENNALLEN
KASHWITNA R NR KASHWITNA
KROTO C NR SUSITNA STATION
KAMISHAK R NR KAMISHAK | TOKOTNA R NR MC GRATH STONY R AT STONY R S F FORTYMILE R NR CHICKEN FORTYMILE R NR BOUNDARY E F CHANDALAR R NR ARCTIC VILLAGE | BIRCH C NR CIRCLE HODZANA R NR PURGATORY TOLOVANA R NR WEST FORK CHATANIKA R NR CHATANIKA DIETRICH R NR BETTLES | INNOKO R NR DISHKAKET
ANDREAFSKY R AT ANDREAFSKY
SINUK R NR SINUK
SERPENTINE R NR SHISHMAREF
BUCKLAND R NR BUCKLAND | SHUNGNAK R NR BORNITE
NOATAK R NR HOWARD PASS
UTUKOK R NR ICY CAPE
MEADE R NR POINT BARROW | | HYDROLOGIC
Unit
Code | | 190084 C
190084 C
19008400
19008400 | 19008400
19008400
19008400
19008400 | 19008400
19008400
19008400
19008400 | 19008400
19008400
19008400
19008400 | 19008400
19008400
19008400
19008400 | 19008400
19008400
19008400
19008400 | 19008400
19008400
19008400
19008400 | | ···· | | | | | | | | | | |-------------------------------------|-----|---|---|--|---|--|--|---|--| | SED STOR | | | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | NOITAZINADRO
3000 | 1 (| USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | | 44 | 4 44 | хшааа | 845 8 | ব ৯ ব ব | ΨW | | | 3512 TAA9 92U2
3512 TAA9 TAM G38 | | 0000 | 000 | ឃួយ | 4 4 | ٩ | OKM | ⋖ | | | NEONOS CENCEN | | 3000E | 00044 | 44 44 | xwaaa | α 4 m m α | 04844 | шеше | | | OW END
YEAR | | | 1976 | 1978
1976
1971
1969
1969 | 1975
1973
1973
1978 | 1978
1977
1968
1980
1975 | 1971
1973
1972
1972 | 1972
1972
1975
1975 | | | OW BEGIN | i . | 1977
1977
1977
1977 | 1977
1977
1970
1970 | 1976
1969
1969
1969
1969 | 1977
1972
1972
1972
1977 | 1977
1977
1967
1967
1967 | 1975
1955
1964
1970
1971 | 1965
1965
1971
1953 | | | BASIN
Descriptor | | | 004 | 900 | 00
4
4 | 00
4
4 | 00000
4 4 4 4 4 4 | 004
334 | | | URAIN AGE
AREA | | | 3130.00
176.00 | 32.60
2208.00 | 20670.00
2.79
1.46
3.52
1800.00 | 1460.00
10.90
6570.00 | 9520.00
12000.00
85.70
1.76
6.34 | 1720.00
1720.00
38.40
5330.00 | | | TYPE OF | 3 | A A A A A | AS S AS S | N N N N N N N N N N N N N N N N N N N | A A A A A A A A A A A A A A A A A A A | MS MS MS | M S M S M S M S M S M S M S M S M S M S | SEE | | | YTNUO | | | 040 | 040
290
250
040 | 04400 | 040
040
044
044
044 | 0 4 4 8 8 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 180
250
250 | | | 3TAT2 | C | 0002 | 002
002
002
002
002 | 002
002
002
002 | 000
000
000
000
000 | 002
002
002
002 | 002
002
002
002 | 000
000
000
000 | | | LONGITUDE | | | 1485735
1483736 |
1491848
1484534
1492000
1492300
1481802 | 1505500
1564657
1564344
1564606
1572440 | 1541920
1572232
1623613
1575051
1575030 | 1600751
1625638
1653026
1654246
1654913 | 1643715
1643715
1421258
1412408 | | | LATITUDE | | | 701654
701604 | 682225
690524
682126
682710
701522 | 700956
711535
711630
711740
702920 | 704013
703104
665137
670513
670530 | 665827
673418
643351
643815
644252 | 651317
651317
635427
641833 | | | STATION NAME AND LOCATION | | COLVILLE R AT UMBAT
COPPER R NR GALBRAITH LAKE
COPPER R NR CORDOVA
NOATAK NR NOATAK AK | YUKON R NR STEVENS VILLAGE AK
NUSHAGAK R NR NUNACHUAK AK
WASILLA C NR WASILLA AK
KUPARUK R NR DEADHORSE AK | ATIGUN R TR NR PUMP STATION 4 AK
SAGAVANIRKTOK R NR SAGWON AK
ATIGUN R 7MI AB GALBRAITH LK NR SAGWON
GALBRAITH LK AT OUTLET NR SAGWON AK
SAGAVANIRKTOK R W CH AT BRIDGE NR DEADHORSE | COLVILLE RIVER NEAR NUIGSUT AK
NUNAVAK C NR BARROW AK
ESATKUAT C NR BARROW AK
ESATKUAT LAGOON OUTLET AT BARROW AK
MEADE RIVER AT ATKASUK AK | MIGUAKIAK RIVER NEAR TESHEKPUK LAKE NR LONEL
USUKTUK R NR ATKASUK AK
JUNE C NR KOTZEBUE AK
KOBUK R AT AMBLER AK
KOBUK R AT AMBLER AK | KOBUK R NR KIANA AK
NDATAK R AT NDATAK AK
SNAKE R NR NOME AK
ARCTIC C NR NOME AK
WASHINGTON C NR NOME AK | KUZITRIN R NR NOME AK
KUZITRIN R NR NOME AK
TAYLOR C NR CHICKEN AK
FORTYMILE R NR STEEL CREEK AK | | | HYDROLOGIC
Unit
Code | | 19008400
19008400
19008400
19008400 | 19008400
19008400
19008400
19010001 | 19010001
19010001
19010001
19010001 | 19010002
19010003
19010003
19010003 | 19010003
19010003
19020001
19020001 | 19020001
19020001
19020002
19020002 | 19020002
19020002
19030001 | | | AIGEM |
00000 | 00000 | 00000 | 0 000 | ف م م م | 00000 | 0000 | | |----------------------------|--|--|--|---|---|---|---|---| | MOITAZINADRO
3000 | USGS
USGS
USGS
USGS
USGS | usas
usas
usas
usas
usas | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | A A E | m a z a a | 8855 | E 2 | ш ш « | m x x x x x | m ZN | • | | SIS TAAS TAM CIB | | | | | | | | | | BEIZ THAN MEUS | 4 m 4 0 m | MSAA | Оппп | 44484 | ভৰবৰ | ш 4 4 4 m | MAAX | | | SUSP SED CONCEN | V M A Q A | MASAA | ОККШШ | 44054 | ИПААА | $m \times \alpha \cup x$ | M A Z V | | | OW END
YEAR | 1980
1975
1975
1973 | 1975
1978
1967
1977 | 1972
1978
1972
1975 | 1953
1975
1975
1972
1976 | 1979
1979
1972
1976 | 1975
1975
1973 | 1974
1968
1968 | | | OW BEGIN | 1951
1950
1966
1979 | 1967
1970
1954
1971 | 1956
1956
1957
1950
1971 | 1949
1949
1952
1970 | 1977
1948
1951
1948 | 1968
1971
1961
1948 | 1954
1970
1955
1953 | | | BASIN
DESCRIPTOR | | 004 | 004 | 0004 | 004
004
004
004 | 888
444 | 000
4
004
4 | | | DRAINAGE
AREA | 113500.00
29500.00
9330.00 | 31.30
662.00
199400.00 | 2693.00
259000.00
3280.00
15.40 | 6800.00
37.50
8550.00
11.00
65.10 | 360.00
13500.00
20.20
2170.00 | 941.00
1430.00
372.00
1980.00
855.00 | 25600.00
36.20
710.00
1910.00 | | | 30 39YT
3T12 | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N | 33333
33333 | 33 X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | A S S S S S S S S S S S S S S S S S S S | | | COUNTY | 250
250
250 | 250
250
290
290
290 | 290
290
240
240 | 240
240
240
240
240 | 240
240
240
090
090 | 060
060
060 | 290
290
290
290 | | | 3TAT2 | 005
002
002
002 | 005
002
002
002
003 | 007
007
007
007
007 | 000
002
002
002 | 000
000
000
000
000 | 000
000
000
000
000
000
000 | 0000 | | | LONGITUDE | 1411152
1411152
1430816
1471104 | 1445313
1490547
1501015
1490359
1490500 | 1553339
1552922
1414817
1420520 | 1423830
1431203
1434447
1441740
1442147 | 1452616
1455100
1462056
1465526 | 1462442
1471156
1471450
1474204
1481246 | 1490530
1481449
1484811
1485637 | | | LATITUDE | 644722
644722
665926
670549 | 653405
653955
653025
654022
654041 | 644734
644428
630023
630938 | 631900
631019
632318
634140
634123 | 640322
640920
641724
642822
644754 | 645355
644747
645310
645045
642606 | 643355
631932
632728
635043 | | | STATION NAME AND LOCATION | YUKON R AT EAGLE AK
YUKON R AT EAGLE AK
PORCUPINE R NR FORT YUKON AK
EF CHANDALAR R NR VENETIE
CHANDALAR R NR VENETIE AK | BOULDER C NR CENTRAL AK
HESS C NR LIVENGOOD AK
YUKON R AT RAMPART AK
HESS C AB FISH C NR LIVENGOOD AK
FISH C NR LIVENGOOD AK | NOWITNA R NR RUBY AK MELOZITNA R NR RUBY AK YUKON R AT RUBY AK CHISANA R AT NORTHWAY UCT AK BITTERS C NR NORTHWAY UNCTION AK | TANANA R NR TOK JUNCTION AK
CLEARWATER C NR TOK AK
I TANANA R NR TANACROSS AK
I TANANA R TR NR DOT LK AK
BERRY C NR DOT LK AK | CLEARWATER C NR DELTA JCT AK
TANANA R AT BIG DELTA AK
BANNER C AT RICHARDSON AK
SALCHA R NR SALCHAKET AK
TANANA R AT FAIRBANKS AK | CHENA R NR TWO RIVERS AK CHENA R NR N POLE AK IL CHENA R NR FAIRBANKS AK CHENA R AT FAIRBANKS AK WOOD R NR FAIRBANKS AK | TANANA R AT NENANA AK
1 SEATTLE C NR CANTWELL AK
1 NENANA R NR WINDY AK
1 NENANA R NR HEALY AK | | | HYDROLOGIC
Unit
Code | 19030002
19030002
19030002
19030002 | 19030002
19030002
19030002
19030002 | 19030003
19030003
19030004
19030004 | 19030004
19030004
19030004
19030004 | 19030004
19030004
19030004
19030004 | 19030004
19030004
19030004
19030004 | 19030004
19030004
19030004
19030004 | | | VI021 | | | | | · · · · · · · · · · · · · · · · · · · | | | |----------------------------|---|---|---|--|--|--|---| | ROTZ G32
A/G3M | 0000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | NOITAZINADAO
3000 | 8580
8580
8580
8580
8580
8580 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | SUSP DISCHARGE | 4 M 4 0 | ОАПАА | ЧАЧ Ш | ∝ n ∢ | Αшαш | попкп | αZ W | | 3SIZ TRAY 92UZ | 4 X 4 | 4 4 m m m | | 444 | шо | m X m 4 m | 4 | | PRZE ZED CONCEN | 42440 | OAHAA | 44484 | 44204 | 4 m K m O | m Q m K m | αΖωω | | OW END
RABY | 1967
1972
1971
1972 | 1973
1975
1975 | 1977
1976 | 1976
1976
1977
1977 | 1970
1979
1976
1977 | 1974
1973
1975 | 1972
1972
1975
1972 | | OW BEGIN | 1965
1967
1970
1970
1971 | 1974
1974
1975
1975 | 1975
1976
1975
1975 | 1976
1976
1976
1976 | 1970
1970
1970
1965 | 1955
1954
1950
1951
1951 | 1951
1964
1968
1956 | | NISA8
AOT91A3230 | 004
004
004 | 004 | 004
004
004 | | 004 | 004 | 904 | | DRAINAGE
AREA | 2450.00
490.00
12.60
7.81 | 9. 19
1. 19 | 61.70 | | 1200.00
49.20
465.00
18700.00 | 321000.00
11700.00
31100.00 | 16. 10
6500.00 | | TYPF OF
SITE | X X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | NS NA | AS W | AS S | N N N N N N N N N N N N N N N N N N N | | YTNUOO | 290
290
290
290
090 | 090
240
240
290
290 | 290
290
290
090
090 | 060
060
060
060 | 290
290
290
290
290 | 270
160
460 | 0000 | | 3TAT2 | 002
002
002
002 | 000000000000000000000000000000000000000 | 0007 |
005
002
002
002 | 005
005
007
007 | 005
005
005
005 | 0002 | | LONGITUBE | 1491640
1492951
1481513
1485612 | 1473305
1454354
1454509
1485037
1484406 | 1484037
1483820
1485817
1463207 | 1464125
1464024
1463900
1463900 | 1491100
1500430
1500621
1505223
1541530 | 1541530
1625250
1553511
1580603
1563705 | 1532510
1564008
1555357
1555357 | | LATITUDE | 641305
635514
652752
652302
650332 | 650900
631945
632527
635110
635245 | 635247
635308
635426
642816
642844 | 642857
642905
642910
642910
642910 | 645312
672618
672438
664710
660251 | 660250
615604
625710
615216
603514 | 574129
584108
591944
591944 | | STATION NAME AND LOCATION | NENANA R NR REX AK
TEKLANIKA R NR LIGNITE AK
BRIDGE C NR LIVENGOOD AK
BROOKS C TR NR LIVENGOOD AK
POKER C NR CHATANIKA AK | CARIBOU C NR CHATANIKA AK PHELAN C AT MOUTH NR BLACK RAPIDS AK TRIMS C NR BLACK RAPIDS AK HEALY C AT SUNTRANA AK CRIPPLE C NR SUNTRANA AK | COAL C NR SUNTRANA AK HEALY C NR USIBELLI AK LIGNITE C NR HEALY AK REDMOND C NR SALCHAKET AK SALCHA R 7 MI ABOVE GAGE NR SALCHAKET AK | SALCHA R 5 MI ABOVE GAGE NR SALCHAKET AK
SALCHA R 6.5 MI ABOVE GAGE NR SALCHAKET AK
SALCHA R 8MI AB GAGE NR SALCHAKET AK
SALCHA R SITE 2 8MI AB GAGE NR SALCHAKET AK
SALCHA R SITE 3 8MI AB GAGE NR SALCHAKET AK | TANANA R AT MINTO AK
MF KOYUKUK R NR WISEMAN AK
WISEMAN C AT WISEMAN AK
JIM R NR BETTLES AK | KOYUKUK R AT HUGHES AK
YUKON RIVER AT PILOT STATION AK
KUSKOKWIM R AT MCGRATH AK
KUSKOKWIM RIVER AT CROOKED CREEK AK
POWER C NR CORDOVA AK | UGANIK R NR KODIAK AK
ESKIMO C AT KING SALMON AK
KVICHAK R AT IGIUGIG AK
KVICHAK R AT IGIUGIG AK | | HYDROLOGIC
Unit
Code | 19030004
19030004
19030004
19030004 | 19030004
19030004
19030004
19030004 | 19030004
19030004
19030004
19030004 | 19030004
19030004
19030004
19030004 | 19030004
19030005
19030005
19030005 | 19030005
19030006
19040001
19040001 | 19040002
19040002
19040002
19040002 | | MEDIA
MEDIA | 0000 | 0 0000 | 00000 | 00000 | 00000 | 00000 | 0000 | · · · · · · · · · · · · · · · · · · · | |----------------------------|---|--|--|--|---|---|---|---------------------------------------| | 4013 033 | | | | | | | | | | ORGANIZATION
CODE | USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | usas
usas
usas
usas | | | SUSP DISCHARGE | α Ζ < | | XANN | ₩ ¥ 0 4 | A MKA | X 0m | m mm | | | BED MAT PART SIZE | | | | | | | | | | 3512 TAA9 92U2 | | ш | 7 7 | ш « | ш « | w w | யமம | | | SUSP SED CONCEN | α < Z < | <u> </u> | X 4 N N M | X D X U A | AAMXA | X A U W U | mmmm | | | OW END
AA3Y | 1972 | 7 27 7 7 | 1973
1976
1970 | 1972
1979
1979
1979 | 1974
1949
1978 | 1971
1959
1975
1978 | 1977
1970
1977
1977 | | | OW BEGIN | 1954
1958
1970 | 1968
1968
1968
1968 | 1970
1972
1979
1957 | 1967
1951
1952
1952 | 1949
1949
1952
1952 | 1968
1950
1963
1956 | 1966
1948
1960
1953 | | | BASIN
Descriptor | 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 00000
44444 | 000
004
004 | 00
00
00
00
00
00
00
00
00 | 80
80
80
80
80
80
80
80
80
80
80
80
80
8 | 00 00
4 4 4 | | | DRAINAGE
AREA | 1490.00
1110.00
4.46 | | 20.70
10.80
42.00
54.00 | 137.00
224.00
220.00
131.00
738.00 | 181.00
634.00
2010.00
51.00 | 149.00
162.00
62.00
5.70 | 25.20
30.40
69.70
20.00 | | | TYPE OF | EEEE | 3 3333
8 8 8 8 8 8 | A S A S A S A S A S A S A S A S A S A S | X X X X X X X X X X X X X X X X X X X | A A A A A A A A A A A A A A A A A A A | A A A A A A A A A A A A A A A A A A A | X X X X | | | COUNTY | 070
070
070 | 070
150
150
150 | 021
021
020
021
020
021 | 120
120
120
120
120 | 210
120
120
120 | 120
210
020
020
020 | 020
020
020
020 | | | 3TAT2 | 0002 | | 002
002
002
003 | 002
002
002
002 | 002
002
002
002 | 002
002
002
002 | 002
002
002
002 | | | LONGITUDE | 1581105
1583537
15840621 | 85314
31010
32510
35852
22409 | 15 13842
15 12436
1504609
1505 102
15 14000 | 1514511
1515005
1514050
1513948
1511535 | 1492219
1494828
1494828
1510446 | 1493813
1493840
1485902
1490944
1494840 | 1494312
1494615
1495520
1495007 | | | LATITUDE | 595604
591630
591630 | 908
741
741
717
736 | 592850
592559
594357
594524 | 594450
594621
600150
600256
601905 | 602601
602934
602934
602839
603350 | 605340
605515
605044
605629
610437 | 610852
610957
610817
611159 | | | STATION NAME AND LOCATION | NUYAKUK R NR DILLINGHAM AK
WOOD R NR ALEKNAGIK AK
SILVER SALMON C NR ALEKNAGIK AK | | BARBARA C
TUTKA LAG
KACHEMAK
BRADLEY R
DIAMOND C | ANCHOR R NR ANCHOR POINT AK
ANCHOR R AT ANCHOR POINT AK
DEEP C NR NINILCHIK AK
NINILCHIK R AT NINILCHIK AK
KASILOF R NR KASILOF AK | TRAIL R NR LAWING AK
KENAI R AT COOPER LANDING AK
KENAI R AT COOPER LANDING AK
KENAI RIVER AT SOLDOTNA
BEAVER C NR KENAI AK | RESURRECTION C NR HOPE AK
RESURRECTION C AT HOPE AK
TWENTY MILE R NR PORTAGE AK
GLACIER C AT GIRDWOOD AK
LITTLE RABBIT C BL OLD SEWARD HWY NR ANCHORA | SF CAMPBELL C AT CANYON MTH NR ANCHORAGE AK
SF CAMPBELL C NR ANCHORAGE AK
CAMPBELL CREEK NEAR SPENARD AK
CHESTER CREEK AT ANCHORAGE AK | | | HYDROLOGIC
Unit
Code | 19040002
19040002
19040002 | 19040002
19050001
19050001
19050001
19050001 | 19050002
19050002
19050002
19050002 | 19050002
19050002
19050002
19050002 | 19050002
19050002
19050002
19050002 | 19050002
19050002
19050002
19050002 | 19050002
19050002
19050002
19050002 | | | SED STOR | ٥ | 0000 | 00000 | 00000 | 00000 | 00000 | 00000 | ۵۵۵۵ | |----------------------------|---|--|---|---|--|--|--|--| | ORGENIZATION
GODE | 88 | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | 0.868
0.868
0.868
0.868 | | SUSP DISCHARGE | 0 | ш ш С | иα и п | ασσΖΥ | $\alpha x \triangleleft q x$ | አጠ444 | বৰবৰ্ | 44 H | | SSIZ TRAN NZUZ | 4.1 | шшш | 111 111 | ~ 7 \ | - V 111 V | | щ | | | ZONO CONCIN | | A 2 E E | DAA 2
MAAA | RAASX | R X A A X
A X M A X | Amada | 4444 | 4488 | | OW END
YEAR | | 1973
1974
1968 | 1975
1976
1971
1972
1973 | 1975 | 1977
1973
1975 | 1972
1978
1978
1975 | 1978
1978
1978
1978 | 1979
1977
1977 | | OW BEGIN | } on | 1948
1967
1948
1965 | 1948
1948
1948
1948 | 1957
1958
1962
1949
1958 | 1954
1971
1970
1959 | 1975
1955
1975
1975 | 1975
1975
1975
1975 | 1975
1977
1977 | | BASIN
Descriptor | | 0
0
0
0
0
0
0
0
0 | 900
44
44 | 00000
44444 | % %%
4 4 4 4 | 00
4
4
4 | 0000
4 4 4 4 | 000
4 4 | | DRAINAGE
AREA | 27.20 | 90.50
113.00
192.00
87.80 | 1180.00
289.00
2070.00
61.90 | 950.00
280.00
4140.00
6160.00
2570.00 | 2006.00
164.00
2250.00
19400.00 | 131.00 | | | | 11PF 0F | M.S. | N N N N | N N N N N N N N N N N N N N N N N N N | MS M | MS AN | A S A A S A S A S A S A S A S A S A S A | A A A A A A A A A A A A A A A A A A A | N N N N | | COUNTY | | 020 | 170
170
170 | 170
170
290
170 | 170
170
170
170 | 00000
00000
00000 | 120
120
120
020 | 170
170
170
080 | |
3TAT2 | | 0000
0000
0000 | 000000000000000000000000000000000000000 | 000550 | 0002 | 0002 | 000000000000000000000000000000000000000 | 0000 | | LONGITUDE | 95343 | 493755
494724
493332
492920 | 1490150
1474057
1490236
1490416
1491336 | 1473057
1463145
1473240
1494128
1501402 | 1500101
1501018
1500312
1512201
1503045 | 1511500
1522126
1513011
1513011 | 15 13920
15 13354
15 13027
15 13726
1490848 | 1504353
1504827
1492215
1440358 | | LATITUDE | ± 5 ± 5 ± 5 ± 5 ± 5 ± 5 ± 5 ± 5 ± 5 ± 5 | 611325
611420
611828
612508 | 613018
614812
614100
613634
614232 | 630614
630710
624157
624604
623331 | 622049
621035
620632
615223
613241 | 610631
611244
610916
610918
611019 | 611152
611244
611823
611946
612836 | 622300
623157
624941
602339 | | STATION NAME AND LOCATION | CHESTER C AT ARCTIC | SHIP C NR ANCHORAGE AK
2 SHIP C AT ELMENDORF AFB NR ANCHORAGE AK
2 EAGLE R AT EAGLE RIVER AK
3 PETERS C NR BIRCHWOOD AK | KNIK R NR PALMER AK
CARIBOU C NR SUTTON AK
MOOSE C NR PALMER AK
MATANUSKA R AT PALMER AK
L SUSITNA R NR PALMER AK | SUSITNA RIVER NEAR DENALI AK
MACLAREN R NR PAXSON AK
SUSITNA R NR CANTWELL AK
SUSITNA RIVER AT GOLD CREEK AK
CHULITNA R NR TALKEETNA AK | TALKEETNA RIVER NEAR TALKEETNA AK
SUSITNA RIVER AT SUNSHINE AK
MONTANA C NR MONTANA AK
SKWENTNA R NR SKWENTNA AK
SUSITNA RIVER AT SUSITNA STATION AK | CHUITNA RIVER NEAR TYONEK AK CHAKACHATNA R NR TYONEK AK CHUITNA R AB CHUIT C NR TYONEK AK CHUIT C AT MOUTH NR TYONEK AK CHUIT C 1.6 MI AB MOUTH NR TYONEK AK | CHUITNA R BL WOLVERINE F NR TYONEK AK
CHUIT C 5.4 MI AB MOUTH NR TYONEK AK
BISHOP C NR TYONEK AK
CAPPS C NR TYONEK AK
EKLUTNA R BL POWER PLANT NR EKLUTNA AK | PETERS C AB MARTIN C AT PETERS CREEK AK
PETERS C NR PETERSVILLE AK
SUSITNA R AB PORTAGE C NR GOLD CREEK AK
STILLWATEP C NP COPONVA AK | | HYDROLOGIC
Unit
Code | 19050002 | 19050002
19050002
19050002
19050002 | 19050002
19050002
19050002
19050002 | 19050002
19050002
19050002
19050002 | 19050002
19050002
19050002
19050002 | 19050002
19050002
19050002
19050002 | 19050002
19050002
19050002
19050002 | 19050002
19050002
19050002
19050003 | | MEDIA | | | | | | | | | |----------------------------|--|--|---|---|---|---|---|--| | NOTZ G32 | ۵۵۵۵۵ | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | ORGANIZATION
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | ববৰ্ষ | шшш | m m4 | ш С 4 | NП | АКПАА | 4445 | | | BEIS TRAS TAM G38 | | | | | | | | | | SUS SED CONCEN | | <u> </u> | шшош | MAOAA | 4 HO | <u> </u> | 44
44 | | | | 00000
4442 | 2000
2 ¥ m m m m | 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3 S S S S S S S S S S S S S S S S S S S | ror ro
AN∑ERO | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3 2 D | | | OW WD
RABY | 197
197
197
197 | 197
197
197 | 197
197
197
197 | 197 | 197
197
197 | 197
196
197
197 | 197 | | | OW BEGIN | 1970
1972
1970
1970 | 1970
1971
1948
1971
1948 | 1953
1948
1971
1971 | 1950
1967
1976
1950 | 1967
1972
1963
1950
1974 | 1970
1952
1968
1972
1975 | 1975
1954
1967
1964 | | | BASIN
Descriptor | | 00 00
4 4 4 4 | 00
00
4
4
4 | 000 00 | 00
4
4 | 00
4
4
4 | 00
4
4 | | | ORAINAGE
AREA | | 7.95
4.32
620.00
1770.00 | 2670.00
2670.00
880.00
22.70 | 420.00
70.50
20600.00 | 20.50
4.37
4.78
201.00
222.00 | 169.00
9.26 | 94.00
45.30 | | | TYPE OF
SITE | N N N N N N N N N N N N N N N N N N N | N N N N N | N N N N N | N N N N N N N N N N N N N N N N N N N | MS MS MS NS | N N N N N N N N N N N N N N N N N N N | M S S S | | | COUNTY | 080
080
080 | 080
260
260
260
260 | 260
260
260
260 | 260
260
260 | 080
080
260 | 210
210
080
260 | 260
260
190
190 | | | 3TAT2 | 002
002
002
002 | 000
000
000
000
000
000
000
000
000
00 | 002
002
002
002 | 005
002
002
002 | 000
000
000
000
000
000 | 000
000
000
000
000
000 | 005
002
002
002 | | | LONGITUDE | 1440302
1440138
1441214
1441254 | 1441810
1441421
1451820
1453151
1452250 | 1452534
1452534
1451820
1450905
1451314 | 1451050
1451026
1442721
1442720 | 1453705
1454036
1461020
1455132
1455315 | 1455315
1492500
1492708
1440145
1450842 | 1451307
1453121
1300355
1303150 | | | LATITUDE | 602404
6024104
602417
602225
6021444 | 602032
624303
621806
623115
621608 | 620320
620320
615710
612849
613538 | 613948
614005
612756
612800 | 603514
613641
604541
610549
610524 | 610524
600830
600410
602420
612855 | 613014
623139
560134
550829 | | | STATION NAME AND LOCATION | TROUT C NR CORDOVA AK
CLEAR C NR CORDOVA AK
SHEPHERD C BL LK CHARLOTTE NR CORDOVA AK
CARBON C NR CORDOVA AK
SHEPHERD C NR CORDOVA AK | DICK CREEK NEAR CORDOVA AK COPPER R TR NR SLANA AK GAKONA R AT GAKONA AK GULKANA RIVER AT SOURDOUGH AK GULKANA R AT GULKANA AK | TAZLINA R NR GLENNALLEN AK
1 TAZLINA R NR GLENNALLEN AK
8 KLUTINA R AT COPPER CENTER AK
1 LITTLE TONSINA RIVER NEAR TONSINA AK
8 L TONSINA R AB TONSINA R | TONSINA R AT TONSINA AK SQUIRREL C AT TONSINA AK CHITINA R NR CHITINA COPPER R NR CHITINA AK COPPER R NR CHITINA AK | POWER C NR CORDOVA AK
HUMPBACK C NR CORDOVA AK
WEST FORK OLSEN BAY CREEK NEAR CORDOVA AK
LOWE R NR VALDEZ AK
LOWE R IN KEYSTONE CANYON NR VALDEZ AK | LOWE R IN KEYSTONE CANYON NR VALDEZ AK
RESURRECTION R AT SEWARD AK
SPRUCE C NR SEWARD AK
CLEAR C TR NR CORDOVA AK
L TONSINA R SITE A† NR TONSINA AK | L TONSINA R SITE 4 NR TONSINA AK
GULKANA R AT CMPGRD NR SOURDOUGH AK
SALMON R NR HYDER AK
RED R NR METLAKATLA AK | | | HYDROLOGIC
Unit
Code | 19050003
19050003
19050003
19050003 | 19050003
19050003
19050003
19050003 | 19050003
19050003
19050003
19050003 | 19050003
19050003
19050003
19050003 | 19050003
19050003
19050003
19050003 | 19050003
19050003
19050003
19050003 | 19050003
19050003
19060000
19060000 | | | MEDIA | _ | | | | | | | |----------------------------|---|--|---|--|--|--|---| | MOTZ G32 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | MOITAS INADRO
3000 | 5550
5550
5550
5550
5550
5550 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | SUSP DISCHARGE | | ΧN | ш « | ш 4ш | А пппА | ш к к | ч ш ч | | 35:2 TAA9 92U2 | | ш Ф | ~ | - E ~ | - 1 | <u>u</u> | ~ | | NEONOD CIES ASOS | IIOIO | I M X M 4 | 00048 | ₩ | 4 m m 4 | m A R A R
A m A m | 40m4 | | OW END
PABY | | 1975 | 1975
1975
1972 | 1972
1960
1972
1979 | 1972
1968
1970
1968 | 1968
1975
1975
1975 | 1978 | | OW BEGIN | 1977
1977
1977
1977
1977 | 1978
1949
1968
1979 | 1975
1975
1977
1966 | 1967
1960
1978
1948 | 1948
1965
1965
1965 | 1961
1963
1962
1966 | 1968
1977
1963
1969 | | NIZAB
ROT9183230 | 0000
4400
4400 | 000
4000
4400 | 004 | 024 | 004 | 00
40
40 | 000
4 4 4 4 | | DRAINAGE
AREA | 52.60
5.53
2.70
14.00 | 1.98
15.50
58.00
63.30
67.40 | 19920.00
151.00
8.29 | 32.50
226.00
4.57
9.76 |
12.10 | 15.50
2.50
3.96
56.90 | 43.20
179.00 | | TYPE OF | ************************************** | N N N N N N N N N N N N N N N N N N N | A S S S S S S S S S S S S S S S S S S S | NA N | N N N N N | MS MS MS | 3 3 3 3
0 0 0 0 | | YTNUOD | 190
190
190
190 | 190
190
280
280 | 280
280
280
110 | 55 55 | 55555 | 55555 | 230 | | 3TAT2 | 002
002
002
002 | 005
005
005
005
005 | 002
002
002
002 | 002
002
002
002 | 005
002
002
002 | 002
002
002
002 | 0000 | | LONGITUBE | 1302358
1302700
1302738
1302423 | 1303058
1305203
1310255
1311512
1313812 | 1313812
1320800
1330636
1335306 | 1334150
1333640
1341850
1342405 | 1342515
1343442
1343519
1343137
1343240 | 1343227
1343634
1343750
1343810
1344740 | 1345307
1345500
1352110
1352040 | | LATITUDE | 552234
552234
552451
552256 | 552542
552459
560315
561430 | 561248
564226
571024
581056
581056 | 581000
581210
581630
581825 | 582330
582147
582146
582531
582505 | 582448
582353
582340
582256
583126 | 583906
584900
593135
593043 | | STATION NAME AND LOCATION | O KETA R AB HILL C NR KETCHIKAN AK
O HILL C AB WHITE C NR KETCHIKAN AK
O WHITE C NR KETCHIKAN AK
O HILL C NR MOUTH NR KETCHIKAN AK
O KETA R NR KETCHIKAN AK | O BEAVER CREEK NEAR KETCHIKAN AK O WINSTANLEY C NR KETCHIKAN AK O KLAHINI R NR BELL ISLAND AK O EF BRADFIELD R NR WRANGELL AK O HARDING R NR WRANGELL AK | O FY78 CHANGE OPERATION OWDC69151 TO O STIKINE R NR WRANGELL AK O FARRAGUT R NR PETERSBURG AK O LONG R AB LONG LK NR JUNEAU AK O LONG R AB LONG LK NR JUNEAU AK | O LONG R NR JUNEAU AK O SPEEL R NR JUNEAU AK O TAKU R NR JUNEAU O SHEEP C NR JUNEAU AK O GOLD C AT JUNEAU AK | O LEMDN C NR JUNEAU AK O JORDON C NR AUKE BAY AK O DUCK C NR AUKE BAY AK O NUGGET C NR AUKE BAY AK O NUGGET C NR AUKE BAY AK | O STEEP C NR AUKE BAY AK O MONTANA C NR AUKE BAY AK O LAKE C AT AUKE BAY AK O AUKE C AT AUKE BAY AK O HERBERT R NR AUKE BAY AK | DAVIES C NR AUKE BAY AK O ANTLER R AT BERNERS BAY AK O WEST C NR SKAGWAY AK O TAIYA R NR SKAGWAY AK | | HYDROLOGIC
Unit
Code | 19060000
19060000
19060000
19060000 | WEDIA | <u> </u> | | 2000 | | | | | | | |----------------------------|----------|--|---|--|--|--|---|--|-------------| | SED STOR | | 00000 | 00000 | 00 0 | 0 0 | 00000 | 00000 | 0000 | | | MOITAZMADNO
3000 | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | νшαп | ш Х 4 | A 2 | 7 | 44 | 4 U H H U | EKZZ | | | 3512 TRAY YEUR | | | | | | | | | | | 2015 EED CONCEN | | N M A M M | M Q X 4 Q | AONNO | NNANO | 00440 | ▼ ИШШИ | ПХИИ | | | AA3Y | | 80876 | -12-40 | ານ | r. | V 80 | 68 | | | | OM END | | 196
197
196
196
196 | 197
197
197 | 196 | 196 | 196
196 | 196 | · · · · · · · · · · · · · · · · · · · | | | OW BEGIN | | 1962
1968
1948
1965 | 1949
1976
1968
1968 | 1963
1963
1978
1978
1964 | 1977
1978
1965
1977
1976 | 1975
1977
1967
1967
1975 | 1967
1966
1966
1965 | 1968
1965
1979
1979 | | | BASIN
ROT9183230 | | 0004
0004
0004
0004 | 00
4
4
4 | 900
4 4 4 | 00000
4 4 4 4 4 | 9 9 9 9
4 4 4 4 | 00 00
004 4 | 000
4
4
4 | | | DRAINAGE
AREA | | 190.00
5.29
2.81
13.50
32.10 | 46.10
17.40
3.38 | 5.90
11.20
6.56
8.45
.09 | . 99
1.27
1.46
2.20
3.27 | 31.90
31.00
7.41
17.50
2.28 | 56.20
10.20
4.48
8.00
14.50 | 37.70
3.02
12.90 | | | TYPE OF
SITE | | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N | | | COUNTY | | 9999 | 2000 | 200
200
280
280 | 280
280
280
280
200 | 220
220
220
220 | 030
220
220
220 | 220
220
030
030 | | | 31AT2 | | 002
002
002
002 | 0002 | 0002 | 0002 | 002 | 0002 | 002 | | | LONGITUDE | | 1355555
1314738
1314005
1313805
1311140 | 1011140
1330240
1325220
1324912
1321015 | 1322425
1330836
1322530
1322658
1322233 | 1325845
1325947
13257 10
1325500
13344 10 | 135 1954
1350700
1344010
1345150
1354635 | 134 1455
135 1106
1350742
135 1040
135 1317 | 1351358
1351259
1351600 | | | LATITUDE | | 593740
552630
552440
552040
552330 | 552330
553258
552141
551245
545648 | 552344
560754
560404
560342
562804 | 562013
562017
564827
564642
563703 | 571537
565900
563110
570835 | 573940
573946
574039
574022 | 574025
574143
575158
574950 | | | STATION NAME AND LOCATION | | CHILKAT R AT GORGE NR KLUKWAN AK WHIPPLE C NR WARD COVE AK PERSERVERANCE C NR WACKER AK KETCHIKAN C AT KETCHIKAN AK FISH C NR KETCHIKAN AK | D FISH C NR KETCHIKAN AK D KLAWAK R NR KLAWOCK AK D NB TROCADERO C NR HYDABURG AK D HYDABURG R AT HYDABURG AK D PERKINS C NR METLAKATLA | O OLD TOM C NR KASAAN AK D BIG C NR POINT BAKER AK D NAVY LK OUTLET NR MEYERS CHUCK AK D NAVY C NR MEYERS CHUCK AK MAVY C NR MEYERS CHUCK AK MILL C AT WRANGELL AK | ZAREMBO C NR WRANGELL AK D ZAREMBO C NR POINT BAKER AK D HAMMERS SL AT PETERSBURG AK O MUNICIPAL WATERSHED C NR PETERSBURG AK D ROCKY PASS C NR POINT BAKER AK | D NAKWASINA R NR SITKA O GREEN LK OUTLET NR SITKA AK O DEER LK OUTLET NR PORT ALEXANDER AK O TAKATZ C NR BARANOF AK O KALININ BAY TR NR SITKA AK | HASSELBORG C NR ANGDON AK
KADASHAN R AB HOOK C NR TENAKEE AK
O HOOK C AB TR NR TENAKEE AK
O HOOK C NR TENAKEE AK | D TONALITE C NR TENAKEE AK
O KADASHAN R NR TENAKEE AK
O INDIAN R NR HEADWATERS NR TENAKEE AK
O INDIAN R NR TENAKEE AK | | | HYDROLOGIC
Unit
Code | | 19060000
19060000
19060000
19060000 | | Third in the property of | | | | |--|----------------------------|---
---| | TANION N. M. TERMINE | AIG3M | 0000 | ٥ | | TANIOR N. W. TERMIEE K. | NOITASIMADRO
3000 | uses
uses
uses
uses
uses | S S | | The color | SUSP DISCHARGE | | | | TATTIONE TATALOR IN THE RING TENANCE AND THE | SEIS TRAS TAM 038 | | | | THURE THE REPAREE AN THURE TO THE | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | STATURE N.W. TEMAKE K. ANUGE R.W. ANUE BANADE A. SECTION 155000 000 105 S. S. SECTION 155000 000 S. SECTION 15500 | SUSPER SED CONCEN | | | | STATION NAME AND LOCATION FILD C R NO TEMAKE AN HILDA C NR DOUGLAS AK 551328 1345950 002 105 SW 134590 002 105 SW 134590 134590 002 105 SW 134590 134590 002 110 SW 134590 134590 002 | | 1975
1969
1976
1976 | on a contract of the | | STATION NAME AND LICEATION PAULOF R NA TENAKEE AK HULDA CON DOUGLAS AK LESSON 1555209 002 2030 THE STATE OF | | 1967
1967
1966
1966 | 0
មិ | | STATION MAME AND LICENTON PAVIOF R NR TEMAKE AK HILDA CAN TO COLOUR COL | | | | | STATION NAME AND LOCATION PAVLOF R NR TEMAKEE AK HILDA C NR DOUGLAS AK LAWSON C AT DOUGLAS AK STATE C NR ALER BAY AK STATE C NR ALER BAY AK STATE LK TR (INLET) NR BARANDF AK STATE LK TR (INLET) NR BARANDF AK STATE LK TR (INLET) NR BARANDF AK STATE LY TR (INLET) NR BARANDF AK STATE LK | ORAINAGE
AREA | 4000 | | | PAVLOF R NR TEMAKE AK HIDDA C NR DOUGLAS HIDA | | | N C | | PAVLOF R NR TENAKE AK HILDA C. NR DOUGLAS AK FISH C. AT DOUGLAS AK GRACE C. AB LK NR KETCHIKAN AK GRACE C. AB LK NR KETCHIKAN AK GRACE C. AB LK NR KETCHIKAN AK GRACE C. AB LK NR RETCHIKAN RETCHIKA | COUNTY | | 220 | | STATION MANE AND LUCATION FAVLOF R NR TENAKEE AK HILDA C NR DOUGLAS AK HILDA C NR DOUGLAS AK FISH C NR AUKE BAY AK FISH C NR AUKE BAY AK GRACE C AB LK NR KETCHIKAN AK SE1950 GRACE C AB LK NR KETCHIKAN AK SE1950 FISH C NR AUKE BAY FISH C NR AUKE BAY SE1950 FISH C NR AUKE BAY SE1950 FISH C NR AUKE BAY FISH C NR AUKE | 3TAT2 | 002
002
002 | 000 | | STATION NAME AND LOCATION HILDA C NR DENGLAS AK HILDA C NR DOUGLAS AK HISH C NR AUVE BAY AK GRACE C AB LK NR KETCHIKAN AK TAKATZ LK TR (INLET) NR BARANOF AK | LONGITUDE | 1350209
1342950
1342440
1343520 | 1345523 | | STATION NAME AND LOCATION HILDA C NR DENGLAS AK HILDA C NR DOUGLAS AK HISH C NR AUVE BAY AK GRACE C AB LK NR KETCHIKAN AK TAKATZ LK TR (INLET) NR BARANOF AK | LATITUDE | 575030
581338
581705
581950
553718 | ιο · | | HYDROLOGIC
UNIT
CODE
19060000
19060000
19060000
19060000 | | PAVLOF R NR TENAKEE AK
HILDA C NR DOUGLAS AK
LAWSON C AT DOUGLAS AK
FISH C NR AUKE BAY AK
GRACE C AB LK NR KETCHIKAN AK | TAKATZ LK TR (INLET) NR BARANDF | | | HYDROLOGIC
Unit
Code | 19060000
19060000
19060000
19060000 | 19060000 | | A103M | | ۵۵ | | | | | ۵ | 0000 | | |----------------------------|--------|--|--|--|--|--|---|---|-------------| | 9012 G32 | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | MOITAZ INADRO
3000 | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | 2012 DIZCHYBOE | | ш | | | | | | | | | 3512 TAA9 92U2 | | ZZZZm | 00 00 00 | MEEEE | Z Z Z Z Z | ZZZZZ | ZZZZ | | | | SUSP SED CONCEN | | <u> </u> | | 0 2 2 2 2 2 | <u> </u> | 22222 | EEEEO | | | | OW END
RA3Y | | | | | | | | | | | OW BEGIN | | 1971
1977
1970
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | | | NIZAB
ROTGIRDZ30 | | | | | | | | | | | DRAINAGE
AREA | 20 | | | | | | | | | | 40_39YT
3T12 | | 3 3 3 3 3 S | A A A A A A A A A A A A A A A A A A A | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | AS S AS | A S S A S | AS S AS | | | COUNTY | _Z | 001
003
003
001 | 003
003
003
007 | 90000
111110000 | 600
600
600 | 000
000
000
000
000 | 007 | 000
000
000
000 | | | 3TAT2 | | 015
015
015
015 | 015
015
015
015 | 015
015
015
015 | 015
015
015
015 | 015
015
015
015 | 015
015
015
015 | 015
015
015 | | | LONGITUDE | REG | 1550611 | | | | | | | | | LATITUDE | ¥ | 195720 | | | | | | | | | STATION NAME AND LOCATION | HAWAII | FY77 CHANGE OPERATION OWDC73374 TO WAILUA R AT WAILUA KAUAI KAHANA STR AT ALT 30 FT NR KAHANA, OAHU, HI FY76 CHANGE OPERATION OWDC67716 TO WAIMEA R AT MOUTH AT WAIMEA KAUAI | HALAWA ST AT MOUTH AT AIEA
MOANALUA ST AT MOUTH NR HONOLULU
KAPALAMA ST AT MOUTH NR HONOLULU
NUUANU ST AT MOUTH NR HONOLULU
WAINIHA R BL POWER PLANT NR HANALE | WAILUKU R NR HILO
KOLEKOLE ST NR HONDMU HI
WAIULAULA GULCH NR KAWAIHAI HI
HILEA ST NR HONUAPO HI
OHEO GULCH NR KIPAHULU HI | PIINAAU ST NR KEANAE HI
WAIHEE R NR WAIHEE HI
MAUNALEI GULCH LANAI HI
KAUMALAPAU GULCH - LANAI HI
UNNAMED TRIB TO WAIKAHULU BAY HI | KANELOA GULCH - KAHOOLAWE HI
WAILUA ST NR WAILUA HI
HALAWA ST AT AIEA HI
KANEOHE ST AT KANEOHE HI
WAIAHOLE ST AT
WAIAHOLE HI | HULEIA ST AT NAWILIWILI HI
HOEA ST NR KEKAHA HI
KEANAUHI VALLEY NIHAU
HONUAULA VALLEY - NIHAU HI
KAHALUU STREAM NR KAHALUU HI | KUOU ST NR KANEOHE DAHU HI
HOOLEIANAIWA ST NR KANEOHE HI
WB ANDLANI ST NR KANEOHE DAHU HI
EB ANDLANI ST NR KANEOHE OAHU HI | | | HYDROLOGIC
Unit
Code | | 20 85
20008200
200085
20008500
20008500 | 20008500
20008500
20008500
20008500
20008500 | 20008500
20008500
20008500
20008500
20008500 | 20008500
20008500
20008500
20008500
20008500 | 20008500
20008500
20008500
20008500
20008500 | 20008500
20008500
20008500
20008500
20008500 | 20008500
20008500
20008500
20008500 | | | MEDIA | | | | | | | | | |----------------------------|---|---|---|--|--|--|---|-------------| | NOTZ CB2 | 0 000 | 000 0 | ۵۵۵ | | 000 0 | 00000 | 0000 | | | MOITASMADMO
3000 | uses
uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | maz | OZZ 4 | ΣΣΣ | Σ | שוחות ∢ | ппоко | m R m A | | | 3512 TAA9 TAM 038 | α | Σ | ΣΣ | EEE O | Σ | | | | | SUSP SED CONCEN | | OZZZ4 | ZZZZZ | EEEEO | Σ | 8 11 18 18 18 18 18 18 18 18 18 18 18 18 | W W | | | | <u> </u> | 02224 | Z Z Z Z Z | EEEEO | 00 00 | 8
7
7
8
7
8 | 00
m x m 4 | | | OW END
PEAR | | 197 | | | 197
197
197 | 197 | 1979 | | | OW BEGIN | 1977
1977
1971
1971 | 1977
1969
1981
1977
1977 | 1977
1981
1981
1974 | 1969
1977
1981
1981 | 1968
1968
1968
1970
1967 | 1967
1968
1968
1967
1967 | 1967
1968
1967
1969 | | | BASIN
Descriptor | 000
003
003 | 023
004
004 | 023
004
004 | 004 | 004
004
014 | 004
004
0024
0224 | 0024
0004
003 | h | | DRAINAGE
AREA | 17.40
43.40
230.00 | 256.00
11.60 | 3.47 | | 1.38
4.04
.86 | 2.31
3.58
4.29
13.80
45.70 | 26.40
5.97
2.59
94 | | | TYPE OF
STIR | ************************************** | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N | N N N N N | N N N N N | E E E E | | | YTNUOO | 000
000
000
000
000 | 88888 | 6 | 6000 | 8 | 0003 | 3333 | | | 3TAT2 | 0 15
0 15
0 15
0 15
0 15
0 15 | 015
015
015
015 | 015
015
015
015 | 015
015
015
015 | 015
015
015
015 | 015
015
015
015 | 015
015
015
015 | | | LONGITUDE | 155 1028
155 1608
155 1608 | 1550540
1550916
1550725
1555640
1550830 | 1561516
1561108
1573115
1563326
1564553 | 1565238
1565554
157 123 1
1564550
1575330 | 1575653
1575954
1575903
1580726
1575855 | 158 1059
1580926
1575740
1580114
1580049 | 1575851
1575656
1575622
1575105 | | | LATITUDE | 193830
194315
194256 | 194343
194600
195255
193812
194310 | 203721
203801
205647
205854
210931 | 210759
210945
211039
210606
212020 | 213109
212932
212957
213356
213124 | 213016
212820
212813
212433
212311 | 212357
212348
212307
212329 | | | STATION NAME AND LOCATION | KAMDDALII ST AT ALT 120F N KANEDHE
FY77 CHANGE OPERATION OWDC73372 TO
WAIAKEA STREAM NR MOUNTAIN VIEW, HAWAII, HI
WAILUKU RIVER NR KAUMANA, HAWAII, HI | WAILUKU RIVER AT HILD, HAWAII, HI
HONOLII STREAM NR PAPAIKOU HAWAII HI
KOLEKOLE STREAM NR HONOMU, HAWAII, HI
WAIAHA ST NR HOLUALOA HI
KAPEHU STREAM AT PIIHONUA | KEPUNI GULCH NR KAHIKINUI HDUSE HI
HAWELEWELE GULCH NR KAUPO HI
WAIHEE RIVER NR WAIHEE, MAUI, HI
KAHAKULDA STREAM NR HONDKOHAU, MAUI, HI
HALAWA STREAM NR HALAWA, MOLOKAI, HI | FY77 CHANGE OPERATION OWI
WAIKOLU STR BL PIPE CROSS
KAKAAKO GULCH NR MAUNA LE
WAIALUA STREAM AT WAIALUJ
KALIHI STREAM AT MOUTH | NF KAUKONAHUA STREAM AB RB NR WAHIAWA, DAHU, H S KAUKONAHUA STREAM AT E PUMP RSVR WAHIAWA. S R BR OF SF KAUKONAHUA STREAM NR WAHIAWA, DAHU S KAUKONAHUA ST AT WAIALUA HI POAMOHO STREAM NEAR WAHIAWA, DAHU, HI | MAKAHA STREAM NR MAKAHA, DAHU, HI
KAUPUNI STREAM AT ALT 374 FT NR WAIANAE,OAHU
KIPAPA STREAM NR WAHIAWA, OAHU, HI
KIPAPA STREAM NEAR WAIPAHU, OAHU, HI
WAIKELE STREAM AT WAIPAHU, OAHU, HI | WAIAWA STREAM NR PEARL CITY, OAHU, HI
WAIMALU STREAM NR AIEA OAHU, HI
KALAUAO STREAM AT MOANALUA RD,AT AIEA,OAHU,
WJANALUA STREAM NY KANEDHE, DAHU, HI | | | HYDROLOGIC
Unit
Code | 20008500
20008500
20010000
20010000 | 20010000
20010000
20010000
20010000 | 20020000
20020000
20020000
20020000
20050000 | 20050000
20050000
20050000
20050000
20060000 | 20060000
20060000
20060000
20060000
20060000 | 20060000
20060000
20060000
20060000
20060000 | 20060000
20060000
20060000 | | | MEDIA | | | | | | ···· | | | |----------------------------|---|--|--|---|--|---|---|-------------| | 8012 G32 | 0000 | 00000 | 000 | 00000 | 00000 | 00000 | 000 | | | MOITA SINA DRO
BOOD | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | A A A | пщ∑пп | பயப | OAONE | சை ஈஈ | ∨ шшш | 444 | | | 3SIZ TRAS SZUZ | ш м | 4.1.1.1 | Σ Σ
 | | m ··· | | Σ Σ | | | SUSP SED CONCEN | E | m m Z m m
m m | Z W Z | > m ₹ | O A A C H | 4 m m m m | <u> </u> | | | OW END | | 970 | 975 | <u> </u> | 973 | 969
979
979 | 973
976
976
976 | | | OW BEGIN | 1969
1973
1969
1969 | 1968
1969
1967
1970 | 1970
1968
1967
1967 | 1967
1970
1976
1967 | 1970
1967
1967
1967
1970 | 1968
1968
1967
1967 | 1971
1976
1976
1976 | | | NIZA8
Rotqirəz30 | 004
0004
0004 | 0004 | 013
004
003 | 003 | 023
024
004 | 004
004
004
004 | | | | BRAINAGE
AREA | . 62
2. 73
3.34
4.44 | .60
2.61
1.11
1.11 | 2.16
2.04
5.34 | 6. 6. 4
24. 8. 4
44. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. | .97
3.73
2.26
3.13 | .97
9.79
14.20
2.98 | | | | 30 39YT
3712 | M M M M M M M M M M M M M M M M M M M | ************ | N K K K C | N N N N N | N N N N N | N N N N N | N N N N | | | COUNTY | 003
003
003 | 8 8 8 8
0000000000000000000000000000000 | 0003 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00000 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 003
003
003
003 | • | | 3TAT2 | 0 15
0 15
0 15
0 15 | 015
015
015
015 | 015
015
015
015 | 015
015
015
015 | 015
015
015
015 | 015
015
015
015 | 0
0
0
0
0
0
0 | | | LONGITUDE | 1575053
1575142
1575123
1575303 | 1574932
1575049
1575236
1574812
1574812 | 1574904
1574352
1574602
1574548 | 1574826
1574846
1574823
1574813 | 1574935
1575015
1575026
1575026
1580104 | 1580123
1580327
1580327
1580612
1580010 | 1580601
1574757
1574742
1574845 | | | LATITUDE |
212327
212327
212307
212253
212253
2122337 | 212235
212200
212029
211955
211953 | 211737
212112
212149
212251
212415 | 212342
212342
212347
212451
212452 | 212446
212725
212732
212731
213725 | 213649
213820
213820
213440
213355 | 213509
212312
212320
212330 | | | STATION NAME AND LOCATION | MOANALUA STREAM TRIB NR KANEOHE, OAHU, HI
MOANALUA STREAM TRIBUTARY NEAR AIEA, OAHU, H
MOANALUA STREAM NEAR HONOLULU, OAHU, HI
MOANALUA STREAM NEAR AIEA, OAHU, HI
MOANALUA STREAM NR TRIPLER HOSPITAL,OAHU, HI | KALIHI STREAM NR KANEOHE, OAHU, HI
KALIHI STREAM NR HONOLULU, OAHU, HI
KALIHI STREAM AT KALIHI, OAHU, HI
WAIHI STREAM AT HONOLULU, OAHU, HI | FY77 CHANGE OPERATION OWDC73389 TO
WAIMANALO STREAM AT WAIMANALO OAHU, HI
MAKAWAO STREAM NEAR KAILUA, OAHU, HI
MAUNAWILI STREAM AT HWY 61 N KAILUA, OAHU,HI
KAWAINUI CA AT KAILUA HI | KAMDOALII STREAM BL KUOU ST NR KANEOHE,OAHU.
LULUKU ST A ALT 220 F NR KANDHE HI
KAMOOALII STREAM BELOW LULUKU STREAM, OAHU H
KAMOOALII STREAM AT KANEOHE, OAHU, HI
KANEOHE STREAM AT KANEOHE OAHU, HI | FY76 CHANGE OPERATION OWDC73391 TO
KAHALUU STREAM AT KAHALUU HI
WAIHEE STREAM AT KAHALUU, OAHU, HI
FY77 CHANGE OPERATION OWDC56874 TO
KAMANANUI STREAM AT PUPUKEA MIL RD NR MAUNAW | KAIWIKOELE STREAM TRIB NR MAUNAWAI,OAHU.HI
KAMANANUI STREAM AT MAUNAWAI, OAHU, HI
FY77 CHANGE OPERATION OWDC73397 TO
HELEMANO STREAM AT HALEIWA, OAHU, HI
OPAEULA STREAM NR WAHIAWA, OAHU, HI | FY77 CHANGE OPERATION OWDC73358 TO
KAMODALII STR AB HECO SUBSTA NR KANEOHE OAHU
KAMODALII STR AT OLD PALI RD NR KANEOHE OAHU
KUOU STR BELOW BWS WELLS NR KANEOHE OAHU HI | | | HYDROLOGIC
Unit
Code | 20060000
20060000
20060000
20060000
20060000 | 20060000
20060000
20060000
20060000
20060000 | 20060000
20060000
20060000
20060000
20060000 | 20060000
20060000
20060000
20060000
20060000 | 20060000
20060000
20060000
20060000
20060000 | 20060000
20060000
20060000
20060000
20060000 | 20060000
20060000
20060000
20060000 | | | AIGEM | 9000 | ۵ ۵ | ۵۵۵۵ | 0 0 0 | ٥٥٥٥ | 0000 | 0000 | | |----------------------------|--|--|--|---|---|---|--|--| | en12 da2 | | | | | | | | | | MOITAZHADHO
3000 | uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
13SGS | | | SUSP DISCHARGE | A A A | Σ Σ | 22222 | 2 0 | 8 | | 2225 | | | JSIS TRAY TAM 038 | | ΣΣΣ | 2 000 | | | | | | | STIS THAN WELL | | 2222 | ₹ ♂≻₽□ | | | | | | | SUSP SED CONCEN | 44747 | EEEEE | ₹ 0≻40 | 困ること | 00044 | 44400 | 0400 | | | OW FUD
Rasy | 1976
1971
1970 | | 1973
1973
1975
1975 | 1971
1975
1968
1972 | 1971
1975
1969
1968 | 1971
1971
1968
1968 | 1967
1971
1971
1971 | | | OW BEGIN | 1976
1970
1970
1970 | 1971
1977
1981
1977 | 1977
1972
1972
1972 | 1963
1963
1967
1967 | 1963
1963
1965
1968 | 1967
1965
1967
1968 | 1966
1965
1966
1966 | | | MDZ41N
MOT41HJ230 | | 900 | 004
024
124 | 0000
44000
44000 | 004
024
004
014 | 004
124
124
004 | 0024
004
004 | | | DRAINAGE
AREA | | 57.80 | 1.06
2.11
.93
16.10 | 5.67
3.80
1.70
5.20 | .70
4.40
3.10
1.90
14.00 | 4.00
0.00
0.00
0.00
0.00 | 1.30 | | | TYPE OF
STIE | N S S S S S S S S S S S S S S S S S S S | N N N N N | 33333 | N N N N N | N N N N N | N N N N N N N N N N N N N N N N N N N | NA SA S | | | YTNUOO | 8003
8003
8003
8003 | 007
007
007
007 | | | | | · · · · · · · · · · · · · · · · · · · | | | 3TAT2 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 015
015
015 | 015
099
066
066 | 099
073
073
073
073 | 073
073
073
073
073 | 073
073
073
073
073 | 073
073
073
073 | | | LONGITIDE | 1574832
1574812
1575022
1575025 | 1593946
1593535
1592408
1591952
1593340 | 1592518
1443945
1443946
1444038 | 1444514
1281459
1281318
1281048
1280837 | 1280552
1280116
1275724
1274825
1274559 | 1274550
1274416
1275139
1275603 | 1275808
1275950
1280223
1281300 | | | LATITUDE | 212422
212421
212732
212732
212732 | 215902
215440
215650
220628
220810 | 221302
131823
131748
131613 | 132608
264706
264510
264110
263901 | 263742
263628
263907
262300 | 262223
261443
262254
262740
262920 | 262936
263118
263410
253932 | | | STATION NAME AND LOCATION | ANDLANI STR AT LIKELIKE HWY KANEOHE OAHU HI
UNNAMED TRIBUTARY TO KANEOHE STREAM, OAHU, H
KAHALUU STR AT ALT 10 FT AT KAHALUU OAHU HI
KAHALUU STREAM BL WAIHEE STR CONFL, OAHU, HI
KAHALUU STR AT HWY 83 AT KAHALUU OAHU HI | WAIMEA RIVER NR WAIMEA, KAUAI, HI
HANAPEPE R AT HANAPEPE HI
HULEIA STREAM NR NAWILIWILI, KAUAI, HI
KAPAA ST AT OLD CROSSING NR KEALIA
FY77 CHANGE OPERATION OWDC73351 TO | PUUKUMU ST NR KILAUEA HI
LA SA FUA RIVER NEAR UMATAC GUAM
UMATAC RIVER AT UMATAC GUAM
GEUS RIVER NR MERIZO GUAM
TALOFOFO RIVER NEAR TALOFOFO, GUAM | PAGO RIVER NR ORDOT GUAM
BENOKI-GAWA AT BENOKI, OKINAWA
YONA-GAWA AT YONA, OKINAWA
TAKAZATO-GAWA NEAR HAMA, OKINAWA
TAIHO-OKAWA AT TAIHO OKINAWA RK | RIGHT BRANCH OF SF HENAN-GAWA NR TSUHA, OKIN
HANECHI-OKAWA AT KAWAKAMI OKINAWA
OI-KAWA AT JINGUSUKU, OKINAWA
YONABARU-GAWA BL ZUKEYAMA DAM OKINAWA
BISHI-GAWA AT KADENA OKINAWA | NAGATA-GAWA AT KADENA OKINAWA
MACHINATO-GAWA NR OJANA, OKINAWA
TENGAN-GAWA AT TENGAN, OKINAWA
OKUKUBI-GAWA AT KIN, OKINAWA
KANNA-GAWA NR KANNA, OKINAWA | UFU-KAWA NEAR GINDZA, OKINAWA
LEFT FORK O-KAWA NR KUSHI, OKINAWA
OURA-GAWA AT OKAWA OKINAWA
FUKUJI-GAWA NR YU3ARU OKINAYA | | | HYDROLOGIC
Unit
Code | 20060000
20060000
20060000
20060000
20060000 | 20070000
20070000
20070000
20070000 | 20070000
20100003
20100003
20100003 | 20100003
20100009
20100009
20100009 | 20100009
20100009
20100009
20100009 | 20100009
20100009
20100009
20100009 | 20100009
20100009
20100009 | | | SOTZ G3Z
AIGSM | 999 | |----------------------------|---| | NGITAXINABRO
BGOD | NSGS
NSGS
NSGS
NSGS
NSGS | | SUSP DISCHARGE | 0 00 | | 3512 TRA9 TAM 038 | | | SUSP SED CONCEN | 0000 | | | | | OW END
AA3Y | 1975
1975
1975
1971 | | OW BEGIN | 1964
1969
1963
1964 | | MIZAB
Motqiadz30 | 000
000
000
000
000 | | DRAINAGE
AREA | 51 - 6 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | PYPE 0F
STIR | 3333
5005 | | COUNTY | | | 3TAT2 | 073
073
073
073 | | LONGITUDE | 128 1013
128 1525
128 1555
128 1553 | | LATITUDE | 2637 16
263733
263743
26424 1
26443 1 | | STATION NAME AND LOCATION | FUKUUJ-GAWA AT FUKUUJ OKINAWA RK
ARA-KAWA AT ARAKAWA OKINAWA RK
AHA-GAWA AT AHA, OKINAWA
FUN-GAWA NEAR AHA OKINAWA | | HYDROLOGIC
Unit
Code | 20 100009
20 100009
20 100009
20 100009 | | MEDIA | | | | | · | | | | |----------------------------|--
--|--|---|--|---|---|--| | #0T2 032 | ٥٥٥ | 000000 | 04000 | 00000 | 00000 | 00000 | 000 | | | ORDANIZATION
BOOD | uses
uses | USGS
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | m 0.0 | W | шшшш | m O ∢ m | 0 I M M M | αшшшσ | шшα | | | 3512 TRAY 92UZ | | | | | | | | | | N3ONDO DES 4505 | 0 > | |
™ ₹ _ m | л п О м п | M M M M | A M Q M A | A M M 4 | | | YEAR | | | 47
47
70
70 | വ വ | D. | 4 -4 | - 6 | | | OM END | 4- 4- | | 00000 | 197 | 197 | 197 | 197 | | | OW BEGIN | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 1969
1958
1969
1959
1971 | 1970
1974
1913
1960
1966 | 1958
1968
1959
1969 | 1969
1958
1969
1959 | 1969
1963
1963
1933 | | | BASIN
DESCRIPTOR | | 000 004 | 000
4 4 4 | 800 | 90 00 | 00 0
4 4 | 014 | | | | 622 | 89
89
55
66 | . 22
. 44
. 80 | .00 | 8888 | 0 0 | . 60 | | | DRAINAGE
AREA | 2 | | 66
4 4 6 | 169
155
155
155 | 158
132
132
17 | 93 . 5 | 57. | | | 211E | - Z | | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | NS N | N N N N N | N N N N N N N N N N N N N N N N N N N | | | COUNTY | O 444 | 000
000
000
000
000
000 | 070
070
036
070 | 007
070
050
050 | 053
019
019
023 | 023
035
035
032
032 | 007
007
045
009 | | | 3TAT2 | | 07 07 07 07 07 | 072
072
072
072 | 072
072
099
072
072 | 072
072
072
072 | 072
072
072
072 | 072
072
072
072 | | | LONGITUDE | (65224
(6493 | 0664412
0664216
0664213
066425
0664025
0664025 | 0664009
0664159
0663825
0663828 | 0664004
0664002
0664658
0662447
0662447 | 0662718
0662736
0662749
0662828 | 0662007
0665525
0665746
0664917
0664950 | 0664252
0664210
0663105
0663137 | | | LATITUDE | EAN 181801 06 181747 06 181747 06 | 81207
81207
81218
81222
81353
81253 | 181431 (181811 (181116 (181318 (181736
(181736 (181736 (181736 (181736 (181736 (181736 (181736 (181736 (181736 (181736 (181736 (181736 (181736 (181736 | 182017
182050
181802
181745
181614 | 181410
181926
182015
182018
182039 | 182113
182402
182831
182500
182825 | 182452 (
182720 (
182526 (
182552 (| | | STATION NAME AND LOCATION | RIO GUAJATACA AT LARES, PR
RIO GAMUY NR LARES, PR
BIO CEMUY NR LARES, PR | RIO GRANDE DE ARRECIBO NR ADJUNTAS
RIO PELLEJAS AT CENTRAL PELLEJAS, PR
QUEBRADA AZUL AT CENTRAL PELLEJAS, PR
RIO PELLEJAS BL CENTRAL PELLEJAS
RIO PELLEJAS NR UTUADO PR
RIO VIVI NR CENTRAL PELLEJAS PR
RIO VIVI DIVER TUNNEL NR UTUADO PR | QUEBRADA JORDAN NR UTUADO PR
RIO GRANDE DE ARECIBO NR UTUADO PR
RIO JAUCA NR JAYUYA PR
RIO CAONILLAS NR JAYUYA, PR
RIO LIMDN NR HACIENDA ETUON PR | RIO GRANDE DE ARECIBO BELOW LAGO DOS BOCAS. RIO GRANDE DE ARECIBO BL LAGO DOS BOCAS FLA. RIO TANAMA NR UTUADO, PR RIO GRANDE DE MANATI NR MOROVIS, PR RID SANA MUERTO NR OROCOVIS, PR | RIO BAUTA NR OROCOVIS, PR
RIO GRANDE DE MANATÍ AT CIALES, PR
RIO GRANDE DE MANATÍ AT HWY 145 AT CIALES, P
RIO CIALITOS AT HWY 649 AT CIALES, PR
RIO COROZAL AT COROZAL, PR | RIO CIBUCO BL CDROZAL PR
CANAL DIVERSION LAGO GUAJATACA, PR
RIO GUAJATACA ABOVE MOUTH NR QUEBRADILLAS, P
RIO CAMUY AT LA CUESTA, PR
RID CAMUY NR CAMUY PR | RIO TANAMA AT CHARCO HONDO, PR
RIO GRANDE DE ARECIBO AT CENTRAL CAMBALACHE,
RIO GRANDE DE MANATI AT HWY 667 AT MANATI, P
RIO GRANDE DE MANATI AT HIGHWAY 2 | | | HYDROLOGIC
Unit
Code | | 2 101000
2 101000
2 101000
2 101000
101000
101000
101000
101000
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
10100
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1 | 21010001
21010001
21010001
21010001 | 21010001
21010001
21010001
21010001 | 21010001
21010001
21010001
21010001
21010001 | 21010001
21010002
21010002
21010002
21010002 | 21010002
21010002
21010002
21010002 | | | ROTZ G32
AIG3M | 0000 | 00000 | 00000 | 00000 | 00000 | 00000 | ۵۵۵۵ | | |----------------------------|--|---|---|--|---|--|---|--| | NOITASINADRO
3000 | USGS
USGS
USGS
USGS | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP GISCHARGE | шшОАг | ы шико∢ | о ш ш г о | о о∢ ш | α | А Ш Ш Ш Ш | ш∢ош | | | 3512 TRAS TAM 038 | | | ************************************** | | | | | | | SKIZ TRAN MZUZ | | 80 | 60 60 | в п | മാനാന | œ | 6 | | | SINCE SED CONCEN | шш⊙∢г | u mmx⊙∢ | 00040 | опода | K X G G G | А Ш О Ш Ш | ш 4 ш ш | | | ON 3 WO
AA3Y | 1969
1970 | 1974
1974
1975 | 1971 | 1970 | 1968 | 1974 | 1975
1969
1970 | | | VEAR
OW BEGIN | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 7 9 7 7 9 | 1958
1975
1974
1969
1959 | 1963
1959
1974
1962 | 1959
1958
1970
1972 | 1963
1959
1974
1960 | 1959
1958
1958
1966 | | | BASIN
DESCRIPTOR | | 900 | 004 | 004 | 004 | 004 | 004
004 | | | DRAINAGE
AREA | . 2
9 | 92.50 | 120.00 | 94.30
108.00
16.60
71.20 | 83.30
97.00 | 5.23
18.30
27.90
12.30 | 46.00
12.90
19.30
21.40 | | | 177PE OF | X X X X | A A A A A A A A A A A A A A A A A A A | AS SW
SW
SW
SW
SW | AS SW | AS SW | AS SW | A S A S | | | СОПИТУ | 045
050 | 072
072
062
062
062 | 033
048
048
001
065 | 056
006
006
065
049 | 049
002
064
043
026 | 054
054
054
028
061 | 021
037
074
074 | | | STATE | 072
072
072 | 99999 | 072
072
072
072
072 | 072
072
072
072
072 | 072
072
072
072
072 | 072
072
072
072
072 | 072
072
072
072 | | | LONGITUDE | 0663207
0662650
0662142 | | 0670846
0670413
0670827
0664751 | 0670256
0670647
0670943
0665946
0670533 | 0670706
0670940
0655828
0655435
0653842 | 0655802
0660158
0660127
0660820
0661227 | 0662210
0662534
0662743
0662852 | | | LATITUDE | 182552
182829
182600
182038 | 2653
2742
0411
0506 | 180829
181202
181227
181203
181528 | 18 1653
18 1650
18 1629
18 2008
18 2 14 2 | 182237
182403
182327
182412
181934 | 175849
180204
180015
175730
180240 | 180352
180307
180609
180617 | | | STATION NAME AND LOCATION | RIO GRANDE DE MANATI AT HWY 2 NR MANATI, PR
LAGUNA TORTUGUERO OUTLET NR VEGA BAJA, PR
RIO CIBUCO NR VEGA BAJA, PR
RIO UNIBON NR MOROVIS, PR | RIO CIBUCO AT VEGA BAJ
RIO CIBUCO AT CENTRAL
RIO GUANAJIBO AT LA PI
RIO GUANAJIBO AT HWY 1
RIO ROSARIO AT ROSARIO | RID GUANAJIBO NR HORMIGUEROS, PR
RIO YAGUEZ AT PRESADA DE MAYAGUEZ, PR
RID YAGUEZ AT MAYAGUEZ, PR
R YAHUECAS HWY 135 NR ADJUNTAS PR
RIO GRANDE DE ANASCO NR LARES, PR | RIO GRANDE DE ANASCO NR SAN SEBASTIAN, PR
RIO GRANDE DE ANASCO AT EL ESPINO, PR
RIO GRANDE DE ANASCO NR ANASCO, PR
RIO CULEBRINAS AT SAN SEBASTIAN, PR
RIO CULEBRINAS AT HWY 404 NR MOCA, PR | RIO CULEBRINAS NR MOCA, PR
RIO CULEBRINAS NR AGUADA, PR
QUEBRADA BLASINA NR CAROLINA, PR
RIO GRANDE DE LOIZA AT CENTRAL CANOVANAS, PR
RIO FAJARDO BELOW FAJARDO, PR | RIO JACABOA AT HACIENDA SAN ISIDRO, PR
RIO GRANDE DE PATILLAS NR PATILLAS
RIO GRANDE DE PATILLAS AT PATILLAS, PR
RIO GUAMANI NR GUAYAMA, PR
RIO MAJADA AT LA PLENA, PR | RIO COAMO NR COAMO PR
RIO DESCALABRADO NR LOS LLANOS PR
RIO TOA VACA AT HWY 150 NR VILLALBA, PR
RIO TOA VACA NR VILLALBA, PR | | | HYDROLOGIC
Unit
CODE | 21010002
21010002
21010002 | 2 10 10 00 0 2
2 10 10 00 0 2
2 10 10 00 0 3
2 10 10 00 0 3 | 21010003
21010003
21010003
21010003
21010003 | 21010003
21010003
21010003
21010003 |
21010003
21010003
21010004
21010004
21010004 | 21010004
21010004
21010004
21010004
21010004 | 21010004
21010004
21010004
21010004 | | | VI02 1 | | | | | | | | |-------------------------------------|--|---|---|---|--|---|---| | AOTZ G32
AIG3M | 0000 | 00000 | 00000 | 0000 | 00000 | 00000 | 0000 | | MOITASIMADRO
3000 | uses
uses
uses
uses
uses | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | | SUSP DISCHARGE | пппоп | и иии | ФХЕПО | шш∢ш | Х М М | пппкп | | | 3512 TRAS 92U2
3512 TRAS TAM 038 | | | | | | | | | ZOZE ZED CONCEN | B Q ≺ ≺ E | 0 4 Q m 4 | охооо
— — — — — — — — — — — — — — — — — — — | м м м м м м м м м м м м м м м м м м м | ХШАПП | шооко | m 0 0 0 | | OW END
AA3Y | | 1975
1974
1970 | 1974 | 1968
1970
1971 | 1974 1 | 1975 | 1975 | | OW BEGIN | 1962
1964
1958
1964 | 1958
1960
1974
1960 | 1974
1960
1975
1959 | 1958
1958
1958
1964 | 1974
1974
1959
1969 | 1972
1972
1971
1960
1970 | 1972
1972
1974
1974 | | MISA8
Hotqihd230 | 0004
0014
004 | 004 | 014 | 014 | | 003
003
013
013 | 003 | | DRAINAGE
AREA | 9.70
7.80
25.60
10.40 | 24.20
18.50
20.80 | 54.80
8.65 | 8.65
200.00
18.50
31.90
41.80 | 71.90 | 1.55
1.65
8.07
12.50 | 1.77 | | TYPE OF
SITE | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | ************************************** | M M M M M M M M M M M M M M M M M M M | A S S S S S S S S S S S S S S S S S S S | M M M M M M M M M M M M M M M M M M M | M M M M M M M M M M M M M M M M M M M | № № № № № | | COUNTY | 056
056
056
056
056 | 055
029
029
029
029 | 029
029
029
005 | 067
025
004
011
011 | 0011 | 063
063
063
063 | 063
063 | | 3TAT2 | 072
072
072
099 | 072
072
072
072
072 | 072
072
072
072 | 072
072
072
072
072 | 072
072
072
072
072 | 072
072
072
072
072 | 072
072
072
072 | | LONGITUDE | 0663346
0663453
0663512
0663803 | 0664319
0664559
0664703
0664807 | 0664649
0664914
0665458
0661344
0661528 | 0661516
0661517
0660839
0660827
0660813 | 0660558
0660610
0660825
0660922 | 0660326
0660333
0660340
0660324
0660410 | 0660618
0660053
0660212
0660516 | | LATITUDE | 180510
180422
180218
180445 | 180302
180041
180324
180252 | 180040
175922
175844
180937 | 182339
182350
181439
181810
182008 | 181951
182005
182353
182417
182501 | 182044
182019
182215
182348 | 182503
182503
182550
182550
183537 | | STATION NAME AND LOCATION | RIO INABON AT REAL ABAJO, PR
RIO CERRILLOS NR PONCE, PR
RIO BUCANA NR PONCE, PR
RIO PORTUGUES NR PONCE, PR
RIO PORTUGUES AT HWY 2 BY PASS AT PONCE, PR | RIO TALLABOA AT PENUELAS PR
RIO MACANA NR GUAYANILLA, PR
RIO GUAYANILLA AT BARRIO MACANA, PR
RIO GUAYANILLA NR GUAYANILLA, PR
RIO GUAYANILLA AT GUAYANILLA PR | RIO GUAYANILLA AT CENTRAL RUFINA, PR
RIO YAUCO AT CENTRAL SAN FRANCISCO, PR
RIO LOCO AT GUANICA, PR
RIO DE LA PLATA AT PROYECTO LA PLATA, PR
RIO LAJAS AT TOA ALTA PR | RIO LAJAS AT TOA ALTA P R
RIO DE LA PLATA AT TOA ALTA, PR
RIO DE BAYAMON NR AGUAS BUENAS, PR
RIO DE BAYAMON AT HWY 174 NR BAYAMON, PR
RIO DE BAYAMON NR BAYAMON, PR | RIO GUAYNABO AT LA MUDA NEAR GUAYNABO,P.R.
RIO GUAYNABO AT HWY 836 NEAR GUAYNABO, P.R.
RIO DE BAYAMON AT BAYAMON PR
R DE BAYAMON AT H 167 AT BAYAMON
RIO DE BAYAMON AT BAYAMON FLOOD-CHANNEL, PR | QUE LAS CURIAS NR RIO PIEDRAS PR
QUEBRADA LAS CURIAS TRIBUTARY NR RIO PIEDRAS
RIO PIEDRAS NR RIO PIEDRAS, PR
RIO PIEDRAS AT RIO PIEDRAS, PR
RIO PIEDRAS AT HATO REY, PR | QUE MARGARITA AT CA PARRA HTS PR
SAN JOSE LAGOON NO 1 AT SAN JUAN, PR
SAN JOSE LAGOON NO 2 AT SAN JUAN, PR
SAN JIJAN BAY MD 5 AT SAN JIJAN, PP | | HYDROLOGIC
Unit
Code | 21010004
21010004
21010004
21010004
21010004 | 2 10 10004
2 10 10004
2 10 10004
2 10 10004
2 10 10004 | 21010004
21010004
21010005
21010005 | 21010005
21010005
21010005
21010005
21010005 | 21010005
21010005
21010005
21010005
21010005 | 21010005
21010005
21010005
21010005 | 2 10 10005
2 10 10005
2 10 10005
2 10 10005 | | MEDIA | | | | | | | |----------------------------|---|--|--|--|--|--| | NOTE CISE | 00400 | 40000 | 00000 | 0000 | 00400 | 0000 | | ONG ANIZATION
BOOD | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | 0.0868
0.0868
0.0868 | | 2026 DISCHARGE | ппко | шшкшк | யயயயைய | ш шш | пеппп | шшкп | | 3XI2 TRAS TAM 038 | | | | | | | | SUSP SED CONCEN | <u> </u> | ш | <u> </u> | | | <u> </u> | | | 44
000x> | 4 4
G G K M K | 4 4
m 4 m m m | <u> </u> | о <u>чоо</u> п | ω 4
шокп | | OW END
YEAR | 197. | 197. | 197 | 197, | 197. | 197 | | DW BEGIN | 1974
1959
1973
1958 | 1971
1958
1973
1967
1966 | 1963
1958
1967
1967
1966 | 1958
1961
1958
1965 | 1959
1972
1958
1969
1968 | 1969
1974
1971
1958 | | BASIN
DESCRIPTOR | 014
003
004 | 00
00
00
4
4 | 00000
00000
00000 | 000 | 000 | 000 | | DRAINAGE AREA | 89.80
17.50
5.40
85.85 | 16.40
60.20
9.84
2.75 | 2.23
8.62
7.31
6.88
11.80 | 13.50
14.90
21.60
4.84
17.60 | 6.65
17.30
4.69
17.20 | 7.89
39.15
5.15
12.40 | | TYPE OF STIE | N N N N N N N N N N N N N N N N N N N | A S A S A S A S A S A S A S A S A S A S | M S A S A S A S A S A S A S A S A S A S | A A A A A A A A A A A A A A A A A A A | M M M M M M M M M M M M M M M M M M M | 3 3 3 3
0 0 0 0 | | СОПИТУ | 013
013
042 | 013
031
013
043
059 | 059
059
059
059
059 | 059
026
026
051
051 | 042
034
034
075 | 075
075
047
047 | | 3TAT2 | 072
072
072
072 | 072
072
072
072
072 | 072
072
072
072
072 | 072
072
072
072
072 | 072
072
072
072
072 | 072
072
072
072 | | LONGITUDE | 0660636
0660035
0660126
0660213 | 065534
0655805
0660233
0655321 | 0654922
0654849
0655030
0654504
0654614 | 0654550
0654142
0653907
0654130
0654657 | 0655211
0655041
0654938
0655733
0655703 | 0655342
0655624
0655624
0655419 | | LATITUDE | 182709
184535
181511
181528 | 181258
181530
181734
181908
182102 | 181851
182137
182054
181946
182203 | 182227
181756
181911
181316
181309 | 18 1027
180937
180849
180453 | 180435
180345
1800131
180024 | | STATION NAME AND LOCATION | SAN JUAN BAY NO 3 AT SAN JUAN, PR
RIO GRANDE DE LOIZA AT CAGUAS, PR
RIO CAGUITAS AT HWY 30 AT CAGUAS PR
RIO BAIROA NR CAGUAS, PR
RIO VALENCIANO NR LAS PIEDRAS PR | RIO VALENCIANO NR JUNCOS, PR
RIO GURABO AT GURABO, PR
RIO CANAS ABOVE LAGO LOIZA, PR
RIO CANOVANAS NR CAMPO RICO, PR
RIO HERRERA NR COLONIA DOLORES PR | RIO ESPIRITU SANTO NR EL VERDE PR
RIO ESPIRITU SANTO NR RIO GRANDE, PR
RIO GRANDE NR EL VERDE, PR
RIO MAMEYEZ NR SABANA PR
RIO MAMEYES AT HWY 191 AT MAMEYES, PR | RIO MAMEYES AT MAMEYES, PR
RIO FAJARDO NR FAJARDO, PR
RIO FAJARDO AT FAJARDO, PR
QUEBRADA PALMA AT DAGUAO, PR
RIO BLANCO AT RIO BLANCO, PR | RIO HUMACAO AT LAS PIEDRAS, PR
RIO HUMACAO NR
HUMACAO PR
RIO HUMACAO AT HWY 3 AT HUMACAO, PR
RIO GUAYANES NR COLONIA LAURA, PR
RIO GUAYANES NR YABUCOA, PR | RIO LIMONES NR YABUCOA, PR
RIO GUAYANES ABV MOUTH AT PLAYA DE GUAYANES.
RIO MAUNABO AT LIZAS, PR
RIO MAUNABO AT MAUNABO, PR | | HYDROLOGIC
Unit
Code | 21010005
21010005
21010005
21010005
21010005 | 21010005
21010005
21010005
21010005
21010005 | 21010005
21010005
21010005
21010005
21010005 | 21010005
21010005
21010005
21010005 | 21010005
21010005
21010005
21010005
21010005 | 21010005
21010005
21010005
21010005 | | 100 | | | | | |--|----------------|--|---|---| | CENTRAN NE NE CENTRAN NE NE CENTRAN | A1G3M | ٥ | | d | | CENTRAN NE NE CENTRAN NE NE CENTRAN | 3000 | | | | | CENTRAN NE NE CENTRAN NE NE CENTRAN | MOITASIMADRO | Sc | | | | CENTAL-LANA NEAR CENTAL. OKTIVANA CENTAL-LANA NEAR CENTAL. OKTIVANA OKTIVAN | SUSP DISCHARGE | | | | | 171100 | | We will be a second of the sec | | | | STATION NAME AND IDICATION NAM | BSIS TRAM MEUS | | | | | GENKA-KAMA MEAR GENKA, OKINAMA GENKA-KAMA MEAR GENKA, OKINAMA 263643 1280347 072 2180 ON 1648 ON 1648 ON 1648 | 202 SED CONCEN | | | | | GENKA-KAMA MEAR GENKA, OKINAMA GENKA-KAMA MEAR GENKA, OKINAMA 263643 1280347 072 2180 ON 1648 ON 1648 ON 1648 | YEAR | 75 | | | | 31 TATE OF THAT I SECURLY WANTED TO CATTON MANUE AND LOCATION TO COUNTY THE COUNTY TO COUNTY THE COUNTY THAT COUNT | OM END | <u> </u> | | | | 31 TATE OF THAT I SECURLY WANTED TO CATTON MANUE AND LOCATION TO COUNTY THE COUNTY TO COUNTY THE COUNTY THAT COUNT | #A3Y | 4 | | | | 31 TATE OF THAT I SECURLY WANTED TO CATTON MANUE AND LOCATION TO COUNTY THE COUNTY TO COUNTY THE COUNTY THAT COUNT | OM BECIN | 0 | | | | GENKA-KAMA NEAR GENKA, OKINAWA 263643 1280347 073 5.W 3.90 | MOT91R3230 | | | | | STATION MANE AND LECKTION STATION MANE AND LECKTION COUNTY SM 7116 COUNTY SM 7116 COUNTY SM 7116 COUNTY COUNT | NISAB | 8 | | | | STATION MANE AND LECKTION STATION MANE AND LECKTION COUNTY SM 7116 COUNTY SM 7116 COUNTY SM 7116 COUNTY COUNT | ! ! | 06 | | | | STATION MAME AND LOCATION OBENKA-KANA NEAR GENKA, DKINAWA 265643 1280347 STATE COUNTY STATE ST | HAGE
FA | က် | | | | STATION MAME AND LOCATION OBENKA-KANA NEAR GENKA, DKINAWA 265643 1280347 STATE COUNTY STATE ST | RAIN | | | | | GENKA-KAWA NEAR GENKA, OKINAWA 2653643 1280347 073 37415 000N17 51915 015 | | | • | | | GENKA-KAWA NEAR GENKA, OKINAWA 2653643 1280347 073 37415 000N17 51915 015 | SITE | 3 | | | | GENKA-KAWA NEAR GENKA, OKINAWA 263643 1280347 073 | 30 34YT | is | | | | GENKA-KAWA NEAR GENKA, OKINAWA 263643 1280347 | COUNTY | | | | | GENKA-KAWA NEAR GENKA, OKINAWA 263643 1280347 | | е | | | | GENKA-KAWA NEAR GENKA, OKINAWA 263643 1280347 | | 0 | | | | GENKA-KAWA NEAR GENKA, OKINAWA 263843 1 | 30.6 | | | | | GENKA-KAWA NEAR GENKA, OKINAWA 263843 1 | 119 | 250 | | | | GENKA-KAWA NEAR GENKA, OKINAWA 263843 1 | to. | 2
8 | | | | GENKA-KAWA NEAR GENKA, OKINAWA | | | | | | GENKA-KAWA NEAR GENKA, OKINAWA | 1 100 | 64.5 | | | | GENKA-KAWA NEAR GENKA, OKINAWA | ATIT | e
9 | | | | GENKA-KAWA NE | | N | | | | GENKA-KAWA NE | | | | | | GENKA-KAWA NE |] | | | | | GENKA-KAWA NE | | | | | | GENKA-KAWA NE |] | | | | | GENKA-KAWA NE | | | | | | GENKA-KAWA NE | 8 | ₫ | | | | GENKA-KAWA NE | CATI | A N | | | | GENKA-KAWA NE | 91 (| N. | | | | GENKA-KAWA NE | ANE | ŏ | | | | GENKA-KAWA NE | JME | * | | | | GENKA-KAWA NE | ž | X. | | | | GENKA-KAWA NE | 1011 | 39 | | | | GENKA-KAWA NE | STA | A R | | | | | | N
N | | | | | | 4 | | | | | | X
A | | | | | | .A - | | | | | | N. N. | | | | HYDROLOGIC
UMIT
CODE
500095 | | <u> </u> | | | | 1 HYDROLDI UNIT CODE 50009 5 | ا ي | | | | | MAH | 01.00
MIT | 360 | | | | 1 – 1 uò | 1408 | ŏ | | | | | | | | | | | 0000 | | 000 0 | 00000 | ۵۵۵۵۵ | مممم | 0000 | | |--------------|---|--|---
---|--|--|--|--| | | IDO04
MNO12
MNO12
MNO12
MO003 | M0003
M0003
M0003
NY006 | TNOO2
TXOO1
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE | | | | | | шшα | | | 44444 | 4444 | | | | | | | | | | | | | | Y Y Y 4 5 | 22222 | | ववववव | 44444 | 44444 | 4444 | × | | | | | | | | 00 00 00 00 00 00 00 00 00 00 00 00 00 | | | | | | | | | | | | | | | 1979
1979
1979
1978 | 1978
1978
1978
1874 | 1969
1968
1968
1973 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1960
1960
1960
1960 | 1966
1966
1966 | | | | | | | | | | | | | S | | | | | | | | | | <u> </u> | MS M | L S S K | L S K K K K K K K K K K K K K K K K K K | **** | * | AS AS | NS NA | | | | 079
075
075
075 | 189
189
189
051 | 359
225
485
025
057 | 015
015
015
015 | 123
123
213
213
213 | 075
075
075
075
075 | 075
087
087
087 | | | Z | 0 / / / 0 | | 000000 | 013 | 013 | 00000 | 0000 | | | LLA | 00000 | 0903543
0903447
0903447
0901630
0773700 | 1539
3924
3200
3700 | | 3714
3815
3957
4006 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | | SCE- | 472925
472029
471813
471745
383917 | 383917
383954
383954
385127
424600 | 353115
312012
340627
333217
340802 | 340905
340604
340900
340900 |
343716
343623
343655
343518
343613 | 293740
293740
293740
293740
293740 | 293740
294000
294000
294000 | | | Ž | | | BURKBURNET | | | | | | | | 4 AT BRIDGE
<
IVER < | | N OF TASCOSA
CROCKETT
NORTHEAST OF
AS | ers
ers
ers at bridge
idge abv stp
carters la | ERS
FERS
FERS
7 156 BRIDGE
ERS LAKE DAM | OF MI. 14.1
OF MI. 14.1
OF MI. 14.1
OF MI. 14.1
1 OF MI 14.1 | OF MI 14.1
OF MI. 19.0
OF MI. 19.0
1 OF MI 19.0 | | | | CANYON CREEK AT MOUTH
BAPTISM RIVER <
BIG THIRTYNINE CREEK
MAIN BRANCH BEAVER RI
CAULKS CREEK | CAULKS CREEK
BONHOMME CREEK
BONHOMME CREEK
MILL CREEK
HEMLOCK LAKE | CANADIAN R AT US385 N
TRINITY R AT SH7 W OF
BRIDGE ON US 277-281
TIBBEE CR NR TIBBEE N
STATION DEPTH=20 METE | STATION DEPTH=38 METE
STATION DEPTH=20 METE
ETOWAH R @ U.S. ROUTE
ETOWAH R @ HWY 61 BRI
COOSAWATTEE R MOUTH @ | STATION DEPTH=67 METE
STATION DEPTH=107 MET
STATION DEPTH=123 MET
TALKING ROCK CR © HWY
COOSAWATTEE R © CARTE | MR-GO 500 FEET NORTH
MR-GO 500 FEET SOUTH
MR-GO 800 FEET NORTH
MR-GO 800 FEET SOUTH
MR-GO 1000 FEET NORTH | MR-GO 1000 FEET SOUTH
MR-GO 500 FEET NORTH
MR-GO 500 FEET SOUTH
MR-GO 1000 FEET NORTH | | | | MISCELLANEOUS | T MOUTH AT BRIDGE | ## SETINGE ## 155449 016 079 SW 1977 K ID004 472029 0911159 027 075 SW 1979 K MN012 47145 0912428 027 075 SW 1979 K MN012 47145 0912428 027 075 SW 1979 K MN012 383917 0903543 029 189 SW 1978 M M0003 383954 0903447 029 189 SW 1978 M M0003 385127 0901630 029 189 SW 1978 M M0003 424600 0773700 036 051 LK 1874 M NY006 | MISCELLANEOUS MOUTH AT BRIDGE 472925 1155449 016 079 5W VER RIVER < 477029 0911159 027 075 5W 477145 0912432 027 075 5W 477145 0912432 027 075 5W 477145 0912432 027 075 5W 477145 0912438 029 189 | MOUTH AT BRIDGE 472925 1155449 016 079 SW 1977 K 10004 CREEK < 477813 0911159 027 075 SW 1979 K 1970 VER RIVER < 383917 0903543 029 189 SW 1978 M 1970 S383917 0903543 029 189 SW 1978 M 1970 S38395 N 0903447 029 189 SW 1978 M 1970 T W OF CROCKETT T SA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | MISCELLANEOUS MOUTH AT BRIDGE 472925 1155449 016 079 5W VER RIVER < 4772029 091159 027 075 5W 477813 0912432 027 075 5W 477813 0912432 027 075 5W 477813 0912432 027 075 5W 4778145 029 189 5W 4778145 0912432 027 075 0912432 | MISCELLANEOUS MOUTH AT BRIDGE 472925 1155449 016 079 5W 471813 0911439 016 079 5W 471813 0911439 0175 5W 471813 0911439 027 075 091143 027 075 5W 471813 091143 027 075 5W 471813 091143 071 4 | MUCTH AT BRIDGE 4772225 1155449 016 079 5W 1979 K 1970 1 | | | | | | | | | | |----------------------------|--|---|---|--|--|--|--| | AIGEM | ٥٥٥٥٥ | ٥٥٥٥٥ | ٥٥٥٥٥ | 00000 | 00000 | 00000 | 0000 | | NOITAS INA DRO
3000 | USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USCE
USCE
USCE
USCE | USCE
USEPA
USEPA
USEPA
USEPA | USEPA
USFS
USFS
USFS | | 2026 DISCHARGE | 4 X X 4 4 | XXAAA | বৰবৰৰ | ৰ ব ব ব ব চ | 医医院院院 | œ | | | 3512 TAA9 TAM 038 | ······································ | | · · · · · · · · · · · · · · · · · · · | | · · · · · · · · · · · · · · · · · · · | | · · · · · · · · · · · · · · · · · · · | | MEDICONCEN | 4 2 2 4 4 | XX444 | 44444 | 4444 | ппккк | ααααα | 4 Z Z X | | | 97700 | P P 80 80 90 | 000000 | ത ത മ മ മ | 44400 | | 7222 | | ON3 WD
AA37 | 1960 | 0 0 0 0
0 0 0 0
0 0 0 0 | 1960
1960
1960
1960 | 196
196
196
196
196
196 | 196
196
196
196
196 | 6 | MATERIAL STATE OF STA | | OW BEGIN | 1966
1966
1969
1969 | 1966
1966
1966
1966 | 1969
1966
1966
1966 | 1969
1969
1966
1966
1967 | 1967
1967
1967
1967 | 1967
1977
1977
1977 | 1977
1977
1977
1977 | | BASIN
Descriptor | | | | | | | | | DRAINAGE
AREA | | | | | | | | | TYPE OF
SITE | X X X X X X X X X X X X X X X X X X X | % | N A S A S A S A S A S A S A S A S A S A | N A A A A A A A A A A A A A A A A A A A | NS
NS
NS
NS
NS
NS
NS
NS | AS A | X X X X X X X X X X X X X X X X X X X | | COUNTY | 087
087
087
087 | 087
087
087
087 | 087
087
087
087
087 | 087
087
087
087
087 | 087
087
075
075
075 | 075
011
011
015
015 | 011
079
079
079 | | 3TAT2 | 022
022
022
022 | 022
022
022
022 | 022
022
022
022 | 022
022
022
022
022 | 022
022
022
022 | 022
053
053
053
053 | 053
016
016 | | LONGITURE | 0892220
0891700
0891700
0891700 | 0891700
0891700
0891404
0891404
0891404 | 0891404
0891404
0891404
0891215
0891215 | 0891215
0891215
0891215
0891215
0892150 | 0892150
0892150
0891835
0891835 | 0891835
1223512
1224720
1225218
1231052 | 1224355
1161700
1161800
1155600 | | LATITUDE | 294000
293615
293615
293615
293615 | 293615
293615
293412
293412
293412 | 293412
293412
293412
293255
293255 | 293255
293255
293255
293255
293940 | 293940
293740
293740
293740 | 293740
453608
454810
460133
461100 | 455325
472500
472600
472800 | | STATION NAME AND LOCATION | MR-GO 1000 FEET SDUTH OF MI 19.0
MR-GO 500 FT. NDRTH OF MI. 12.2
MR-GO 800 FT. SOUTH OF MI. 12.2
MR-GO 800 FT. SOUTH OF MI. 12.2
MR-GO 800 FT. SOUTH OF MI. 12.2 | MR-GO 1000 FT. NORTH OF MI. 12.2
MR-GO 1000 FT. SOUTH OF MI.
12.2
MR-GO 500 FT. NORTH OF MILE 9.5
MR-GO 500 FT. SOUTH OF MILE 9.5
MR-GO 800 FT. NORTH OF MILE 9.5 | MR-GO 800 FT. SDUTH OF MILE 9.5 MR-GO 1000 FT. NORTH OF MI. 9.5 MR-GO 1000 FT. SDUTH OF MI. 9.5 MR-GO 500 FT. NORTH OF MILE 6.0 MR-GO 500 FT. SOUTH OF MILE 6.0 | MR-GD 800 FT. NORTH OF MILE 6.0
MR-GD 800 FT. SOUTH OF MILE 6.0
MR-GD 1000 FT. NORTH OF MI. 6.0
MR-GD 1000 FT. SOUTH OF MI. 6.0
MR-GD 300 FEET SOUTH OF MI. 18.3 | MR-GO 500 FEET NORTH OF MI. 18.3 MR-GO 1000 FEET NORTH OF MI 18.3 MR-GO 500 FEET NORTH OF MI. 13.7 MR-GO 500 FEET SDUTH OF MI. 13.7 MR-GO 1000 FEET NORTH OF MI 13.7 | MR-GO 1000 FEET SOUTH OF MI 13.7
COLUMBIA RIVER ABV VANCOUVER
COLUMBIA RIVER ABV ST HELENS
COLUMBIA RIVER NEAR KALAMA | LEWIS RIVER AT WOODLAND
MIDDLE FORK PINE CR
WEST FORK PINE CR
PLACER CREEK | | HYDROLOGIC
Unit
Code | - | | | | | | | | MEDIA | | | | | | | | | | |----------------------------|---|---|--|---|--|---|--|--|---------------------------------------| | SED STOR | | 00000 | 0000 | 00000 | 0000 | 0000 | 0000 | 0000 | · | | NOITAZINABRO
3000 | | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS | | | SUSP DISCHARGE | | | | | | | | | | | 3212 TAA9 TAM 038 | | | | | | | | | | | SUSP SED CONCEN | | XXZZ4 | 44242 | 4 X Y 4 Z | AZXZA | Y W Z W W | AXXZZ | Z < X X | · · · · · · · · · · · · · · · · · · · | | #A3Y | | | | | | | | | | | OM END | | | | | | | | | | | OW BEGIN | | 1977
1977
1977
1977 | | BASIN
DESCRIPTOR | | | | | | | | | | | DRAINAGE
AREA | | | | | | | | | | | 3T12 | | X X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | AS S AS | N S S S S S S S S S S S S S S S S S S S | N N N N N N N N N N N N N N N N N N N | AS S AS | N N N N N N N N N N N N N N N N N N N | | | COUNTY | | 079
079
055
055
079 | 079
079
079
079 | 079
079
079
079 | 079
079
079
079 | 079
079
079
079 | 079
079
079
079 | 079
055
055
055 | | | 3TAT2 | | <u> </u> | 9 9 9 9 | a a a a | α α α α α α α <u>α</u> | δ δ δ δ δ | 9
19
19
19
19 | 9 9 9 | | | | | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | LONGITURE | , | 16 1300
16 1300
16 1700
16 1700
160600 | 160600
155700
155700 | 155800
160000
155700
160300
160000 | 155600
155600
160800
155600 | 155500
154700
154900
155600 | 154800
155000
155200
160900
160400 | 161400
162900
162200
162800 | | | LATITUDE | | 472900 1
474800 1
474800 1
475200 1 | 475600 1
475700 1
474900 1
474700 1 | 474700 1
475200 1
474200 1
474700 1 | 474300 1
473400 1
473800 1
473400 1 | 473900 1
473600 1
473700 1
473500 1 | 473600 1
473700 1
473800 1
473900 1 | 474300 1
475400 1
473900 1
474400 1 | | | STATION NAME AND LOCATION | | EAST FORK PINE CR INDEPENDENCE CREEK, BASELINE BIG ELK CREEK TEPEE CREEK CINNAMON CREEK | CALAMITY CREEK ALDEN CREEK CABIN CREEK FALLS CREEK | OFFSET GULCH SENTINEL CREEK SHOSHONE CREEK TEDDY CR | EAST FORK LOST CREEK DEER CREEK COAL CREEK BEAVER CREEK DUDLEY CREEK | EAGLE CREEK
GRANITE CREEK
IDAHO GULCH
PONY GULCH
POTOSI GULCH | PRICHARD CR
OPHIR GULCH
TIGER GULCH
STEAMBOAT CREEK
FLAT CREEK | TIMBER CREEK
HONEY CREEK
GIMLET CREEK
DECEPTION CREEK | | | HYDROLOGIC
Unit
Code | | | | | | | | | | | MEDIA | | | | | | | | |----------------------------|---|---|---|--|---|---|---| | SED 310M | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | 0000 | | ORGANIZATIOI
CODE | USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS | | SUSP GISCHAR | | | | | | | | | TRAS TAM 038 | | | | | | | | | IZ TRAS SZUZ | | | | | | | | | SUSP SED CON | XAXAU | AAXAZ | 44444 | AAAAX | XXZZZ | AZKKA | 4 Z Z Z | | OW END
RABY | | | | | | | | | VEAR
YEAR | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977 | | MISAB
OFGIROSEO | | | | | | | | | DRAINAGE
AREA | | | | | | | | | TYPE OF SITE | 3333 0000 | 33333 | 33333
88888 | SEEEE | 33333 | XXXXX
XXXXX | 3 3 3 3
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | COUNTY | 055
055
055
055 | 055
055
055
055
055 | 055
055
055
055 | 055
055
055
055 | 055
055
055
079
021 | 021 | 0021 | | 3TAT2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 016
016
016
016 | 016 | 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 01000 | | E | | | | | | | | | LONGITHINE | 162400
162900
162800
163100
162200 | 162100
163000
162100
162900
164000 | 163900
163900
163800
163700
163900 | 163900
164200
164200
163900
164000 | 162200
162200
162700
154300
160500 | 161400
160700
161300
161200
161100 | 16 1000
160700
162300
162500 | | | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | LATITUDE | 473900
475200
474300
474500 | 474500
475100
474500
475300
475300 | 474200
473500
473500
473800 | 473800
475000
474900
474700 | 472800
472800
472600
472800
483600 | 483300
484900
485800
485900
485900 | 485900
483300
483400
484700 | | STATION NAME AND LOCATION | COPPER CREEK
SOLITAIRE CREEK
SANDS CREEK
LONE CABIN CREEK BELOW MINE
LEIBERG CREEK BASELINE | LAVIN CREEK
TOM LAVIN CREEK
TIE CREEK
SOB CREEK
BEAUTY CREEK BASELINE | WOLFLODGE CREEK, SECTION 16 BEAUTY CREEK BELOW MINE BEAUTY CREEK ABOVE MINE WOLFLODGE CREEK BASELINE VARNUM CREEK | CEDAR CREEK
NORTH FORK HAYDEN CREEK
HAYDEN CREEK BASELINE
MOKINS CREEK
YELLOWBANKS CREEK | LATOUR CREEK
BALDY CR
BUTLER CREEK
S FK COEUR D ALENE R.,BASELINE
BOULDER CREEK | UPPER BOULDER CREEK
DEER CREEK
GILLION CREEK LOWER
UPPER GILLION CREEK | MOYIE RIVER BELOW EASTPORT
KEND CREEK
TRAIL CREEK
BALL CREEK | | HYDROLOGIC
UNIT
CODE | | | | | | | | | WEDIV | | | | | | | | | |----------------------------|----------|--|--|---|---|---|--|-------------| | SED STOR | ۵۵ | 000 0000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | ORGANIZATION
CODE | 1 11 11 | USFS
USFS
USFS
USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS | | | SUSP DISCHARGE | | | | | | | | | | 3512 TRAS TAM 038 | | | | | | | | | | 3512 TAA4 42U2 | | | | | | ~~~~ | ~ ~ ~ ~ ~ | | | 2026 CONCEN | α α | ZZZ ZX«XZ | <u> </u> | XXAUU | RAAXZ | XXZZX | XXZZ | | | OW END
RA3Y | | | | | | | | | | KERB
OM BEGIN | | 1977
1977
1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | | | BASIN
DESCRIPTOR | | | | | | , | | | | DRAINAGE
AREA | | | | | | | | | | TYPE OF | 3 3 N | *** ********************************** | X X X X X X X X X X X X X X X X X X X | E E E E E | N N N N N | N N N N N | N N N N | | | COUNTY | 021 | 021
021
021
021
021 | 017
017
017
017 | 017
017
017
017 | 017
017
017
017 | 017
017
017
017 | 017
017
051
051 | | | 3TAT2 | 016 | 016
016
016
016
016 | 016
016
016
016 | 016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
053
053 | | | 30 | <u> </u> | | | | | | | | | LONGITUDE | 16250 | 162000
162000
163200
163300
164100
164800
163400 | 160700
161300
161700
160600
162300 |
162400
162500
163800
162200
162600 | 161600
161600
161700
163600 | 1163700
1165800
1170000
1165900 | 1165600
1170100
1170200
1170300 | | | LATITUDE | 84200 1 | 485500 1
485700 1
485700 1
485500 1
485500 1
485500 1 | 480400 1
480800 1
481500 1
481400 1 | 480500 1
475800 1
480600 1
482700 1 | 182400 1
182200 1
182200 1
182000 1 | 82000
84600
83500
83800 | 484200 1
484200 1
481900 1
482000 1 | | | STATION NAME AND LOCATION | | MISSION CREEK EF MISSION CREEK LONG CANYON CREEK SMITH CREEK COW CREEK UPPER COW CREEK SMITH CREEK-UNION ROAD BOUNDARY AT USGS GAGE SITE | | GRANITE CR NORTH GOLD CR FISH CR NF GROUSE CR GROUSE CR | TRAPPER CR
STEVE CR
NORTH DONE
LITTLE SAND CREEK | LITTLE SAND TRIB 2 BOULDER CREEK MATHAWIG CREEK INDIAN CREEK REEDER CREEK | FEDAR CREEK ZERO CREEK SLOUGH CREEK MOSQUITO CREEK | | | HYDROLOGIC
Unit
Code | | | | | | | | | | AIGSM | 999 | | 00000 | 00000 | 00000 | 0000 | 0000 | | |----------------------------|---|--|--|--|--|---|--|-------------| | | 000 | | | 88888 | 88888 | *********** | SSSS | | | ORGANIZATION
3000 | USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS | USFS
USFS
USFS | USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS | | | SUSP DISCHARG | | | | | | | | | | 2 T9A9 TAM G38 | ······································ | | | | | | | | | ZOZE PART SIZ | 7.0 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | | | | | | | Zα∢ | XX XXXX | ZXXXX | <u> </u> | YZZZY | ZZYYZ | 2 4 2 2 | | | OW END
RABY | | | | | | | | | | KEVB
OM BECIN | 1977
1977
1977 | 1977
1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | | | BASIN
DESCRIPTOR | | | | | | | | | | DRAINAGE
AREA | | | | | | | | | | TYPE OF | 3 S S S S S S S S S S S S S S S S S S S | ************************************** | M M M M M M M M M M M M M M M M M M M | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | MS M | N N N N N N N N N N N N N N N N N N N | | | COUNTY | 051
051
017 | 017
017
079
079
079 | 079
079
079
079 | 079
079
079
079 | 079
079
079
079 | 079
079
079
079 | 079
079
079
079 | | | 3TAT2 | 053
053
016 | 99999 | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016
016 | 016
016
016 | | | LONGITUDE | 1170300 | 1170300
1164500
1154800
1155000
1160300 | 1152100
1152100
1152600
1150100 | 1152300
1152200
1152200
1153700 | 1154200
1155200
1155300
1155400 | 153600
153600
154800
160600 | 1160600
1161800
1160300 | | | 1 ATITUDE | 482000
482100
482800 | 483000
482200
470400 ·
470500
470300
465800 | 47 1000
470500
470400
471400 | 47 1000
47 1400
47 2000
47 1600 | 47 1400
47 0800
47 1500
47 0900
47 1400 | 471300
471300
471500
470700
471800 | 471600
472200
471600
471600 | | | STATION NAME AND LOCATION | MILLERS CREEK
BEAR PAW CREEK
ANDERSON CREEK | WATER AT FR1268 | CR
R
CR
CR ABOVE DREDGING | GOLD CR.AT EF BRIDGE
FLOAT CR
INDIAN CR
RYE CR
BLUEBIRD CR | SKOOKUM CR
EF FISHHOOK
FLEMMING CR
OUTLAW CR
SIWASH CR | PROSPECTOR CR
UPPER PROSPECTOR CR
KELLY CREEK
UPPER MARBLE CR
EF BIG CR | MUD CABIN CR
FALLS CR
BLACK PRINCE CR
AGATHA CR | | | HYDROLOGIC
UNIT
CODE | | | | | | | | | | NOT2 G32
AIG3M | مممم | ۵۵۵۵۵ | 00000 | 00000 | 00000 | 00000 | ۵۵۵۵ | | |----------------------------|--|---|--|---|---|--|---|--| | ORGANIZATION
3000 | USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS | | | SOSP DISCHAR | | 7777 | | | | | | | | T844 TAM 038 | | | | | | | | | | IS TRAY 92UZ | | | | | | | | | | SUSP SED CONC | ZZZZY | ZZYZ¤ | ZYZZŒ | W X X X X X | RAAAZ | RAAZA | MAAR | | | OW END
AA3Y | 1973 | 1973 | | 1979 | | 1978 | 1978 | | | VEAR | 1977
1977
1977
1977 | 1977
1977
1973
1977 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1977
1977
1979
1979 | 1977
1977
1977
1977 | 1973
1977
1974
1977 | | | BASIN
DESCRIPTOI | | | | | | | | | | DRAINAGE
ARFA | | | | | | | | | | TYPE OF | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | AS SW
SW
SW
SW | N N N N N N N N N N N N N N N N N N N | MS AN | N K K K K K K K K K K K K K K K K K K K | MS MS MS NS | 3 3 3 S | | | COUNTY | 009
057
009
009 | 009
057
079
079 | 079
079
079
079 | 311
213
213
005
005 | 005
071
071
061 | 181
151
069
075
023 | 013
023
013
071 | | | STATE | 016
016
016
016 | 016
016
016
016 | 016
016
016
013 | 013
013
016
016 | 016
026
026
026
017 | 017
017
017
027
053 | 053
053
053 | | | LONGITUDE | 1163000
1162000
1163500
1163300 | 1163500
1162500
1161700
1161300 | 1160800
1160800
1161100
1160900
0834656 | 0834303
0843813
0843755
1122502 | 1122542
0885345
0885945
0884700
0892939 | 0892547
0883936
0881923
0913119
1172915 | 1174337
1173100
1175100
1180907 | | | LATITUDE | 471100
470100
470500
470400 | 470500
465900
470300
470200 | 470100
470100
470100
470000
344702 | 344430
345918
345451
423054 | 424731
460945
461115
462940
374746 | 373400
373104
372955
473806 | 461345
461652
461400
460345 | | | STATION NAME AND LOCATION | ST MARIES RIVER AT MASHBURN
EAST FORK EMERALD CR AT FR447 BR
PRESTON CR ABOVE MOUTH
EF CHARLIE CR
LITTLE EF EMERALD CR ABOVE MOUTH | HUME CR AT CHARLIE CR CROSSING
SWAMP CR AT FR447
>STAPLES> CR AT FS BOUNDARY
WF MERRY CR
TWO BIT CR | WINDY CR
GOLD CENTER CREEK
FLEWSIE CREEK
GRAMPS CREEK
FS ROAD BRIDGE 3000FT S WHITE CO | SMITH CR BELOW RECREATION AREA
BRIDGE 1000 FT S OF TENN ST LINE
1000 FT BELOW ROUGH CREEK
S FK MINK CR ABV CONF W/WEST FK
W FK MINK CR AT CITY INTAKE | GIBSON JACK CR AT CITY INTAKE
COOKS RUN US-2
S. BR. PAINT US-2
5.1MI.O85DEG. FR
BUTTERMILK HILL TIMBER SALE TMT | HUTCHINS CK 10 MI NW JONESBORO
BAY CREEK 4 MI N GLENDALE IL
BIG CREEK 4 MI N ELIZABETHTOWN
STONY R.10 MI.W.ISABELLA,MINN. | LITTLE TUCANNON AT MOUTH PATAHA CR 1/2 MI ABV NFS BOUNDRY JIM CREEK MILL CR BELOW BLUE CR | | | HYDROLOGIC
UNIT
CODE | | | | | | | | | | NOT2 G32
AIG3M | | 0000 | 00000 | 0000 | 00000 | 00000 | 00000 | 0000 | |----------------------------|---|--|---|--|---|--|---|--| | MOITAZINADRO
3000 | L | USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USFS
USFS
USFS | | SUSP DISCHARGE | | × 4 4 | 44444 | 4 Km4 | 44444 | 4444 | AANA | αααα | | SIZ TRA9 TAM 038 | | | | | | | | | | SIS TRAN NEUE | | | | | | | | | | SUSP SED CONCEN | • | 4 × 3 4 4 | বৰবৰৰ | Am Xm A | বৰবৰৰ | 4444 | AANAA | αααα | | OW END | | 50 | 1977 | 1978
1978 | | 1978 | 1978
1978
1978 | | | AEVB
OM BERIN | 1 | 1977
1977
1977
1977 | 1973
1977
1977
1977 | 1977
1973
1977
1970 | 1977
1977
1977
1977 | 1977
1977
1977
1977 | 1974
1977
1974
1974 | 1977
1977
1977
1977 | | BASIN
DESCRIPTOR | | | | | | | | | | DRAINAGE
AREA | | | | | | | | | | FILE OF THE OF | | A S A S | A S A S A S A S A S A S A S A S A S A S | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | NS N
S N
S N
S N | N N N N | | COUNTY | | 059
059
059
059 |
023
023
059
059
061 | 059
023
023
023
023 | 023
023
023
023
023 | 023
023
023
023 | 023
023
023
023 | 0023
0023
0023 | | 3TAT2 | | 004 | 0041 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0 0 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | LONGITUDE | | 175345
180630
180600
181245
181145 | 5 4 4 4 4 | 184137
184345
185107
183307
185430 | 185500
182400
182900
182800 | 184807
185600
185737
185645 | 1184537
1184537
1184630
1184730 | 1185500
1185700
1185800
1185900 | | LATITUDE | ! | 455315 1
455315 1
455300 1
454047 1 | 4 4 5 5 5 | 451030 1
445830 1
450045 1
445937 1 | 445500 144500 1445000 1445000 1 | 445352 1
445937 1
445800 1
445945 1 | 445005 1
445130 1
445237 1
445352 1 | 445900 1
445600 1
445800 1
445800 1 | | STATION NAME AND LOCATION | | LITTLE LODKINGGLASS CR N FK WALLA WALLA R SOUTH FORK WALLA WALLA S FK UMATILLA R ABV THOMAS CR THOMAS CR ABV S FK UMATILLA R | | BOWMAN CR
TROUGH CR
BIG MEADOW CR
N FK JOHN DAY R | N FK JOHN DAY R N FORK JOHN DAY RUBY CREEK 200 YDS ABOVE CLEAR TENCENT LEACH PAD RASMUSSEN MINING | DESOLATION CR DESOLATION CR E FK MEADOW BROOK MEADOW BROOK HOWARD CR | SPONGE CR BATTLE CR WELCH CR BRUIN CR UUNKENS CREEK | HOG CREEK AT CULVERT S-763 BULLY CREEK ABOVE BRUSH CREEK SMITH CREEK AT FOREST BOUNDARY WEST FK MEADOW BRK ABOVE SMITH | | HYDROLOGIC
Unit
Code | | | | | | | | | | AIG3M | | | | | | | | |----------------------------|--|---|---|--|--|---|---| | NOTZ G3Z | 00000 | 0000 | ۵۵۵۵ | 00000 | 00000 | 00000 | 0000 | | NOITAZIMADRO
BGOC | USFS
USFS
USFS
USFS | USFS
USFS
USFS
USFS
USFS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | ZUSP DISCHARGE | 4044 | | 22 | 7777 | 7777 | 7777 | 7777 | | SI2 TRA9 TAM 038 | | > | | | | | | | SUSP PART SIZE | | | | | | | | | ZOZE ZED CONCEN | <u> </u> | Y < < < > | OKNNN | NNNN | NNNN | NNNN | NNNN | | OW END
YEAR | 197 | | | | | | | | OM BEGIN | 1977
1974
1977
1977
1977 | 1977
1977
1977
1979
1979 | 1980
1976
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | | BASIN
DESCRIPTOR | | | | | | | · · | | DRAINAGE
AREA | | | 6735.00 | | | | | | 179E 0F
3T12 | S S S S S S S S S S S S S S S S S S S | AS S AS S | MS M | N N N N N N N N N N N N N N N N N N N | A S A S A S A S A S A S A S A S A S A S | M S M S M S M S M S M S M S M S M S M S | 3 3 3 3
0 0 0 0 | | COUNTY | 023
023
023
069
021 | 021
083
075
075
039 | 013
021
033
033
033 | 021
021
033
033 | 033 | 033
033
033
033 | 033
021
033
033 | | 31AT2 | 041
041
041
051 | 051
054
054
054
016 | 021
034
042
042
042 | 042
042
042
042 | 000
047
047
047
047
047 | 0000
442
642
642
642 | 0000
444
644
644 | | LONGITUDE | 1190100
1184608
1184600
1194200
0811414 | 0811329
0794244
0801215
0801032 | 0745208
0783924
0783306
0782656 | 0783305
0782947
0782934
0783202
0783320 | 0783129
0782814
0782659
0782542
0782515 | 0782610
0782650
0782643
0782556
0782556 | 0782228
0782753
0782422
0782140 | | LATITUDE | 445600
445004
445200
445430
370732 | 370734
385503
381853
381748
440300 | 401720
410311
405830
410210 | 403340
403913
404019
404435
404620 | 404927
404830
404930
404732
404911 | 404945
405104
405137
405248
405254 | 405727
405551
405934
405948 | | STATION NAME AND LOCATION | WEST FORK MEADOW BRK AT NF BDY
PARK CRETK AT S812
BEEMAN CREEK AT MOUTH
TAMARACK CR
HUNTING CAMP CREEK 76-06 | HUNTING CAMP CREEK 76-07 BICKLE RUN 8.5 MILES EAST ELKINS WILLIAMS RIVER 19 MI NE RICHWD NF SOUIRREL C NR SQUIRREL ID | STONY FK AT NOETOWN DELAWARE R AT WASHINGTON CROSSING NU L ANDERSON C NR ROCKTON, PA KRATZER RN AT BRIDGEPORT, PA MOOSE C AT CLEARFIELD, PA | CLEARFIELD C AT ASHVILLE, PA
CLEARFIELD C AT FRUGALITY, PA
POWELL RN AT VAN ORMER, PA
BLAIN RN AT COALPORT, PA
N WITMER RN AT IRVONA, PA | PINE RN NR IRVONA, PA
CLEARFIELD C NR MADERA, PA
SHOFF MINE AT MADERA, PA
L MUDDY RN AT SMOKE RUN, PA
MUDDY RN AT MADERA, PA | JAPLING RN AT MADERA, PA
PINE RN NR MADER, PA
LOST RN AT MADERA, PA
UPPER MORGAN RN NR KELLEYTOWN, PA
POTTS RN AT KELLYTOWN, PA | MORGAN RN NR MINERAL SPRINGS, PA
L CLEARFIELD C NR GLEN RICHEY, PA
LONG RN AT MOUNT HOPE, PA
ROARING RN AT MINERAL SPRINGS, PA | | HYDROLOGIC
Unit
Code | | | | | | | | | una T | | | | | | | | |----------------------------|--|---|--|---|--|--|---| | 90T2 G32
AIG3M | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | NOTA ZINA DRO
3000 | USGS
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | SUSP DISCHARG | ииии | 2222 | иииии | иииии | N N N N N | 7777 | N N N N | | IZIZ TAA9 92UZ | | | | | | | | | SUSP SED CONCE | 7777 | иииии | иииии | иииии | иииии | NNNN | NNN | | OW END
YEAR | | | | | | | | | VEAR
OW BEGIN | 1979
1979
1979
1979 | MIZAB
Rothrasa | | | | | | | | | DRAINAGE
Area | | | | | | | | | TYPE OF | M N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | X X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | MS MS MS | M N N N N N N N N N N N N N N N N N N N | | YTNUOD | 027
027
033
027
033 | 033
027
033
027
027 | 035
035
027
027 | 088 088 | 081
113
113
013 | 0
0
0
0
13
0
13 | 0021 | | 3TAT2 | 042
042
042
042
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042
042 | | LONGITUDE | 0781202
0781133
0781025
0780810
0780833 | 0780336
0780322
0780759
0780251
0782406 | 0774647
0774342
0775212
0775207
0775625 | 0771725
0771725
0782005
0771129
0765713 | 0765502
0765825
0761953
0762638
0782910 | 0782904
0782623
0782843
0782401
0782344 | 0784510
0784556
0784604
0781541 | | LATITUDE | 405449
405518
405714
405640
405739 | 410210
410208
410745
410659
411629 | 411945
411950
410424
410522
410302 | 412608
412608
412425
411915
413033 | 413058
412912
412731
412722
402947 | 402954
402804
402509
403827
403822 | 403622
403742
403819
400741 | | STATION NAME AND LOCATION | ONEMILE RN NR PHILIPSBURG, PA
HAWK RN NR HAWK RUN, PA
UNNAMED TRIB TO MOSHANNON C AT MUNSON, PA
BLACK BEAR RN NR WINBURNE, PA
SULPHUR RN NR WINBURNE, PA | MOSHANNON C NR MOSHANNON, PA
BLK MOSHANNON C AT MOSHANNON, PA
MOSQUITO C NR KARTHAUS, PA
STERLING RN NR PINE GLEN, PA
MEDIX RN NR MEDIX RUN, PA | DRURY RN AT DRURY RUN, PA
PADDY RN NR RENOVO, PA
SANDY RN NR SNOW SHOE, PA
WOLF RN NR SNOW SHOE, PA
N FK BEECH C AT CLARENCE, PA | L PINE C NR ENGLISH CENTER, PA
ENGLISH RN AT ENGLISH CENTER, PA
OTTER RN AT CARSONTOWN, PA
LARRYS C NR SALLADASBURG, PA
RED RN AT RALSTON, PA | MINERS RN NR RALSTON, PA
FROZEN RN NR RALSTON, PA
LOYALSOCK C AT LOPEZ, PA
BIRCH C NR RINGDALE, PA
GLENWHITE RN NR ALTOONA, PA | KITTANING C NR ALTOONA, PA
SUGAR RN NR ALTOONA,
PA
BLAIRS GAP RN NR FOOT OF TEN, PA
BELLS GAP RN NR BLANDBURG, PA
SHAW RN NR BLANDBURG, PA | LESLE RN NR CARROLLTOWN, PA
W BR SUSQUEHANNA R NR SPANGLER, PA
FOX RN AT SPANGLER, PA
SANDY RN AT HOPEWELL, PA | | HYDROLOGIC
Unit
Code | | | | | | | | | ROTZ G32
AIG3M | م م م م | 00000 | 00000 | ممممم | 0 0 0 0 0 | 00000 | 0000 | | |-----------------------------|--|---|---|---|---|--|--|--| | NOSTANIZATION
3000 | USGS
USGS
USGS
USGS | Ს ᲡᲡᲡᲡᲡ | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS | | | SUSP DISCHARGE | 7777 | | 77777 | 77777 | 77777 | иииии | NNNN | | | 3512 TAA9 TAM 038 | | | | | | | | | | 3512 TRAT 92U2 | | 44 | | | | | | | | SUSP SED CONCEN | NNN | + 6
N A A N N | иииии | <u> </u> | иииии | иииии | NNN | | | OW END
RABY | | 197 | | | | | | | | OM BEGIN | 1979
1979
1979 | 7 7 6 7 7 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | | | BASIN
BESCRIPTOR | | | | | | | | | | DRAINAGE
AREA | | . 74 | | | | | | | | 70 3 9YT
3T12 | MS MS | 8 8 8 8 8 8
8 8 8 8 8 8 | X X X X X X X X X X X X X X X X X X X | X X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | 3 3 3 3
S S S S | | | типоэ | 009
061
061 | 000
000
001
001
083 | 083
083
083
083 | 083
083
083
083 | 083
123
123
123
123 | 123
123
123
123 | 123
053
053
053 | | | 3TAT2 | 042
042
042
042 | 042
042
037
037
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042
042 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 042
042
042
042 | | | LONGITIDE | 15
12
50
50 | 07845454
0784515
0814828
0781631 | 0781708
0782143
0782400
0782343
0782334 | 0782708
0783922
0783833
0784002
0784951 | 0785131
0791011
0790821
0790636
0792115 | 0792435
0792117
0792144
0792456
0785950 | 0790121
0790256
0790647
0791440 | | | I ATITUDE | 8078 | 904
442
20 6 | 414810
413912
414016
414239
414410 | 414825
415222
415440
415746 | 414900
414535
414437
414912
414219 | 414000
413512
413732
413328
413803 | 414215
413435
413704
413231 | | | STATION NAME AND LOCATION | SIXMILE RN NR RIDDLESBURG, PA
SHOUP RN NR SAXTON, PA
GREAT TROUGH C NR CASSVILLE. PA
WILLS C AT GLENCOE, PA | WILLS C NR HYNDMAN, PA GLADDENS RN NR HYNDMAN, PA LITTLE FISHING CREEK NEAR WHITE WILSON CREEK NEAR GRAGG N C SCAFFOLD LICK RN NR NORWICH, PA | SKINNER C AT PORT ALLEGANY, PA
HAVENS RN AT NORWICH, PA
W BR POTATO C AT BETULA, PA
MILL BK AT COLEGROVE, PA
ROBBINS BK AT CROSBY, PA | MARVIN RN AT SMETHPORT, PA E BR TUNGUNWANT C AT LEWIS RUN, PA MINARD RN AT CUSTER CITY, PA BENNETT BK AT BEADFORD, PA SUGAR RN NR SUGAR RUN, PA | CHAPPEL FK NR MORRISON, PA
ELKHORN RN AT BUCHERS MILL, PA
FARNSWORTH BR NR CLARENDON, PA
MORRISON RN AT WARREN, PA
PERRY MAGEE RN NR TIDIOUTE, PA | TIDIOUTE C AT TIDIOUTE, PA BEAVER RN AT ENDEVOR, PA E HICKORY RN AT QUEEN, PA L HICKORY RN AT WEST HICKORY, PA S BR TIONESTA C AT CHERRY RUN, PA | TWOMILE RN AT SHEFFIELD, PA
BLUEJAY C NR LYNCH, PA
UPPER SHERIFF RN NR LYNCH, PA
THE BRANCH AT KELLETSVILLE, PA | | | HYDROLOGIC
Unit
CODE | | | | | | | | | | | | | | | | | | | | |----------------------------|-------------|---|--|--|--|--|---|--|--| | AIG3M | | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | ONGANIZATION | | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | | 7777 | 7777 | 77777 | 77777 | 77777 | иииии | ииии | | | 3512 TAA9 TAM 038 | | | | | | | | | | | 3512 TAAR RZUZ | | | | | | | | | | | SOZE ZED CONCEN | | <u> </u> | <u> </u> | 77777 | 77777 | 77777 | NNNN | ииии | | | OW END
PA3Y | | | | | | | | | | | VEAR
OW BEGIN | | 1979
1979
1979
1979 | | BASIN
DESCRIPTOR | | | | | | | | | | | DRAINAGE
AREA | | | | | | | | | | | TYPE OF | | AS A | X X X X X X X X X X X X X X X X X X X | N N N N N N N N N N N N N N N N N N N | N N N N N | N N N N N | N N N N N | N N N N | | | YTNUOD | | 053
053
053
121
121 | 121
039
123
123
039 | 039
039
039 | 121
121
121
121
121
121 | 121
085
121
121
121 | 047
047
047
053 | 065
053
031
031 | | | 3TAT2 | | 042
042
042
042 | | LONGITUDE | | 0791930
0791944
0792825
0793232 | 0793351
0794158
0793244
0793449
0793649 | 0795107
0800634
0801015
0801312
0800300 | 0795719
0794739
0795222
0794757 | 0793831
0800530
0795523
0795027
0794320 | 0784045
0791711
0784103
0783917
0790713 | 0784652
0785936
0792305
0792706 | | | LATITUDE | | 4 13053
4 12624
4 12755
4 12828
4 12704 | 413205
413942
414236
414316
413756 | 414306
414531
413704
413523
413121 | 412558
413254
412952
412236
411900 | 411700
412107
412214
411518
411330 | 413620
411414
412957
412504
412725 | 411341
413057
411405
411404 | | | STATION NAME AND LOCATION | | ROSS RN NR CRYSTAL SPRINGS, PA
COON C NR NEWMANSVILLE, PA
L TIONESTA C AT TIONESTA, PA
STEWART RN AT BAUM, PA
HEMLOCK RN AT PRESIDENT, PA | PITHOLE C NR LOVELL CORNERS, PA THOMPSON C NR HYDETOWN, PA CALDWELL C AT GRAND VALLEY, PA W BR CALDWELL C NR GRAND VALLEY, PA PINE C NR ENTERPRISE, PA | E BR MUDDY C NR KOOCHGEY CORNERS, PA
GRAVEL RN NR WOODCOCK, PA
VAN HRONE C AT KERRTOWN, PA
WATSON RN AT WATSON RUN, PA
L SUGAR C AT COCHRANTON, PA | MILL C AT UTICA, PA PRATHER C NR DEMPSEYTOWN, PA LAKE C AT COOPERSTOWN, PA LOWER TWO MILE RN AT VENANGO, PA E SANDY C NR KOSSUTH, PA | PINE RN AT NICKLEVILLE, PA
MCCUTCHEON RN
L SANDY C AT POLK, PA
SCRUBGRASS C AT KENNERDELL, PA
MILL C NR EMLENTON, PA | W BR CLARION R NR WILCOX, PA
MILL C NR STRATTANVILLE, PA
SILVER C AT WILCOX, PA
ELK C AT DAGUSCAHONDA, PA
W BR MILLSTONE C AT MARIENVILLE, PA | RATTLESNAKE C NR LANES MILLS, PA
SPRING C AT DUHRING, PA
TOBY C NR CLARION, PA
DEER C NR SHIPPENVILLE, PA | | | HYDROLOGIC
Unit
Code | | | | | | | | | | | VIGH | | | | | | | | |----------------------------|--|--|---|---|---|--|---| | AIGEM | 00000 | 0000 | 0000 | 0000 | 00000 | 00000 | 0000 | | NORDANIZATION
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS |
USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | SUSP DISCHARGE | ииии | 2222 | 7777 | 77777 | 77777 | 77777 | NNNN | | IZ TRAS TAM 038 | | | | | | | | | SUSP SED CONCE | иииии | 77777 | 77777 | 77777 | 77777 | NNNN | 7777 | | YEAR | NNNNN | 14141414 | 1010101010 | 14141414 | 74 14 14 14 14 | 14141414 | NIVIA | | OM END | | | | | | | | | OW BEGIN | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979 | | NIZAB
ROT91R3230 | | | | | | | | | DRAINAGE
AREA | | | | | | | | | TYPE OF | ************************************** | N N N N N | X X X X X X X X X X X X X X X X X X X | N R R R R | N R R R R R | N N N N N N N N N N N N N N N N N N N | SEEE | | СОВИТУ | 031
031
031
019 | 005
065
065
031
065 | 065
065
005
005
005 | 005
005
005
005
005 | 005
005
111
111 | 021
111
111
021 | 021
021
021
129 | | 3TAT2 | 042
042
042
042
042 | 042
042
042
042
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042
042 | 042
042
042 | | LONGITUDE | 0792054
0793337
07937 18
0794334
0794217 | 0793701
0784739
0790442
0792900
0785037 | 0785314
0785604
0792247
0791941
0791845 | 0792804
0793032
0792937
0793425
0791127 | 0791755
0792506
0785645
0785716
0790151 | 0784853
0785049
0785820
0785610
0784311 | 0784256
0784704
0785527
0790820 | | LATITUBE | 410757
411038
411002
410317
410508 | 405930
410832
410839
410104
405907 | 405811
405611
405445
405101
405030 | 405228
405127
404938
404524
404059 | 404325
404119
400411
400535
400954 | 400803
401446
401502
401658
402302 | 402646
402055
402027
402154 | | STATION NAME AND LOCATION | PINEY C NR LIMESTONE, PA
BEAVER C BELOW BLAIRS CORNERS, PA
TURKEY RN AT ALUM ROCK, PA
S BR BEAR C AT BRUIN, PA
N BR BEAR C AT PARKER, PA | SUGAR C AT EAST BRADY, PA
WOLF RN AT FALLS CREEK, PA
FIVE MILE RUN AT BROOKVILLE, PA.
WILDCAT RN AT DIAMOND, PA
STUMP C NR BIG CREEK, PA | BIG RUN AT BIG RUN, PA
CANOE C AT CLOE, PA
SCRUBGRASS C AT GOSHENVILLE, PA
N BR S FK PINE C AT ECHO, PA
S BR S FK PINE C NR BRYAN, PA | N FK PINE C AT MOSGROVE, PA
LIMESTONE RN AT TARRTOWN, PA
COWANSHANNOCK C NR SUNNYSIDE, PA
GLADE RN AT CADOGAN, PA
CROOKED C ABOVE MCKEE RN AT CREEKSIDE, PA | S BR PLUM C NR GASTOWN, PA
CHERRY RN NR BRICK CHURCH, PA
WELLS C AT MOSTOLLER, PA
BEAVERDAM C AT STOYSTOWN, PA
QUEMAHONING C AT BOSWELL, PA | DARK SHADE C AT REITZ, PA
L PAINT C AT SCALD LEVEL, PA
S FK BENS C NR FERNDALE, PA
BENS C AT FERNDALE, PA
L CONEMAUGH R AT WILMORE, PA | HOWELLS RN NR EBENSBURG, PA
S FORK AT SOUKSBURG, PA
HINCKSTOWN RN AT MINERSVILLE, PA
HENDRICKS C NR WEST FAIRFIELD, PA | | HYDROLOGIC
UNIT
CODE | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | · · · · · · · · · · · · · · · · · · · | | | | | | |---------------------------------------|--|---|---|---|--|--|--| | 8012 032
AI03M | 00000 | 00000 | 00000 | 0000 | 00000 | 00000 | 0000 | | ORGANIZATION
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | usas
usas
usas
usas | | ZNZb DIZCHYBG | ииии | 77777 | иииии | иииии | 77777 | NZZNN | NNNN | | 2 TAA4 TAM Q38 | | | | | | | | | SIS TRAM SUZ | | | | | | | | | SORE SED CONCE | иииии | иииии | иииии | <u> </u> | иииии | NZANN | NNNN | | OW END
YEAR | | | | | | | | | AEBIN
OM BEGIN | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1978
1978
1979 | 1979
1979
1979 | | NISA8
Rotairj230 | | | | | | | | | DRAINAGE
Area | | | | | | 16.40 | | | TYPE OF | * * * * * * * * * * * * * * * * * * * | X X X X X X X X X X X X X X X X X X X | N S A S A S A S A S A S A S A S A S A S | N N N N N N N N N N N N N N N N N N N | A S A S A S A S A S A S A S A S A S A S | N N N N N N N N N N N N N N N N N N N | X X X X X X X X X X X X X X X X X X X | | COUNTY | 129
021
021
063
063 | 063
063
063 | 129
129
129
129 | 063
005
005
129 | 019
003
129
003 | 003
051
051
059
059 | 051
125
125
125 | | 3TAT2 | 042
042
042
042
042 | 0000
0400
0420
0420 | 0000
0440
0440
0440 | 0000
040
040
040 | . 042
042
042
042
042 | 042
042
042
042
042 | 042
042
044
045
045 | | LONGITURE | 0791543
0785115
0785151
0785506
0790403 | 0785641
0790054
0790010
079039 | 0791415
0791448
0791711
0792718
0792852 | 0792233
0792721
0793056
0793406
0793518 | 0794150
0794247
0795022
0795037
0800053 | 0795830
0793704
0793737
0800115
0794839 | 0795428
0801220
0800532
0800019 | | LATITUDE | 402353
403439
403213
402852
402948 | 404029
404013
403458
403338
403002 | 401142
401450
401526
402143
402336 | 403214
403245
403405
403426
403615 | 404742
404226
403329
403110
403532 | 402941
394744
394610
394559
394701 | 395218
400111
400151
400754 | | STATION NAME AND LOCATION | MCGEE RN AT BRENIZER, PA
DUTCH RN NR BLUE GDOSE, PA
ELK C NR BELSANG, PA
BLACKLICK C AT VINTONDALE, PA
BRUSH C AT CLAGHORN, PA | S BR TWO LICK C NR WANDIN JUNCTION, PA
DIXON RN AT CLYMER, PA
YELLOW C NR PIKES PEAK, PA
L YELLOW C AT SUNCLIFF, PA
AULTMANS RN NR LEWISVILLE, PA | LOYALHANNA C AT RECTOR, PA
MILL C AT LIGONIER, PA
FOURMILE RN AT DARLINGTON, PA
CRABTREE C AT CRABTREE, PA
WHITEHORN C NR SHIELDSBURG, PA | BLACKLEGS C AT CLARKSBURG, PA
LONG RN NR MAYSVILLE, PA
ROARING RN NR ORCHARD HILLS, PA
BEAVER RN AT PAULTON, PA
PINE RN AT WEST VANDERGRIFT, PA | ROUGH RN AT WEST WINFIELD, PA
L BUFFALO C AT STLVERVILLE, PA
L DEER C NR ACMETONIA, PA
PLUM C AT VERONA, PA | GIRTYS RN AT BADERSTOWN, PA
BIG SANDY CR AT WHARTON FURNACE CHAPEL, PA (
BIG SANDY CREEK AT ELLIOTTSVILLE, PA (11)
MEADOW RN AT DAVISTOWN, PA
MOUNTAIN RN AT RUBLE MILLS, PA | BROWNS RN AT RONCO, PA
TEN MILE C NR AMITY, PA
DANIELS RN NR MARIANA, PA
N BR PIGEON C AT BENTLYVILLE, PA | | HYDROLOGIC
UNIT
CODE | | | | | | | | | SOTE GER STOR | 0000 00000 00000 00000 00000 0000 | |----------------------------
--| | MOIT A'S IN A DRO
BOOD | 888888 888888 888888888888888888888888 | | SUSP DISCHARG | NUNU NUNU NUNUN NUNUN NUNUN NUNUN | | 2 TRAS TAM G38 | | | SUZ TAA 92UZ | | | DW END | | | NEGIN
YEAR | 0.00 | | BASIN
0ESCRIPTOR | | | ORAINAGE
AREA | | | TYPE OF | | | COUNTY | 125 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 3TAT2 | 4444 4444 4444 4444 4444 4444 4444 4444 4444 | | LONGITUDE | 0795753
0795834
0790545
0790141
0790227
0790254
0793333
0793333
0794211
0793333
0794211
0793333
0794211
0794211
0794211
0793333
0794211
0793333
0794211
0795020
0801231
0801231
0801231
0801231
0801272
0801328
0801328
080172
0795714 | | LATITUDE | 4001033
4001033
395010
395010
395010
400133
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
400134
4001 | | STATION NAME AND LOCATION | MINGO C AT RIVER VIEW, PA PINE FK AT SNOWDEN, PA TUB MILL RN AT WEST SALISBURY, PA FLAUGHERTY C AT MEYERSDALE, PA BLUE LICK C NR MEYERSDALE, PA BLUE LICK C NR MEYERSDALE, PA TUBS RN AT BEACHDALE, PA WHITES C AT HORNEDSVILLE, PA WHITES C AT HORNEDSVILLE, PA MEADOW RN NR FARMINGTON, PA INDIAN C AT WYER, PA INDIAN C AT WHITE BRIDGE, PA SEWICKLEY C NR YOUNGWOOD, PA L SEWICKLEY C NR YOUNGWOOD, PA L SEWICKLEY C AT COWANSBURG, PA LONG RN AT VERSAILLES, PA LONG RN AT VERSAILLES, PA CHARTIERS RN AT HOUSTON, PA ROBINSON RN AT EWINGSVILLE, PA LONG RN AT EWINGSVILLE, PA HOMPSON RN AT EWINGSVILLE, PA LONG RN AT EWINGSVILLE, PA HOUNTOUR C AT CORADPOLIS, PA ROBINSON RN AT EWINGSVILLE, PA LOWES RN NR FREEDOM, PA BIG RN NR FREEDOM, PA HOGBACK RN AT MEST MIDDLESEX, PA OTTER C AT MERCER, PA HOTENBAUGH RN AT EASTBROOK, PA BONNIE BK AT EAST BUTLER, PA HOTENBAUGH RN AT EASTBROOK, PA BONNIE BK AT EAST BUTLER, PA HOTENBAUGH RN AT EASTBROOK, PA BREAKNECK C AT EIDENAU, PA GLADE RN NR GLADE L CONNOQUENESSING C NR HARMONY, PA | | HYDROLOGIC
UNIT
CODE | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | |-------------------------------------|---|---|--|--|--|--|---|--| | ROTZ G32
AIG3M | ٥٥٥٥ | 00000 | 00000 | 00000 | 00000 | 00000 | 0000 | | | NOITAZINADRO
3000 | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS
USGS | USGS
USGS
USGS
USGS | | | SUSP DISCHARGE | 7777 | NNNN | NNNAX | বৰবৰ | ∢ZV Œ | $\alpha \leq \alpha \times \alpha$ | zzzα | | | 3512 TAAR R2U2
3512 TAAR TAM 038 | | | | | | | W 4 7 84 | | | SUSP SED CONCEN | 77777 | 77777 | NNNAZ | 4 4 | 4 Z N O A | MANXM
MA XM | ZZZZ | | | OW END
YEAR | | | 1967 | 1966 | 1969 | 1966
1966
1973
1974 | 1974
1972
1974
1973 | | | LEVB
OM BECIN | 1979
1979
1979
1979 | 1979
1979
1979
1979 | 1979
1979
1967
1967 | 1966
1975
1966
1976
1978 | 1977
1979
1977
1977
1968 | 1966
1966
1973
1972
1972 | 1972
1971
1972
1973 | | | MIZA8
Rotqirdzego | | | | | | | | | | DRAINAGE
AREA | | | 153.00 | 5.90
152.00 | 1772.00 | | | | | TYPE OF
SITE | 3 X X X X X X X X X X X X X X X X X X X | 3 | 3 3 3 3 S | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | SCON | | | COUNTY | 010
010
010 | 085
073
125
007
007 | 073
125
007
001
051 | 001
013
001
065
055 | 021
069
063
001 | 001
001
001
017 | 0017
0017
0017 | | | 3TAT2 | 042
042
042
042 | 042
042
042
042 | 042
042
042
055
036 | 027
055
019
055
017 | 087
005
029
040
048 | 048
049
016
006 | 900
900
900 | | | LONGITURE | 0800603
0801205
0795559
0795503 | 0800218
0800829
0802205
0802011
0802242 | 0802802
0802922
0803038
0774255 | 0922125
0895954
0885400 | 1050209
0900813
0901354
0961424 | 1161330
1200004
1200003 | 1200015
1200000
1200002
1200006 | | | LATITUDE | 405120
404832
410600
410511
410313 | 233
206
301
357
357 | 405250
402526
402924
423340 | 460044
424633
375658 |
490003
362721
360820
345832 | 390127
390142 | 390211
390221
390338
390405 | | | STATION NAME AND LOCATION | L YELLOW C NR MIDDLE LANCASTER, PA CAMP RN AT FOMBELL, PA N BR SLIPPERY ROCK C AT ALWELLS, CROSSING, P MCMRRAY RN R BRANCHTON, PA S BR SLIPPERY ROCK C NR BRANCHTON, PA | PARK DAM, P | HONEY C NR ENON VALLEY, PA
KINGS C NR FLORENCE, PA
N FORK AT HUGHES LAKE, PA
CANASERAGA CREEK NEAR DANSVILLE NY | YELLOW RIVER AT DANBURY, WI
STEINER BRANCH NEAR WALDWICK, WI
MIDDLE FORK BIG MUDDY RIVER NEAR BENTON, IL | BEAVER CREEK AT INTERNATIONAL BOUNDARY
ST. FRANCIS RIVER AT ST. FRANCIS, ARK.
VARNEY RIVER NR SENATH, MO
CANADIAN RIVER AT CALVIN, OK | LAVERKIN C AT HWY 15 BRIDGE, NR
PLEASANTON STR DR AT ROSS ST AT
89 PL 1.27
89 PL 1.42 | 89 ED 2.11
89 ED 2.21
28 PL 3.38
89 En 24.65 | | | HYDROLOGIC
Unit
Code | | | | | | | | | | | | | | | | | | · | |----------------------------|---|---|--|---|---|---|-------------|-------------| | ROTZ G3Z
AIG3M | ا م م م | | 0000 | 00000 | 00000 | 00000 | ٥٥ | | | 30 00 | 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 65
65
65
50
50
50
50
50
50
50
50
50
50
50
50
50 | \$08
\$08
\$08
\$08
\$08 | SCS
SCS
SCS
SCS | SCS
SCS
SCS
SCS | T V A Y V A Y V A A V Y V A A V Y V A A V Y V A A V A A V A A V A A V A A V A V | STVA | | | NOITAZINA990 | 2000 | | USS USS | USS
USS
USS
USS | S C C C C C C C C C C C C C C C C C C C | VST
UST
VTSU
VTSU
VTSU | .s.n | | | SUSP DISCHARGE | 220 | | 00000 | 00000 | 0000 | | | | | SED MAT PART SIZE | | Σ | ··· | | | | | | | SUSP SED CONCEN | ZYŒ | | 00000 | 0 000 | N N N | 44444 | 4 4 | | | HA3Y | 4 4 4 . | 4 4 4 LO RO | വവവവവ | വവവവവ | ເດເດເດເດ | | | | | OM END | 197. | 197 | 197
197
197
197 | 197
197
197
197 | 197
197
197
197 | | | | | RABY | 0000 | 22722 33 | 77.7.7. | 57 27 27 27 27 27 27 27 27 27 27 27 27 27 | 57
57
57
57
56 | 79
79
79
79 | 79 | | | OM BECIN | 197 | 197
197
197
195
195 | 195
195
195
195 | 1957
1957
1957
1957 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 | 6 19 | | | 80T9183230 | | | | | | | | | | NISAB | | ···· | | | | | | | | DRAINAGE
AREA | | | | | | | | | | TYPE OF | A S S | NA AMAMA | N N N N N N N N N N N N N N N N N N N | AS A | AS A | NS N | N N
N | | | COUNTY | 017 | 00 | 860
860
860
860 | 860
860
860
860 | 660
660
660
660 | 145
145
145
145
001 | 001 | | | ∃TAT2 | 900
900 | | 028
028
028
028
028 | 028
028
028
028
028 | 028
028
028
028
047 | 047
047
047
047 | 047 | | | TUDE | 1200011
1200010
1200007 | 1200005
1200005
1200008
1210415
0892728 | 192750
192941
193042
193218 | 54
54
54
10 | 193810
193610
193731
194110 | 13125
13125
12925
12812
11026 | 1202 | | | LONGITUDE | 0000 | 000
000
000
104
928 | 927
930
932 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 938
937
941 | | 4 1 2 | | | 11 | 2,2,2,3 | 98777 | 8 8 8 8 | 0800 | 0000 | | 800 | | | 2 | 7 5 4 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 35
4
1
7
1
0 | 10
16
16
08
08 | 9
9
9
9
9
9
9 | 327
327
320
336
336 | 50
43 | | | LATITUDE | 904; | 190501
190601
190607
190607
144407 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 14510
14510
14516
13908 | 444
444
442
544 | 555
555
555
555
555
555 | 160050 | | | LA
C | 8 8 8 | % % % % % % % % % % % % % % % % % % % | 88888 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | <u>ઌ૽ઌ૽ઌ૽</u> | 8 8 8 8 8 | <u> </u> | | | STATION NAME AND LOCATION | | 89 ED 25.44 89 ED 25.44 89 ED 16.61 89 ED 16.87 SKAGIT R AT INT BDY NR HOPE BC WALKERS BOTTOM CREEK NR HOLLY SPRINGS, MS. LITTLE SAND DITCH NR HOLLY SPRINGS, MS. | CHEWS CREEK NR WATERFORD, MS. CHEWS CREEK NR HOLLY SPRINGS, MS. WILKINS CREEK NR HOLLY SPRINGS, MS. PIGEON ROOST CREEK NR HOLLY SPRINGS, MS. | PIGEON ROOST CREEK NR MARIANNA, MS. (MAIN CH
PIGEON ROOST CREEK NR MARIANNA, MS. (COMB FL
SLAYTON CREEK NR HOLLY SPRINGS, MS.
CUFFAWA CREEK AT CHULAHOMA, MS. (RELIEF OP)
CUFFAWA CREEK AT CHULAHOMA, MS. (MAIN CHAN) | CUFFAWA CREEK AT CHULAHOMA, MS. (COMB FLOW) DRY FORK CREEK NR CHULAHOMA, MS. CUFFAWA CREEK NR WALLHILL, MS. PIGEON ROOST CREEK NR BYHALIA, MS. KENTUCKY RESERVOIR | | | | | HYDROLOGIC
Unit
Codf | | | | | | | | | | | • | | | |--|---|--|--| | | | | |